Cost-Sensitive Top-down/Bottom-up Multi-scale Activity Recognition

Mohamed R. Amer1, Dan Xie2, Mingtian Zhao2, Sinisa Todorovic1, and Song-Chun Zhu2

1Oregon State University, Corvallis OR
2University of California, Los Angeles CA
Problem – Given

- High-resolution, long video of a large scene
- People engaged in individual actions and group activities
Problem – Goal

Answer WHAT, WHERE, and WHEN queries about individual actions and group activities
Contributions

• Multi-scale activity recognition
 – Jointly addressing activities at different scales

• Cost-Sensitive Inference

• New Dataset
 – High resolution video
 – Allows for digital zoom-in and zoom-out
 – Many co-occurring individual and group activities
Prior Work – Punctual/Repetitive Activities

• Single Actor

Lan et al ICCV11, Rodriguez et al. CVPR08, Kovashka & Grauman CVPR10
Laptev et al. ICCV03, ICCV07, Dollar et al. VS-PETS05, Blank et al. ICCV05 ...

• Single Group

Lan et al PAMI11, Ryoo & Aggarwal ICCV09, Ryoo ICCV11, Choi et al CVPR11
Amer & Todorovic ICCV11, CVPR12 ...
Prior Work – Structured Activities

Gupta et al CVPR09

Ryoo et al ICCV09, Pei et al ICCV11, Brendel et al CVPR11....
Our Approach

• **Unified hierarchical model of:**
 – People and the objects they interact with
 – Individual actions
 – Group activities

• **Cost-sensitive zooming-in/-out for:**
 – Fusing visual cues at different scales
 – Answering: What, where, when
Our Approach – Related Prior Work

Wu & Zhu IJCV11
Model: And-Or Graph

\[\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{P}) \]
Model: And-Or Graph

\[G = (\mathcal{V}, \mathcal{E}, \mathcal{P}) \]

\(\mathcal{V} \): Graph nodes \((\mathcal{V}_{NT}, \mathcal{V}_T)\)

\(\mathcal{V}_{NT} \): Non-terminal nodes such as A, R, O

\(\mathcal{V}_T \): Terminal nodes such as t(A), t(R), t(O)
Model: And-Or Graph

\[G = (\mathcal{V}, \mathcal{E}, \mathcal{P}) \]

\(\mathcal{V} \) : Graph nodes \((\mathcal{V}_{NT}, \mathcal{V}_T) \)

\(\mathcal{V}_{NT} \) : Non-terminal nodes such as A, R, O

\(\mathcal{V}_T \) : Terminal nodes such as \(t(A), t(R), t(O) \)

\(\mathcal{E} \) : Graph edges \((\mathcal{E}_{rel}, \mathcal{E}_{dec}, \mathcal{E}_{switch}) \)

\(\mathcal{E}_{rel} \) : Relation edges

\(\mathcal{E}_{dec} \) : Decomposition edges

\(\mathcal{E}_{switch} \) : Switching edges
Model: And-Or Graph

\[G = (\mathcal{V}, \mathcal{E}, \mathcal{P}) \]

\(\mathcal{V} \) : Graph nodes \((\mathcal{V}_{NT}, \mathcal{V}_T) \)

\(\mathcal{V}_{NT} \) : Non-terminal nodes such as A, R, O

\(\mathcal{V}_T \) : Terminal nodes such as \(t(A), t(R), t(O) \)

\(\mathcal{E} \) : Graph edges \((\mathcal{E}_{rel}, \mathcal{E}_{dec}, \mathcal{E}_{switch}) \)

\(\mathcal{E}_{rel} \) : Relation edges

\(\mathcal{E}_{dec} \) : Decomposition edges

\(\mathcal{E}_{switch} \) : Switching edges

\(\mathcal{P} \) : Probability over all parse graphs
Model: And-Or Graph

\[W = (K, \{ pg_k : k = 1, 2, \ldots, K \}) \]

\[p(W) = p(K) \prod_{k=1}^{K} p(pg_k) \]

\[p(pg) = \frac{1}{Z} \exp(-E(pg)) \]

