Object and Activity Recognition Grounded on Midlevel Image Representations

Sinisa Todorovic joint work with: N. Payet, M. Amer Oregon State University September 20, 2011

Marr's Vision

Slide by SC Zhu

Open Basic Problems

- Semantic gap between visual features and categories
 - General vs. task-specific representations

Open Basic Problems

- Semantic gap between visual features and categories
 - General vs. task-specific representations
 - An observation: recent research mostly task-specific

Open Basic Problems

- Semantic gap between visual features and categories
 - General vs. task-specific representations
 - An observation: recent research mostly task-specific

- What are successful general representations?
 - Grammars and logic are back!
 - SIG-II workshop at ICCVII
 - U Grenander, D Mumford, SC Zhu, A Yuille, L Davis, R Chellapa, N Ahuja, A Leonardis, P Felzenszwalb, S Todorovic ...

Goal

A unified computational framework capable of: Discovery Detection Segmentation Summarization . . . of visual categories

in images and video

What is an Object?

compositionality

Spatial arrangement of its parts

What is an Object?

compositionality

Spatial arrangement of its parts

Parts = Objects in their own right

Part discovery = Suspicious coincidences

What is an Object?

compositionality

Spatial arrangement of its parts

and

context

Spatial and semantic constraints with other objects

What is an Activity?

compositionality

Spatiotemporal arrangement of its parts

and

context

Spatiotemporal constraints with other activities

What is an Activity?

compositionality

Spatiotemporal arrangement of its parts

and

context

Spatiotemporal constraints with other activities

AND-OR graph: a hierarchy of random fields

Brendel & Todorovic CVPRII, ICCVII

Issues

Grounding grammars on pre-selected low-level features

Example Low-Level Features

STIPs

optical flow

frame 36 hand shaking frame 195 kicking frame 310 punching

video segmentation

Grounding requires (probabilistic) repeatability of: features and their spatiotemporal placement

Satisfied only in particular settings/tasks (e.g., single-view object recognition)

Example Issues

low-level —	→ mid-level
point-based features	regions, contours
stable, repeatable	unstable, poor repeatability
poor informativeness	informative

Hypothesis

Grounding grammars on summaries of low-level features

Hypothesis

Grounding grammars on summaries of low-level features where the summarization is guided top-down

Objective

Formalize a mid-level feature that will be: informative like regions (e.g., encode structure) and

repeatable like points (e.g., view-invariant)

Bags of Right Features/Detections

If the category occurs,

it has to be in the spotlight of many BORDs

so they can jointly support the occurrence hypothesis

Perina & Jojic CVPRII

Example Problem: Activity Recognition

Given a video with noisy people detections

Amer & Todorovic ICCVII

Example Problem

Given a video with noisy people detections

Detect and localize: all activity instances & actors

Amer & Todorovic ICCVII

Example Problem

Grounding the grammar on a space-time grid of Bags of Right Detections (BORDs)

Structure is encoded in the overlap of BORDs

Bags of Right Detections

iBORD

Bags of Right Detections

 \mathbf{X} - latent variable constrained by all BORDs

Detection and Localization

BORDs jointly constrain the solution

Amer & Todorovic ICCVII

Example Problem: Object Recognition

Given a set of edges in the image detect and localize all object instances and estimate their 3D pose

Bags of Right Detections

BORDs jointly constrain the solution

Payet & Todorovic ICCVII

Our Approach

Amer & Todorovic ICCVII

Our Approach

Initial placement of BORDs on a regular grid Search for optimal features by warping the grid

video frames

MAP Inference:

 Warp the grid to expected locations
Select MAP BORDs

chains graphical model

The Chains Model

The Chains Model

$P(M, O, L_S, L_E, F)$

$= P(M, O)P(L_S|M, O, F)P(L_E|M, O, F)$

$\cdot \prod_{i} P(F_{O(i+1)}|F_{O(i)}) \prod_{i \in F-O} P_{bgd}(F_i)$

 $P(M, O, L_S, L_E|F)$

$P(L_S, L_E|F) \propto \sum_{M,O} P(M, O, L_S, L_E, F)$

 $P(L_S, L_E|F) \propto \sum_{N \in \mathcal{O}} P(M, O, L_S, L_E, F)$ M.O

 $= \sum_{M,O} P(M) \left| \prod_{i,j} P(F_j | F_i) \right| P(L_S, L_E | M, O, F)$

 $P(L_S, L_E|F) \propto \sum_{N \in \mathcal{O}} P(M, O, L_S, L_E, F)$ M,O

MAP Inference = LP

minimize $\operatorname{tr} \{ \boldsymbol{C}_{\boldsymbol{b}}^{\mathrm{T}} \boldsymbol{X} \} + \alpha \| (\boldsymbol{I} - \boldsymbol{W}) \boldsymbol{X} \boldsymbol{Q} \|_{1} + \beta \| (\boldsymbol{I} - \boldsymbol{X}) \boldsymbol{Q} \|_{1}$ subject to $\boldsymbol{X} \ge 0, \ \boldsymbol{X} \boldsymbol{1}_{n} = \boldsymbol{1}_{n}, \ \boldsymbol{b} \ge 0, \ \| \boldsymbol{b} \|_{2}^{2} = 1.$

> Searching for optimal features under non-rigid shape deformations of the grid of BORDs

video frames

Correct detection and localization of: kicking and pushing and actors involved

video frames

Correct detection and localization of: handshaking and hugging and actors involved

video frames

Failure example correct: handshaking and hugging wrong: actors involved

Example Problem: Object Recognition

MAP inference = LP

Searching for optimal features under non-rigid shape deformations of the grid of BORDs

Payet & Todorovic ICCVII

Correct detection, localization, and pose estimation

Correct detection, localization, and pose estimation

Conclusion

Prior work: pre-selected features, typically low-level for repeatability

- Proposed mid-level features:
 - Allow abstraction of low-level features
 - Reduce the semantic gap
 - Enable addressing multiple tasks
 - Repeatable, and jointly encode structure

Acknowledgment

NSF IIS 1018490