

Scene Shape from Texture of Objects

Nadia Payet and Sinisa Todorovic

PROBLEM STATEMENT

Given noisy image detections

Identify the right detections and extract their texture

Reconstruct the 3D shape

OUR APPROACH

- Extract noisy object detections with the detector of [1]
- (2) Label the right detections sequentially ⇒ texture elements
- (3) Estimate normals for each detection
- (4) Diffuse the normals for shape from texture
- (5) Reconstruct the remaining scene parts

DETECTING TEXTURE

SEARN [2] sequentially labels detections as texture elements Apply classifier f to each detected bounding box

$$f^{(\tau+1)} = \beta h_{\kappa}^{(\tau+1)} + (1-\beta)f^{(\tau)}$$

weak classifier

Accumulate contextual information to help remove false positives

SHAPE FROM TEXTURE

Diffusion of object normals \implies Shape of texture surfaces

Domain knowledge -> Shape of non-texture surfaces

[1] Felzenzwalb et al., Object detection with discriminatively trained part-based models, PAMI 2010.

[2] Daume et al., Search-based structured prediction, Machine Learning Journal 2009.

[3] Gupta et al., Blocks world revisited, ECCV 2010.

Model 6

Average precision of object detection for the LabelMe dataset

Scene reconstruction for the LabelMe dataset

Detections

[1] low threshold

Desai et al., ICCV09

Our method

Discretized normals Comparison to [3] on the Geometric Context dataset.

RESULTS

Ground

stereo

Scene reconstruction for the Leuven dataset.

Gupta et al. [3]

Zoomed-in detail