\[E(pg) = - \sum_l \left[\sum_{(\vee^l, \wedge^l) \in \mathcal{E}_{\text{switch}}(pg)} \log p(\wedge^l | \vee^l) \right. \]
\[+ \sum_{(\wedge^l, \wedge^l-) \in \mathcal{E}_{\text{dec}}(pg)} \log p(X_{\wedge^l} | X_{\wedge^l-}) \]
\[+ \sum_{(\wedge^l_+, \wedge^l_+) \in \mathcal{E}_{\text{rel}}(pg)} \log p(X_{\wedge^l_+}, X_{\wedge^l_+}) \left. \right] \]
Inference

\[W^* = \arg \max_{W \in \Omega} p(W)p(I_\Lambda|W) \]

\[p(W) = p(K) \prod_{k=1}^{K} p(pg_k) \]

\[p(I_\Lambda|W) = q(I_\Lambda) \prod_{k=1}^{K} \frac{p(I_{\Lambda_{pg_k}}|pg_k)}{q(I_{\Lambda_{pg_k}})} \]
Inference

\[p_{g}^{\ast} = \arg \max_{p_{g} \in \Omega(p_g)} \left[\log p(p_g) + \log \frac{p(I_{\Lambda p_g} \mid p_g)}{q(I_{\Lambda p_g})} \right] \]

\[p(p_g) = \frac{1}{Z} \exp(-E(p_g)), \quad Z = \sum_{p_g} \exp(-E(p_g)) \]

\[E(p_g) = -\sum_{l} \left[\sum_{(\land^l, \lor^l) \in \varepsilon_{\text{switch}(p_g)}} \log p(\land^l \mid \lor^l) \right. \]
\[\left. + \sum_{(\lor^l, \land^l) \in \varepsilon_{\text{dec}(p_g)}} \log p(X_{\land^l} \mid X_{\land^l}) \right. \]
\[\left. + \sum_{(\land^l, \lor^l) \in \varepsilon_{\text{rel}(p_g)}} \log p(X_{\land^l}, X_{\land^l}) \right] \]

\[\frac{p(I_{\Lambda p_g} \mid p_g)}{q(I_{\Lambda p_g})} = \sum_{t \in \mathcal{V}_T(p_g)} \log \frac{p(I_{\Lambda t} \mid t)}{q(I_{\Lambda t})} \]
Inference

\[pg^* = \arg \max_{pg \in \Omega(pg)} \sum_l \left\{ \log p(\land^l | \lor^l) + \log \frac{p(t_{\land^l} | t)}{q(t_{\land^l})} \right. \]

No zoom

\[+ \log \frac{p(t_{\land^l} - | t)}{q(t_{\land^l} -)} + \log p(X_{\land^l} | X_{\land^l} -) \]

zoom-out

\[+ p(N^l) \sum_{i=1}^{N^l} \left[\log p(X_{\land^l i}^+ | X_{\land^l}) + \log \frac{p(t_{\land^l i}^+ | t)}{q(t_{\land^l i}^+)} + \sum_{i \neq j} \log p(X_{\land^l i}^+, X_{\land^l j}^+) \right] \]

zoom-in
Inference: Structure

\[p_{g^*} = \arg\max_{p_g \in \Omega(p_g)} \sum_{l} \left\{ \log p(\land^l | \lor^l) \right\} + \log \frac{p(t_{\land^l} | t)}{q(t_{\land^l})} \]

\[+ \log \frac{p(t_{\land^{l-}} | t)}{q(t_{\land^{l-}})} + \log p(X_{\land^l} | X_{\land^{l-}}) \]

\[+ p(N^l) \sum_{i=1}^{N^l} \left[\log p(X_{\land^l} | X_{\land^l}) + \log \frac{p(t_{\land^{i+}} | t)}{q(t_{\land^{i+}})} + \sum_{i \neq j} \log p(X_{\land^l}^{i+}, X_{\land^l}^{j+}) \right] \]

\(p(\land^l | \lor^l) \): is the probability of an And node given a parent Or node.
Inference: \(\alpha - \text{Process} \)

\[\pg^* = \arg \max_{\pg \in \Omega(\pg)} \sum_l \left\{ \log p(\land^l | \lor^l) + \log \frac{p(t_{\land}^l | t)}{q(t_{\land}^l)} + \log \frac{p(t_{\land}^l | t)}{q(t_{\land}^l_0)} + \log p(X_{\land}^l | X_{\land}^l_0) \right\} \]

\[+ \log \frac{p(t_{\land}^l | t)}{q(t_{\land}^l)} + \log p(X_{\land}^l | X_{\land}^l_0) \]

