

Activities as Time Series of Human Postures

11th European Conference on Computer Vision ECCV 2010 [5-11 September, 2010] Hersonissos, Heraklion, Crete, Greece

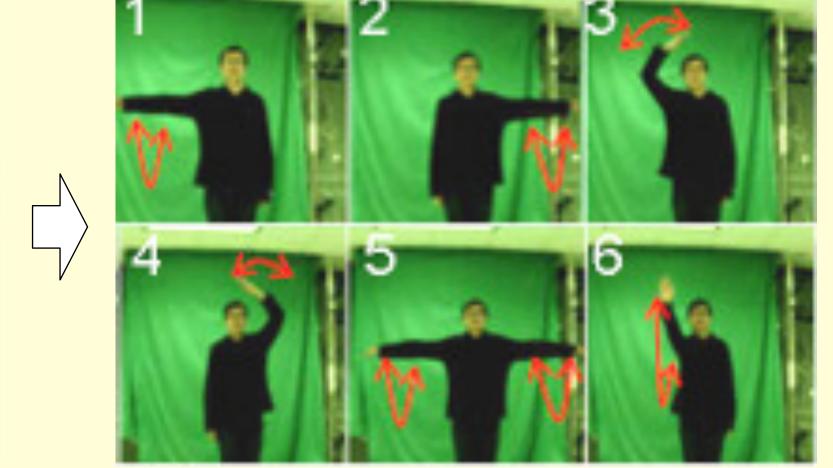
William Brendel and Sinisa Todorovic

MOTIVATION

Activity recognition should be:

- a) Robust: dynamic backgrounds, occlusion, clutter
- b) Efficient: fast processing
- c) Scalable: large number of classes, large datasets

PROBLEM STATEMENT



input videos

sequence of poses

Given a set of videos with class labels,

Extract a dictionary of:

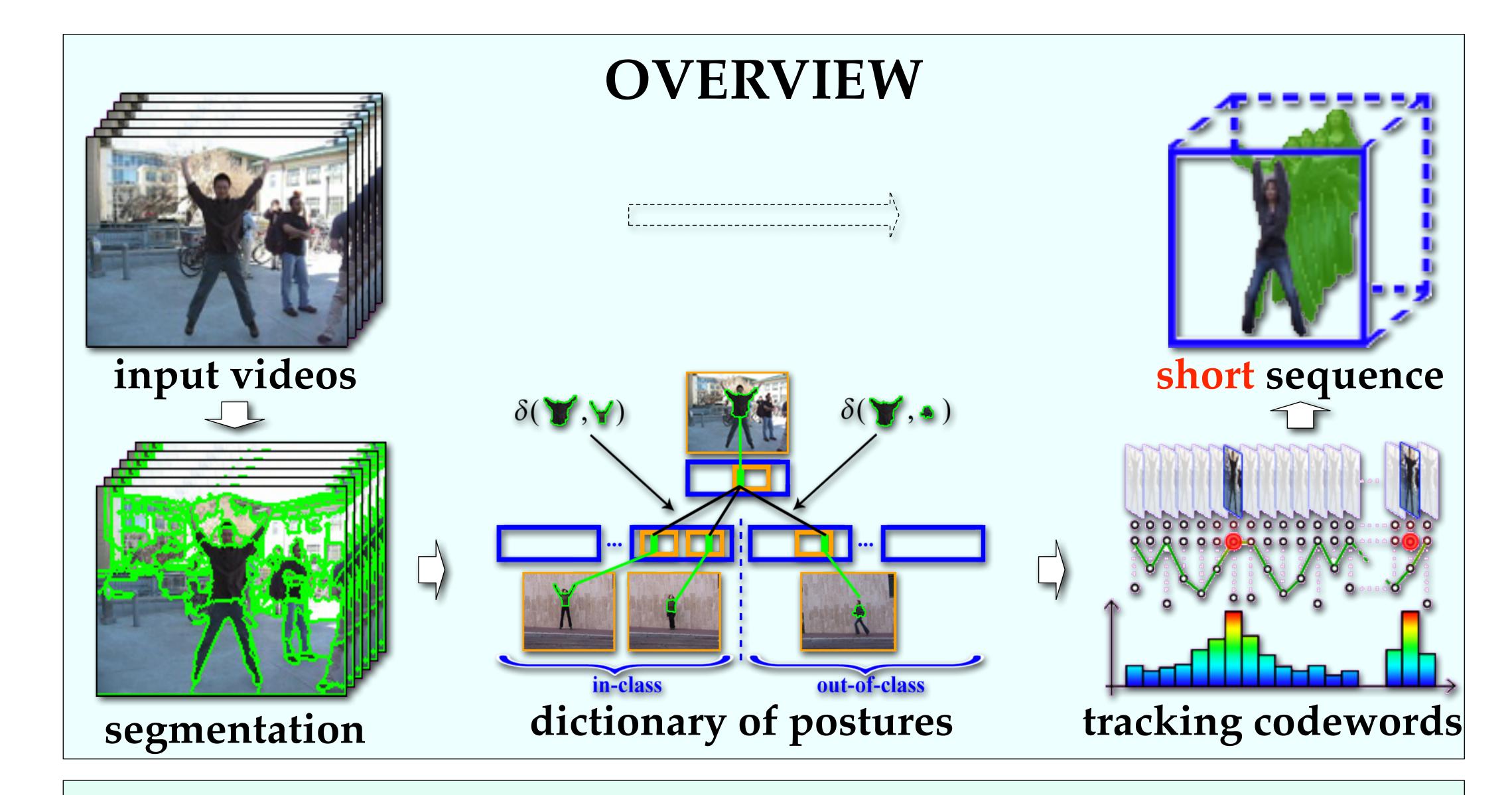
- Snapshots of human postures,
- Co-occurring objects (e.g., tools).

