Object and Activity Recognition
Grounded on
Midlevel Image Representations

Sinisa Todorovic
joint work with: N. Payet, M. Amer

Oregon State University

September 20, 2011
Marr’s Vision

Visual Representations

Algorithms

Implémentation

Slide by SC Zhu
Open Basic Problems

• Semantic gap between visual features and categories
 • General vs. task-specific representations
Open Basic Problems

- Semantic gap between visual features and categories
- General vs. task-specific representations
- An observation: recent research mostly task-specific
Open Basic Problems

- Semantic gap between visual features and categories
 - General vs. task-specific representations
 - An observation: recent research mostly task-specific

- What are successful general representations?
 - Grammars and logic are back!
 - SIG-11 workshop at ICCV11
 - U Grenander, D Mumford, SC Zhu, A Yuille, L Davis, R Chellapa, N Ahuja, A Leonardis, P Felzenszwalb, S Todorovic ...
Goal

A unified computational framework capable of:

Discovery
Detection
Segmentation
Summarization

... of visual categories
in images and video
What is an Object?

compositionality

Spatial arrangement of its parts

input images

partonomy = SCFG

Todorovic & Ahuja PAMI08
What is an Object?

compositionality

Spatial arrangement of its parts

Parts = Objects in their own right

Part discovery = Suspicious coincidences
What is an Object?

compositionality
Spatial arrangement of its parts

context
Spatial and semantic constraints with other objects

AND-OR graph: a hierarchy of random fields

Todorovic & Ahuja ICCV07
What is an Activity?

compositionality
Spatiotemporal arrangement of its parts

and

context
Spatiotemporal constraints with other activities
What is an Activity?

compositionality

Spatiotemporal arrangement of its parts

and

context

Spatiotemporal constraints with other activities

AND-OR graph: a hierarchy of random fields

Brendel & Todorovic CVPR11, ICCV11
Issues

- Human conceptualization
- Hierarchical
- Context sensitive models
- Features
- Images, video

Bottleneck

Grounding grammars on pre-selected low-level features
Example Low-Level Features

STIPs

HOGs

optical flow

video segmentation
Issues

Bottleneck

Grounding requires (probabilistic) repeatability of:
features and their spatiotemporal placement

Satisfied only in particular settings/tasks
(e.g., single-view object recognition)
Example Issues

<table>
<thead>
<tr>
<th>low-level</th>
<th>mid-level</th>
</tr>
</thead>
<tbody>
<tr>
<td>point-based features</td>
<td>regions, contours</td>
</tr>
<tr>
<td>stable, repeatable</td>
<td>unstable, poor repeatability</td>
</tr>
<tr>
<td>poor informativeness</td>
<td>informative</td>
</tr>
</tbody>
</table>
Hypothesis

Grounding grammars on summaries of low-level features
Hypothesis

Grounding grammars on summaries of low-level features where the summarization is guided top-down.
Objective

Formalize a mid-level feature that will be:
informative like regions (e.g., encode structure)
and
repeatable like points (e.g., view-invariant)
Bags of Right Features/Detections

If the category occurs,
it has to be in the spotlight of many BORDs
so they can jointly support the occurrence hypothesis

Perina & Jojic CVPR11
Example Problem: Activity Recognition

Given a video with noisy people detections
Example Problem

Given a video with noisy people detections

Detect and localize: all activity instances & actors

Amer & Todorovic ICCV11
Example Problem

Grounding the grammar on a space-time grid of Bags of Right Detections (BORDs)

Structure is encoded in the overlap of BORDs
Bags of Right Detections

\[S_i \cdot x \]

shape context indicator

\# people detections

\# bins

BORD \(i \)
Bags of Right Detections

x - latent variable

constrained by all BORDs

$S_i \cdot x$

shape context indicator
Detection and Localization

BORDs jointly constrain the solution

Amer & Todorovic ICCV11
Example Problem: Object Recognition

Given a set of edges in the image
detect and localize all object instances
and estimate their 3D pose

Payet & Todorovic ICCVII
Bags of Right Detections

BORDs jointly constrain the solution
Our Approach

Initial placement of BORDs on a regular grid

Search for optimal features by warping the grid

Detection & Localization

chains graphical model

Amer & Todorovic ICCV11
Our Approach

Initial placement of BORDs on a regular grid

Search for optimal features by warping the grid

MAP Inference:
1. Warp the grid to expected locations
2. Select MAP BORDs

guided by chains graphical model

video frames
The Chains Model

\[P(M, O, L_S, L_E, F) \]

Number of BORDs → Ordering of BORDs → Start frame of activity → End frame of activity → Features → Observables

Latent variables

Number of BORDs
The Chains Model

\[P(M, O, L_S, L_E, F) \]

\[= P(M, O) P(L_S|M, O, F) P(L_E|M, O, F) \]

\[\cdot \prod_{i} P(F_{O(i+1)}|F_{O(i)}) \prod_{i \in F - O} P_{bgd}(F_i) \]
MAP Inference

\[P(M, O, L_S, L_E|F) \]
MAP Inference

\[P(L_S, L_E|F) \propto \sum_{M,O} P(M, O, L_S, L_E, F) \]
MAP Inference

\[P(L_S, L_E|F) \propto \sum_{M,O} P(M, O, L_S, L_E, F) \]

\[= \sum_{M,O} P(M) \left[\prod_{i,j} P(F_j|F_i) \right] P(L_S, L_E|M, O, F) \]
MAP Inference

\[P(L_S, L_E | F) \propto \sum_{M,O} P(M, O, L_S, L_E, F) \]

\[= \sum_{M,O} P(M) \left[\prod_{i,j} P(F_j | F_i) \right] P(L_S, L_E | M, O, F) \]

\[= \pi_T^{\text{start}} \left[\sum_m P(M = m) X^m \right] \pi_{\text{end}} \]
MAP Inference = LP

\[
\text{minimize } \text{tr}\{C_b^T X\} + \alpha \| (I-W) X Q \|_1 + \beta \| (I-X) Q \|_1 \\
\text{subject to } X \geq 0, \ X 1_n = 1_n, \ b \geq 0, \ \| b \|_2^2 = 1.
\]

Searching for optimal features
under non-rigid shape deformations
of the grid of BORDs
Results

Correct detection and localization of:
 kicking and pushing
 and actors involved
Results

Correct detection and localization of:
handshaking and hugging
and actors involved
Results

video frames

Failure example

correct: handshaking and hugging
wrong: actors involved
Example Problem: Object Recognition

MAP inference = LP

Searching for optimal features under non-rigid shape deformations of the grid of BORDs

Payet & Todorovic ICCV'11
Correct detection, localization, and pose estimation
Correct detection, localization, and pose estimation
Conclusion

- Prior work: pre-selected features, typically low-level for repeatability

- Proposed mid-level features:
 - Allow abstraction of low-level features
 - Reduce the semantic gap
 - Enable addressing multiple tasks
 - Repeatable, and jointly encode structure
Acknowledgment

NSF IIS 1018490