\[+ \log \frac{p(t_{\land}^l | t)}{q(t_{\land}^l_0)} + \log p(X_{\land}^l | X_{\land}^l_0) \]

\[+ p(N^l) \sum_{i=1}^{N^l} \left[\log p(X_{\land i}^l | X_{\land}^l) + \log \frac{p(t_{\land i}^l | t)}{q(t_{\land i}^l_0)} + \sum_{i \neq j} \log p(X_{\land i}^l, X_{\land j}^l) \right] \]

\[p(N^l) : \text{is an exponential prior over the number of children} \]
Inference: β – Process

$$p_{g^*} = \arg \max_{p_{g} \in \Omega(p_{g})} \sum_{l} \left\{ \log p(\land{l} | \lor{l}) \right\} + \log \frac{p(t_{\land{l}} | t)}{q(t_{\land{l}})}$$

No zoom

$$+ \log \frac{p(t_{\land{l-1}} | t)}{q(t_{\land{l-1}})} + \log p(X_{\land{l}} | X_{\land{l-1}})$$

zoom-out

$$+ p(N_{l}^{t}) \sum_{i=1}^{N_{l}} \left[\log p(X_{\land{i+1}} | X_{\land{i}}) + \log \frac{p(t_{\land{i+1}} | t)}{q(t_{\land{i+1}})} + \sum_{i \neq j} \log p(X_{\land{i+1}}^{l+}, X_{\land{j+1}}^{l+}) \right]$$

zoom-in

$p(N_{l}^{t})$: is an exponential prior over the number of children

$p(X_{\land{i+1}}^{l+}, X_{\land{j+1}}^{l+})$: is the β-process, the probability of binding two children
Inference: γ – Process

$$p_{g^*} = \arg\max_{p_g \in \Omega(p_g)} \sum_l \{ \log p(\land^l | \lor^l)$$

$$+ \log \frac{p(t_{\land^l} | t)}{q(t_{\land^l})}$$

No zoom

$$+ \log \frac{p(t_{\land^{l-}} | t)}{q(t_{\land^{l-}})} + \log p(X_{\land^l} | X_{\land^{l-}})$$

zoom-out

$$+ p(N^l) \sum_{i=1}^{N^l} \left[\log p(X_{\land^l_i} | X_{\land^l}) + \log \frac{p(t_{\land^{i+}} | t)}{q(t_{\land^{i+}})} + \sum_{i \neq j} \log p(X_{\land^l_i}, X_{\land^l_j}) \right]$$

zoom-in

$p(N^l)$: is an exponential prior over the number of children

$p(X_{\land^l} | X_{\land^{l-}})$,$p(X_{\land^l_i} | X_{\land^l})$: are the γ-processes, a child’s likelihood given its parent.
Inference – α, β, γ Processes

• α: running a detector of the activity

• β: bottom-up binding of parts of the activity

• γ: top-down prediction of parts from the activity
α – Process

• Group Activities:
 – Space-Time Volume (STV)

• Primitive Actions:
 – Motion (STIP-HOG)/Appearance (KLT)

• Objects:
 – Deformable Part-based Model (DPM)
β, γ – Process

• β and γ processes are modeled as Gaussian distributions over location, scale and orientation.
\(\beta - \text{Process} \)

\(\beta \)-Process:
\[
p(X_{\wedge i}^+, X_{\wedge j}^+) = N(X_{\wedge i}^+ - X_{\wedge j}^+; \mu_{\beta i}, \Sigma_{\beta i})
\]
γ-Process:

$$p(X_{\gamma_{i+1}} | X_{\gamma_{i}}) = N(X_{\gamma_{i+1}} - X_{\gamma_{i}}; \mu_{\gamma_{i}}, \Sigma_{\gamma_{i}})$$
Cost-Sensitive Inference

- Reinforcement Learning based Inference
 - Explore/Exploit strategy
 - Q-Learning to learn the optimal moves
Explore/Exploit

A_1

of detectors left = 7
p(pg^{(t)})=0
Explore/Exploit

A_1

α₁⁺
α₂⁺
α₃⁺
α₄⁺

Q Table for A₁
(Exploit) α₁⁺
(Explore) α₂⁺
(Explore) α₃⁺
(Explore) α₄⁺

of detectors left = 7
p(pg(t)) = 0

of detectors left = 7
p(pg(t)) = 0
Explore/Exploit

- Q Table for A_1
 - (Exploit) α_1^+
 - (Exploit) α_2^+
 - (Explore) α_3^+
 - (Explore) α_4^+