Represent a video as

a short sequence of codewords for exemplar-based recognition.

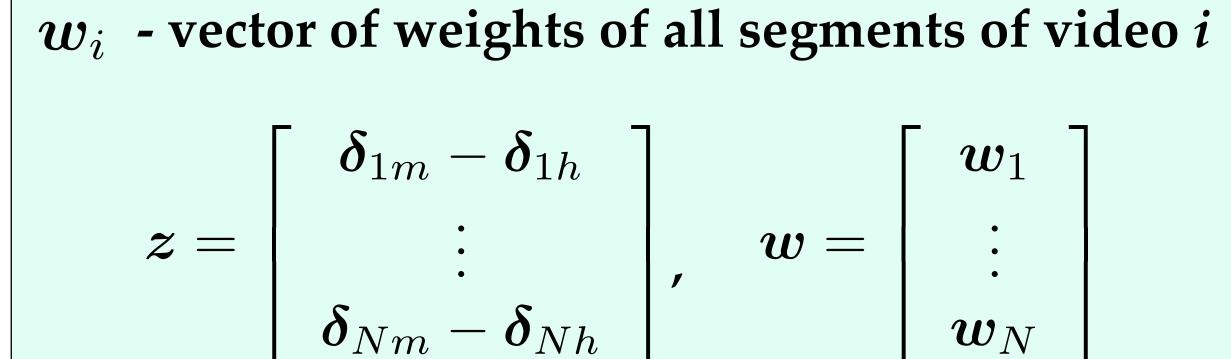
CONTRIBUTIONS

- Accounting for co-occurrence of actors and tools
- Finding characteristic postures of <u>both</u> actors and tools under weak supervision
- Robust and scalable detection and localization
- Four max-margin methods for dictionary learning
- Proofs of convergence to the global optimum

