Weakly Supervised Energy-Based Learning for Action Segmentation

Jun Li, Peng Lei, Sinisa Todorovic Oregon State University

Paper ID:1820

Problem Statement

Given an untrimmed video, label every frame with action classes under weakly supervised training

Problem Statement

Given an untrimmed video, label every frame with action classes under weakly supervised training –

annotations in training are only temporal orderings of actions

Challenge

Multiple **legal** segmentations that respect the ground-truth

Challenge

Multiple **legal** segmentations that respect the ground-truth

Overview of Our Training

Our Training

- 1. For every video, account for all legal and illegal video segmentations
- 2. Estimate an energy-based loss of all segmentations for learning

Segmentation Graph

Training video \rightarrow Segmentation graph \rightarrow Paths = Candidate segmentations

The cuts are initially estimated using the Viterbi algorithm,

but later allowed to move in a local temporal neighborhood.

Segmentation Graph

Training video \rightarrow Segmentation graph \rightarrow Paths = Candidate segmentations

edge weights:

edges = segments between every pair of cuts

energy of
$$F_{\pi}=\sum_{(i,i')\in\pi}w_{ii'}(a)$$
 weights of edges along path π

$$L=\mathrm{logadd}\{E_\pi:\pi\in {}^\mathrm{valid}_{\mathrm{paths}}\}\ -\ \alpha\ \mathrm{logadd}\{E_\pi:\pi\in {}^\mathrm{invalid}_{\mathrm{paths}}\}$$
 total energy of all valid paths

$$L=\mathrm{logadd}\{E_\pi:\pi\in {}^{\mathrm{valid}}_{\mathrm{paths}}\}\ -\ lpha\ \mathrm{logadd}\{E_\pi:\pi\in {}^{\mathrm{invalid}}_{\mathrm{paths}}\}$$
 total energy of all valid paths

where:
$$\log \operatorname{add}(u,v) = -\log(\exp(-u) + \exp(-v))$$

Our key contribution:

Use logadd for efficient computation of the total energy

$$L = \operatorname{logadd}\{E_{\pi}: \pi \in \operatorname{valid}_{\operatorname{paths}}\} \ - \ lpha \ \operatorname{logadd}\{E_{\pi}: \pi \in \operatorname{invalid}_{\operatorname{paths}}\}$$

Our key contribution:

$$L = \operatorname{logadd}\{E_{\pi}: \pi \in \operatorname{valid}_{\operatorname{paths}}\} \ - \ lpha \ \operatorname{logadd}\{E_{\pi}: \pi \in \operatorname{invalid}_{\operatorname{paths}}\}$$

the logadd allows for a recursive computation of the total energy

Experiments: Action Segmentation & Alignment

Action Segmentation: Framewise Accuracy

Dataset	We outperform the state of the art by
Breakfast	4.7%
Hollywood Ext.	11.4%

Action Alignment: Intersection over Detection

Dataset	We outperform the state of the art by
Breakfast	7.6%
Hollywood Ext.	2.0%

Qualitative Results

We may miss the true start and end of some actions, but our action detect is generally good.

A sample test video P03_stereo01_P03_milk from Breakfast dataset.