- # of detectors left = 6
- $p(pg^{(t+1)}) = 0.2$
- $p(pg^{(t)}) = 0$
Explore/Exploit

Q Table for α_1

<table>
<thead>
<tr>
<th>(Exploit) α_5^-</th>
<th>(Explore) α_6^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Explore) α_7^-</td>
<td>(Explore) α_8^-</td>
</tr>
<tr>
<td>(Explore) α_9^+</td>
<td></td>
</tr>
</tbody>
</table>

$# \text{ of detectors left } = 6$

$p(pg^{(t)})=0.2$
Explore/Exploit

Q Table for α_1

<table>
<thead>
<tr>
<th>Action</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Exploit) α_5-</td>
<td></td>
</tr>
<tr>
<td>(Explore) α_6+</td>
<td></td>
</tr>
<tr>
<td>(Explore) α_7-</td>
<td></td>
</tr>
<tr>
<td>(Explore) α_8-</td>
<td></td>
</tr>
<tr>
<td>(Explore) α_9+</td>
<td></td>
</tr>
</tbody>
</table>

of detectors left = 5

$p(pg^{(t+1)}) = 0.2$

$p(pg^{(t)}) = 0.2$
Explore/Exploit

Q Table for α_1

<table>
<thead>
<tr>
<th></th>
<th>(Exploit) α_5^-</th>
<th>(Explore) α_6^+</th>
<th>(Explore) α_7^-</th>
<th>(Explore) α_8^-</th>
<th>(Explore) α_9^+</th>
</tr>
</thead>
</table>

of detectors left = 5

$p(pg^{(t)}) = 0.2$
Explore/Exploit

Q Table for α_1

- (Exploit) α_5-
- (Explore) α_6+
- (Explore) α_7-
- (Explore) α_8-
- (Explore) α_9+

of detectors left = 4
$p(pg^{(t+1)})=0.4$
$p(pg^{(t)})=0.2$
Explore/Exploit

Q Table for α_7

(Exploit) α_{10}^+
(Explore) α_{11}^+
(Explore) α_{12}^-

$\# \text{ of detectors left} = 4$

$p(pg^{(t)})=0.4$
Explore/Exploit

Q Table for α_7

<table>
<thead>
<tr>
<th></th>
<th>(Exploit) α_{10}^+</th>
<th>(Explore) α_{11}^+</th>
<th>(Explore) α_{12}^-</th>
</tr>
</thead>
</table>

of detectors left = 3

$p(pg^{(t+1)})=0.4$

$p(pg^{(t)})=0.4$
Explore/Exploit

\[\alpha_{12^-} \quad \alpha_{11^-} \quad \alpha_{10^+} \quad \alpha_{11^+} \quad \alpha_{12^-} \quad A_1 \]

<table>
<thead>
<tr>
<th>Q Table for (\alpha_7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Exploit) (\alpha_{10^+})</td>
</tr>
<tr>
<td>(Explore) (\alpha_{11^+})</td>
</tr>
<tr>
<td>(Explore) (\alpha_{12^-})</td>
</tr>
</tbody>
</table>

of detectors left = 3
\[p(p(t)) = 0.4 \]
Explore/Exploit

Q Table for α_7

- (Exploit) α_{10}^+
- (Explore) α_{11}^+
- (Explore) α_{12}^-

of detectors left = 2

$p(pg^{(t+1)}) = 0.4$
$p(pg^{(t)}) = 0.4$
Explore/Exploit

\[\alpha_{10}^+ \to \alpha_{7}^- \to A_1 \to \alpha_{12}^- \]

Q Table for \(\alpha_{7} \)
- (Exploit) \(\alpha_{10}^+ \)
- (Explore) \(\alpha_{11}^+ \)
- (Explore) \(\alpha_{12}^- \)

\# of detectors left = 2
\[p(pg^{(t)}) = 0.4 \]
Explore/Exploit

Q Table for α_7

<table>
<thead>
<tr>
<th>Action</th>
<th>Reward</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploit</td>
<td>$\alpha_{10}+$</td>
</tr>
<tr>
<td>Explore</td>
<td>$\alpha_{11}+$</td>
</tr>
<tr>
<td>Explore</td>
<td>$\alpha_{12}-$</td>
</tr>
</tbody>
</table>