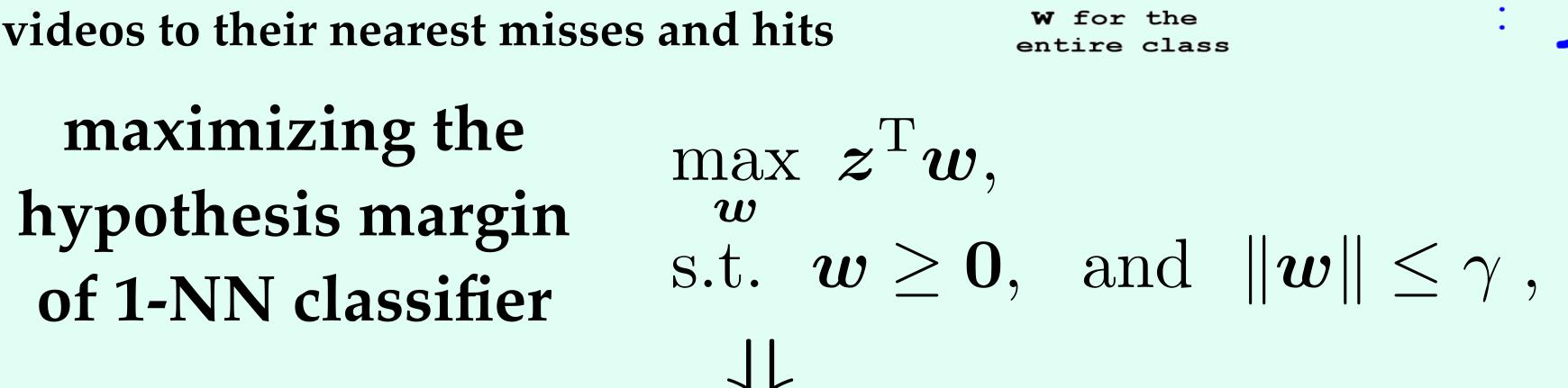


MAX-MARGIN DICTIONARY LEARNING

 $oldsymbol{\delta}_{ih}$, $oldsymbol{\delta}_{im}$ - vectors of distances of all segment of video i to the nearest hit and miss



