Extracting Subimages of an Unknown Category from a Set of Images

Sinisa Todorovic and Narendra Ahuja

CVPR 2006

Objective: Car Category Example

occlusion

no car

occlusion

multiple cars

learn car model

RESULT

Category Modeling is Extremely Difficult

- Recursive embedding of object subparts
- Regions vs. local features open questions:
 - More informative?
 - More stable and robust to noise?
- Regions allow:
 - simultaneous object detection and segmentation
 - explicit representation of the recursive embedding property

Objective

GIVEN

Images possibly containing objects from a category

DETERMINE

If a category is present

Training

AND IF YES LEARN

Model of the category

GIVEN

An unseen image

SEGMENT

Testing

All occurrences of the category

What is Category?

CATEGORY ⇔ **SET OF SUBIMAGES** comprised of

REGIONS having

SIMILAR properties:

- (1) Photometric -> brightness, contrasts
- (2) Geometric -> area, boundary shape
- (3) Topological -> layout and recursive embedding

UNSUPERVISED LEARNING OF A CATEGORY!

Rationale

CATEGORY PRESENT IN THE SET

#

MANY SIMILAR SUBIMAGES

1

ABUNDANT DATA

qo s

 $\downarrow\!\!\downarrow$

ROBUST LEARNING IS FEASIBLE

Prior Work Dominated By:

Statistical modeling of local features

Object detection

Image classification

Object segmentation

Object localization (e.g. probabilistic map)

A training image must contain a category

Modeling background

• Discriminative approaches require hundreds of training images

Image = Tree ⇒ Object = Subtree

[N. Ahuja TPAMI '96, Tobb & Ahuja TIP '97, Arora & Ahuja ICPR '06]

Cutsets

Example segmentations

Segmentation tree

Contrast level ≠ **Tree level**

Outline of Our Approach

Images = **Trees**

Category present = Many similar subtrees

Extracting similar subtrees = Tree matching

Category model = Union of similar subtrees

Simultaneous detection and segmentation of ALL category instances

П

Matching model with image

Intrinsic Region Properties

- Gray-level mean, variance, and area μ_v , σ_v^2 , a_v
- Rotation invariant boundary shape context

Derived quantity: region saliency

$$w_{v} \triangleq \lambda \left[\frac{|\mu_{v} - \mu_{p}|}{\max(\mu_{v}, \mu_{p})} + \frac{|\sigma_{v}^{2} - \sigma_{p}^{2}|}{\max(\sigma_{v}^{2}, \sigma_{p}^{2})} \right] + (1 - \lambda) \left[\frac{a_{v}}{a_{p}} + H_{v} \right],$$

$$H_{v} \triangleq -\sum_{k=1}^{K} h_{v}(k) \log h_{v}(k)$$

Chosen to make recognition invariant to rotation and scale changes

Relative Region Properties

Context vector: attraction field at the centroid of a region

$$\overrightarrow{\Phi}_v = \sum_{u \in \mathcal{N}_v} \frac{w_u}{d_{uv}^2} \overrightarrow{r}_{uv} = \{|\overrightarrow{\Phi}_v|, \phi_v\}$$
 neighborhood Rotation invariant relative to the parent

Outline

Matching Algorithm

[Torsello & Hancock ECCV'02, ECCV'04]

Matching Algorithm

GIVEN two trees: $t,\ t'$

FIND bijection $f:(v,v'),\ v\in t,\ v'\in t'$

which MAXIMIZES the QUALITY OF MATCH

$$\mathcal{U}(t,t') = \sum_{(v,v') \in f} [w_v + w_{v'} - m_{vv'}]$$
 node cost of node
 saliency matching

while PRESERVING ancestor-descendant relationships

Matching Algorithm: Recursive Solution

$$\mathcal{U}(t_v, t'_{v'}) = w_v + w_{v'} - m_{vv'} + \max_{\substack{\mathcal{C}_{vv'} \\ \text{descendants}}} \sum_{\substack{(d, d') \in \mathcal{C}_{vv'} \\ \text{descendants}}} \mathcal{U}(d, d')$$

Maximum clique over all descendant pairs

SOLUTION

Select all pairs (v, v') with $\mathcal{U}(t_v, t'_{v'}) > \text{threshold}$.

Outline

Category Model = Tree Union

$$\tau = t_i \cap t_{i+1}$$

$$\mathcal{T} = au \cup t_i \setminus au \cup t_{i+1} \setminus au$$

Structural learning estimates:

- 1) Data-model correspondence
- 2) Model structure
- 3) Model parameters

Simultaneous Detection and Segmentation

Results: UIUC Cars Side View

5 positive out of 10 training images

Results: UIUC Cars Side View

10 positive out of 20 training images

Results: Faces – Caltech 101 Database

3 positive out of 6 training images

Results: Faces – Caltech 101 Database

6 positive out of 12 training images

Results: Caltech Cars Rear View

10 positive out of 20 training images

Recall-Precision

Training from a small-size dataset

Varying evaluation criteria

Complexity and Runtime on 2.4GHZ 2GB RAM PC

Extracting similar subtrees: $O(|V|^4)$ per image pair # of tree nodes

Training on 20 images of UIUC CARS: < 2 hours

Learning: $O(|V_s|^4)$ # of subtree nodes

Learning on 32 subtrees extracted for UIUC CARS: < 1 hour

Detection and segmentation: $O(|V_{\mathcal{T}}|^4)$ # of model nodes

Processing time for UIUC CARS: < 10 sec, regardless of the total number of target objects

Summary and Conclusion

- <u>Unsupervised</u> category detection and learning
- Region-based, <u>structural</u> approach
- Simultaneous detection and segmentation of all objects
- NO multiple detections on the same object
- NO hypothesis on the number of objects and their parts
- Small number of training images
- Complexity comparable with standard methods

Acknowledgment

Himanshu Arora provided the segmentation code

THANK YOU!

{sintod, ahuja}@vision.ai.uiuc.edu

http://vision.ai.uiuc.edu/~sintod