$\# \text{ of detectors left} = 1$

$p(p_{g(t+1)}) = 0.5$

$p(p_{g(t)}) = 0.4$
Explore/Exploit

Q Table for α_{10}

<table>
<thead>
<tr>
<th>(Exploit) α_{13}+</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Explore) α_{14}+</td>
</tr>
<tr>
<td>(Explore) α_{15}+</td>
</tr>
<tr>
<td>(Explore) α_{16}+</td>
</tr>
</tbody>
</table>

of detectors left = 1
$p(pg^{(t)}) = 0.5$
Explore/Exploit

Q Table for α_{10}

<table>
<thead>
<tr>
<th></th>
<th>(Exploit) $\alpha_{13}+$</th>
<th>(Explore) $\alpha_{14}+$</th>
<th>(Explore) $\alpha_{15}+$</th>
<th>(Explore) $\alpha_{16}+$</th>
</tr>
</thead>
</table>

of detectors left = 0

$p(pg^{(t+1)})=0.6$

$p(pg^{(t)})=0.5$
Explore/Exploit

\[p(p_g^*) = 0.6 \]
Q-Learning

• States: $\mathcal{S} = \{s\}$
 – Query
 – Current node in the And-Or graph

• Moves: $\mathcal{M} = \{m\}$
 – Run detectors applicable to the current state

• Reward: \mathcal{R}
 – Reward the move that increments the log posterior

$$\mathcal{R}_t(s, m; q) = \frac{1}{1 + \exp \left(- \left(\log p(p_{gt} | \mathcal{M}) - \log p(p_{gt} | \mathcal{M} \cup \{m\}) \right) \right)}$$

• Transitions: Deterministic simulator.
Varying the Explore/Exploit trade-off

![Graph showing Explore/Exploit trade-off](image)
Varying the Number of Detectors Run

E^2 strategy for answering the query about Walking

Precision and recall

Number of detectors run
New Dataset

- Footage: 106min
- Frame Rate: 30 fps
- Resolution: 2560x1920 pixels
- Annotations:
 - Group (activities, formation)
 - Individual (actions, poses, facing direction)
 - Objects
Domain Knowledge

• 6 Group Activities:
 – Walking together, Queuing, Campus tour, ...

• 10 Individual Actions:
 – Walking, Sitting, Riding a bike, ...

• 17 Objects:
 – Food truck, Vending machine, Bike, Backpack, ...
New Dataset
Available Datasets

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Resolution</th>
<th>Object</th>
<th>Individual</th>
<th>Group</th>
<th>Background</th>
<th>Instances</th>
<th>Poses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our Dataset</td>
<td>2560x1920</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Cluttered</td>
<td>7+</td>
<td>Yes</td>
</tr>
<tr>
<td>VIRAT Ground</td>
<td>1920x1080</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Cluttered</td>
<td>4-</td>
<td>No</td>
</tr>
<tr>
<td>CompCollective</td>
<td>1440x960</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Cluttered</td>
<td>4</td>
<td>Yes</td>
</tr>
<tr>
<td>Collective</td>
<td>720x480</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Cluttered</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>UT-Interaction</td>
<td>720x480</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Clear</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>KTH</td>
<td>160x120</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Clear</td>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td>Weizmann</td>
<td>180x144</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Clear</td>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td>UCF Youtube</td>
<td>240x500</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Cluttered</td>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td>UCF 50</td>
<td>240x500</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Cluttered</td>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td>Olympic Sports</td>
<td>360x450</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Cluttered</td>
<td>1</td>
<td>No</td>
</tr>
</tbody>
</table>
Queries Example
All Parse Graphs for Group Queries
All Parse Graphs for Individual Queries
Results – Courtyard Dataset