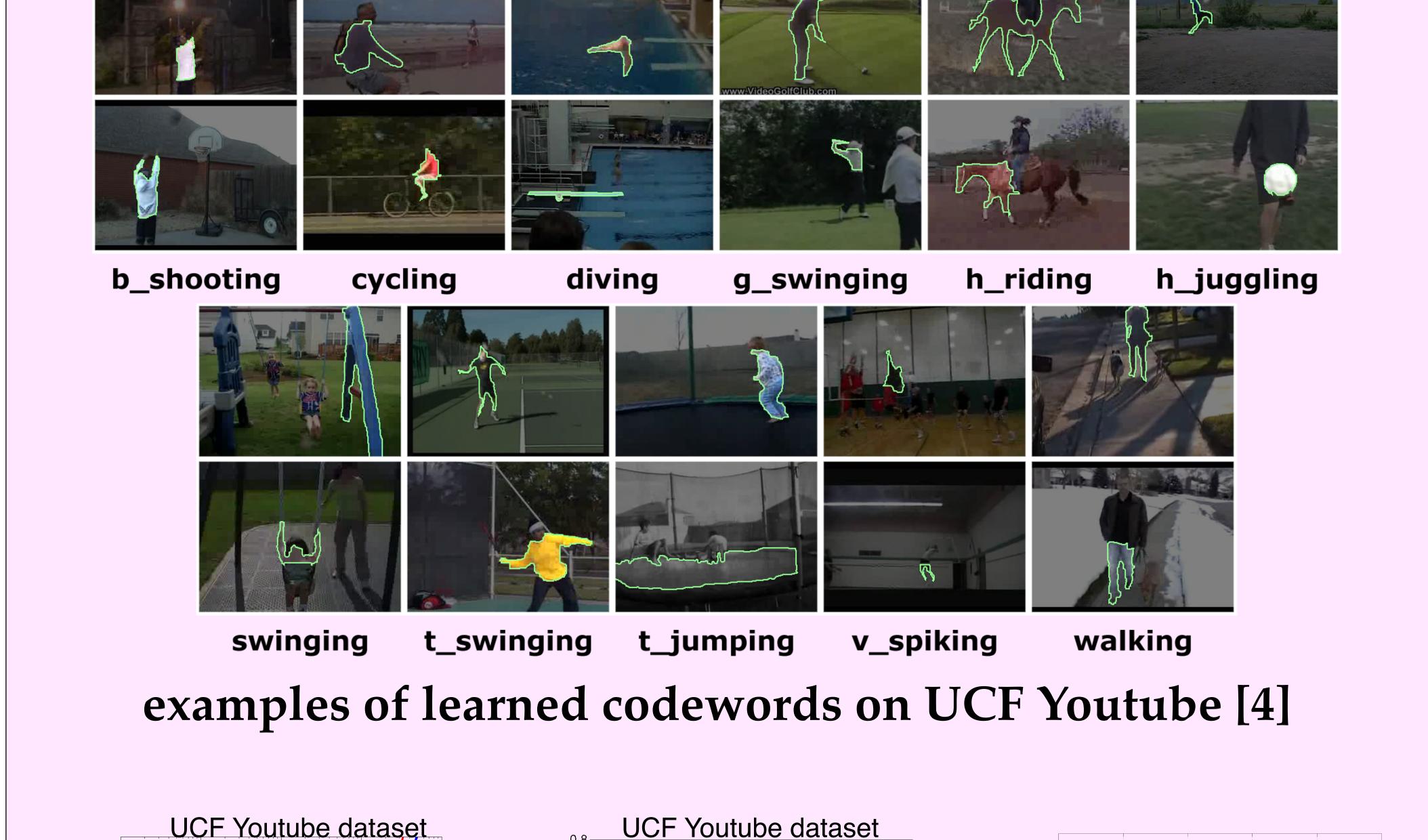
concatenated vectors of distances and weights of all videos to their nearest misses and hits



2 alternative formulations, and 2 types of norms: ℓ_1 and ℓ_2

LR:
$$\underset{\mathbf{x}}{\operatorname{argmin}} \log[1 + \exp(-\boldsymbol{z}^{\mathrm{T}} \boldsymbol{w})] + \lambda \|\boldsymbol{w}\|,$$
s.t. $\boldsymbol{w} \geq 0$

LP: $\underset{\mathbf{x}}{\operatorname{argmax}} \boldsymbol{z}^{\mathrm{T}} \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|},$
s.t. $\boldsymbol{w} \geq 0$



RESULTS

comparison of our 2 formulations and 2 types of norms

	[14]	[12]	[4]	[3]	Ours $(LP-\ell_1)$
Weizmann	97.5	X	X	X	99.7
KTH	X	95.7	91.8	87.8	94.2
UM "Gestures"	X	95.2	X	X	96.3
UCF "YouTube"	X	X	71.2	X	77.8

Table 3. Average	ge clas	ssifica	ation	accur	acy at EER

		[3]	[8]	Ours $(LP-\ell_1)$	
	pick-up	0.58	0.47	0.60	
	one-hand wave	0.59	0.38	0.64	
	jumping jack	0.43	0.22	0.45	
	two-hands wave	0.43	0.64	0.65	
Table 2 ALIC for CMII "Crowded" vide					

Table 2. AUC for CMU "Crowded" videos

- [3] Yao et al. "Learning deformable action templates from cluttered videos," ICCV09 [4] Liu et al. "Recognizing realistic actions from videos in the wild," CVPR09
- [8] Ke et al. "Event detection in crowded videos," ICCV07
- [12] Lin et al. "Recognizing actions by shape-motion prototype trees," ICCV09
- [19] Schueldt et al. "Recognizing human actions: A local SVM approach," ICPR04

