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Category Modeling is Extremely Difficult

e Recursive embedding of object subparts /

e Regions vs. local features open questions:

e More informative? /

e More stable and robust to noise?

e Regions allow: / |

* simultaneous object detection and segmentation

e explicit representation of the recursive embedding property



GIVEN

Images possibly containing objects from a category

DETERMINE

If a category is present

AND IF YES LEARN

Model of the category

GIVEN

An unseen image
SEGMENT

All occurrences of the category




What is Category?

CATEGORY ¢ SET OF SUBIMAGES comprised of

REGIONS having

SIMILAR properties:
(1) Photometric -> brightness, contrasts
(2) Geometric -> area, boundary shape
(3) Topological -> layout and recursive embedding

UNSUPERVISED LEARNING OF A CATEGORY'!



CATEGORY PRESENT IN THE SET
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MANY SIMILAR SUBIMAGES
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ROBUST LEARNING IS FEASIBLE
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Prior Work Dominated By:

Statistical modeling of local features

Object detection <> Image classification

Object segmentation < Object localization (e.g. probabilistic map)

A training image must contain a category

Modeling background

Discriminative approaches require hundreds of training images



Image = Tree = Object = Subtree

[N. Ahuja TPAMI ‘96, Tobb & Ahuja TIP ‘97, Arora & Ahuja ICPR “06]

Example segmentations

/

Contrast level = Tree level

Segmentation tree |




Outline of Our Approach

Images = Trees

Category present = Many similar subtrees

Extracting similar subtrees = Tree matching

Category model = Union of similar subtrees

Simultaneous detection and segmentation
of ALL category instances

Matching model with image




Intrinsic Region Properties

e Gray-level mean, variance, and area
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e Rotation invariant boundary shape context

e Derived quantity: region saliency
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Chosen to make recognition invariant to rotation and scale changes



Relative Region Properties

e Context vector: attraction field at the centroid of a region
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Matching Algorithm

[Torsello & Hancock ECCV‘02, ECCV’'04]

Input trees Matched subtrees
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Matching Algorithm

GIVEN two trees: t, t’

FIND bijection f: (’U,'U’), v € t, v’ et

which MAXIMIZES the QUALITY OF MATCH

u(t9t,): Z [w’v Wy — m'v'v']
(’U,’U’)Ef \/ \

node  cost of node
saliency = matching

while PRESERVING ancestor-descendant relationships



Matching Algorithm: Recursive Solution
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U(ty, t' ) =w,+w,—m,, + max Z U(d,d")
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descendants

Maximum clique over
all descendant pairs

SOLUTION
Select all pairs (v,v") with U(t,,t",/) > threshold.
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Category Model = Tree Union
T = tz M tz‘_|_1

T =7 U t;\7 U t;x1 \7T

Structural learning estimates:
1) Data-model correspondence

2) Model structure

3) Model parameters



Simultaneous Detection and Segmentation

MATCHING s




Results UIUC Cars Slde View

5 positive out of 10 training images

Results on test images:
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Results: Faces — Caltech 101 Database




Results: Faces - Caltech 101 Database

6 positive out of 12 training images

Results on test images:
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Results: Caltech Cars Rear View
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Recall-Precision

Caltech—-101: Faces

2 3 _4 5 6
Number of Training Images

Training from a small-size dataset

UIUC Sideview Cars
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Varying evaluation criteria



Complexity and Runtime on 2.4GHZ 2GB RAM PC

Extracting similar subtrees: O(|V'|*) per image pair

¥ of tree nodes

Training on 20 images of UIUC CARS: < 2 hours

Learning: O(|V5|?)

S

# of subtree nodes

Learning on 32 subtrees extracted for UIUC CARS: < 1 hour

Detection and segmentation: O(|Vr |4)

N

# of model nodes

Processing time for UIUC CARS: < 10 sec,
regardless of the total number of target objects



Summary and Conclusion

¢ Unsupervised category detection and learning

¢ Region-based, structural approach

¢ Simultaneous detection and segmentation of all objects

¢ NO multiple detections on the same object

¢ NO hypothesis on the number of objects and their parts

¢ Small number of training images

¢ Complexity comparable with standard methods
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