Query about group activities

<table>
<thead>
<tr>
<th>E^2 strategy</th>
<th>Standing-in-line</th>
<th>Guided-tour</th>
<th>Discussing</th>
<th>Sitting</th>
<th>Walking</th>
<th>Waiting</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{B} = 1$, Precision</td>
<td>62.2%</td>
<td>63.7%</td>
<td>68.1%</td>
<td>65.3%</td>
<td>69.4%</td>
<td>61.2%</td>
<td>5s</td>
</tr>
<tr>
<td>$\mathcal{B} = 1$, FP</td>
<td>7.2%</td>
<td>2.3%</td>
<td>9.8%</td>
<td>12.6%</td>
<td>8.1%</td>
<td>10.4%</td>
<td>5s</td>
</tr>
<tr>
<td>$\mathcal{B} = 15$, Precision</td>
<td>65.4%</td>
<td>66.1%</td>
<td>69.0%</td>
<td>68.7%</td>
<td>70.3%</td>
<td>66.5%</td>
<td>75s</td>
</tr>
<tr>
<td>$\mathcal{B} = 15$, FP</td>
<td>10.1%</td>
<td>4.7%</td>
<td>11.1%</td>
<td>11.1%</td>
<td>8.7%</td>
<td>10.9%</td>
<td>75s</td>
</tr>
<tr>
<td>$\mathcal{B} = \infty$, Precision</td>
<td>68.0%</td>
<td>70.2%</td>
<td>75.1%</td>
<td>71.4%</td>
<td>78.6%</td>
<td>72.6%</td>
<td>230s</td>
</tr>
<tr>
<td>$\mathcal{B} = \infty$, FP</td>
<td>13.6%</td>
<td>10.3%</td>
<td>17.1%</td>
<td>13.7%</td>
<td>10.1%</td>
<td>12.2%</td>
<td>230s</td>
</tr>
</tbody>
</table>

Query about primitive actions

<table>
<thead>
<tr>
<th>E^2 strategy</th>
<th>Walk</th>
<th>Wait</th>
<th>Talk</th>
<th>Drive Car</th>
<th>Ride S-board</th>
<th>Ride Scooter</th>
<th>Ride Bike</th>
<th>Read</th>
<th>Eat</th>
<th>Sit</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{B} = 1$, Precision</td>
<td>63.3%</td>
<td>61.2%</td>
<td>58.4%</td>
<td>65.8%</td>
<td>63.5%</td>
<td>60.1%</td>
<td>56.8%</td>
<td>55.3%</td>
<td>60.9%</td>
<td>54.3%</td>
<td>10s</td>
</tr>
<tr>
<td>$\mathcal{B} = 1$, FP</td>
<td>12.1%</td>
<td>16.2%</td>
<td>11.4%</td>
<td>3.4%</td>
<td>10.2%</td>
<td>11.6%</td>
<td>6.2%</td>
<td>8.2%</td>
<td>2.2%</td>
<td>5.3%</td>
<td>10s</td>
</tr>
<tr>
<td>$\mathcal{B} = 15$, Precision</td>
<td>67.6%</td>
<td>63.4%</td>
<td>62.3%</td>
<td>67.2%</td>
<td>67.1%</td>
<td>65.9%</td>
<td>59.3%</td>
<td>61.2%</td>
<td>66.3%</td>
<td>59.2%</td>
<td>150s</td>
</tr>
<tr>
<td>$\mathcal{B} = 15$, FP</td>
<td>14.2%</td>
<td>17.1%</td>
<td>15.1%</td>
<td>7.1%</td>
<td>13.8%</td>
<td>13.2%</td>
<td>9.3%</td>
<td>10.3%</td>
<td>4.3%</td>
<td>7.1%</td>
<td>150s</td>
</tr>
<tr>
<td>$\mathcal{B} = \infty$, Precision</td>
<td>69.1%</td>
<td>67.7%</td>
<td>69.6%</td>
<td>70.2%</td>
<td>71.3%</td>
<td>68.4%</td>
<td>61.4%</td>
<td>67.3%</td>
<td>71.3%</td>
<td>64.2%</td>
<td>330s</td>
</tr>
<tr>
<td>$\mathcal{B} = \infty$, FP</td>
<td>18.7%</td>
<td>20.2%</td>
<td>17.9%</td>
<td>9.7%</td>
<td>17.1%</td>
<td>16.3%</td>
<td>12.3%</td>
<td>12.1%</td>
<td>7.7%</td>
<td>9.0%</td>
<td>330s</td>
</tr>
</tbody>
</table>
Conclusion

• New problem of Multi-scale activity recognition.
Conclusion

• New problem of Multi-scale activity recognition.

• Efficient formulation using And-Or graphs
Conclusion

• New problem of Multi-scale activity recognition.

• Efficient formulation using And-Or graphs

• Cost-sensitive inference using RL
Conclusion

• New problem of Multi-scale activity recognition.

• Efficient formulation using And-Or graphs

• Cost-sensitive inference using RL

• New dataset
ACKNOWLEDGMENTS

MSEE FA 8650-11-1-7149

MURI N00014-10-1-0933
Questions