Efficient Riemannian Optimization on the Stiefel Manifold via the Cayley Transform

Jun Li, Li Fuxin, Sinisa Todorovic Oregon State University

ICLR 2020

Advantages of Orthonormality in Deep Learning

- Orthonormal matrices: $\{X \in \mathbb{R}^{n \times p} : X^T X = I\}, n \ge p$.
- Enforcing orthonormality on parameter matrices in deep learning:
 - Improves accuracy and empirical convergence rate (Bansal et al. 2018)
 - Stabilizes the distribution of neural activations in training (Huang et al. 2018)
 - Mitigates the vanishing and exploding-gradient problems (Zhou et al. 2006)

Prior Work

- Soft Orthonormality -- Regularization:
 - SO: $\lambda || W^T W I ||_F^2$
 - DSO: $\lambda(||W^TW I||_F^2 + ||WW^T I||_F^2)$
 - SRIP: $\lambda \cdot \sigma(W^T W I)$
 - Limitation: cannot enforce exact orthonormality

- Hard Orthonormality Riemannian Optimization on the Stiefel manifold:
 - Projection-based method: SVD
 - Retraction-based method: Closed form Cayley transform
 - Limitation: computationally expensive

Our Contributions

- Improve computational efficiency of Riemannian optimization on the Stiefel manifold
 - Iterative Cayley transform that avoids the matrix inverse as a parameter update.
 - Implicit vector transport as a momentum update.

• Theoretical analysis of convergence of the proposed algorithm

• Faster convergence rate is empirically verified

Preliminary

Construction of the Property Construction of the Construction of t

Manifold: a topological space that locally resembles Euclidean space near each point

Tangent Space: a linear space that locally approximates the manifold

Preliminary

Geodesic and Exp map: a locally shortest curve on the manifold. Exponential map projects tangent vectors to geodesics. Exp map is a way to update parameters on a manifold.

Parallel transport

Parallel transport: a way of transporting vectors along the geodesics while keep the norm. Parallel transport is a way to update momentum on a manifold.

Usually, exponential map and parallel transport are computationally expensive!

Preliminary

Usually, retraction and vector transport are computationally efficient.

Stiefel Manifold

Stiefel manifold:

a Riemannian manifold that consists of all $n \times p$ orthonormal matrices $\{X \in \mathbb{R}^{n \times p} : X^T X = I\}$

Cayley Transform

$$Y(\alpha) = \left(I - \frac{\alpha}{2}W\right)^{-1}\left(I + \frac{\alpha}{2}W\right)X$$

where W is a skew-symmetric matrix

Cayley Transform is a retraction on the Stiefel manifold

Parameter Updates by Iterative Cayley Transform

Cayley Closed Form

$$Y(\alpha) = (I - \frac{\alpha}{2}W)^{-1}(I + \frac{\alpha}{2}W)X_{1}$$

where W is a skew-symmetric matrix

Iterative Cayley Transform

$$Y(\alpha) = X + \frac{\alpha}{2}W\left(X + Y(\alpha)\right)$$

Computationally efficient without matrix inversion! Numerically, two iterations are sufficient to achieve orthonormality.

Momentum Updates by the Implicit Vector Transport

Projection onto the tangent space is an implicit vector transport $\tau_{\eta_X}(\xi_X) = \pi_{T_{r(\eta_X)}}(\xi_X)$ By regarding the Stiefel manifold as an embedded submanifold of Euclidean space where $\rho_X(Z_1, Z_2) = tr(Z_1^{\top} Z_2)$ Projection of gradient: **Implicit Momentum Updating** Inherent in the Cayley transform $\alpha \tau_{M_k}(M_k) + \beta \nabla_{\mathcal{M}} f(X_k)$ $= \alpha \pi_{T_{X_k}}(M_k) + \beta \pi_{T_{X_k}}(\nabla f(X_k))$ $= \pi_{T_{X_k}}(\alpha M_k + \beta \nabla f(X_k))$

Computationally efficient with implicit momentum!

Algorithm 1 The Cayley SGD with Momentum

- 1: Input: learning rate lr, momentum coefficient β , $\epsilon = 10^{-8}$, q = 0.5, s = 2.
- 2: Initialize X_1 as an orthonormal matrix; and $M_1 = 0$

3: for k = 0 to T do

4:
$$M_{k+1} \leftarrow \beta M_k - \mathcal{G}(X_k)$$
, \checkmark Momentum updating

5:
$$\hat{W}_k \leftarrow M_{k+1} X_k^\top - \frac{1}{2} X_k (X_k^\top M_{k+1} X_k^\top)$$

$$6: \qquad W_k \leftarrow \hat{W_k} - \hat{W_k}^{\dagger}$$

$$7: \qquad M_{k+1} \leftarrow W_k X_k.$$

8:
$$\alpha \leftarrow \min\{lr, 2q/(\|W_k\| + \epsilon)\}$$

9: Initialize
$$Y^0 \leftarrow X + \alpha M_{k+1}$$

10: **for**
$$i = 1$$
 to s **do**
11: $Y^i \leftarrow X_k + \frac{\alpha}{-}W$

:
$$Y^{i} \leftarrow X_{k} + \frac{\alpha}{2} W_{k}(X_{k} + Y^{i-1})$$
 Parameter updating

12: Update $X_{k+1} \leftarrow Y^s$

Update the momentum*Compute the auxiliary matrix*

Project momentum onto the tangent space
 Select adaptive learning rate for contraction mapping
 Iterative estimation of the Cayley Transform

Proposed Algorithms

Algorithm 2 The Cayley ADAM

1: Input: learning rate
$$lr$$
, momentum coefficients β_1 and β_2 , $\epsilon = 10^{-8}$, $q = 0.5$, $s = 2$.
2: Initialize X_1 as an orthonormal matrix. $M_1 = 0$, $v_1 = 1$
3: for $k = 0$ to T do
4: $M_{k+1} \leftarrow \beta_1 M_k + (1 - \beta_1) \mathcal{G}(X_k)$
5: $v_{k+1} \leftarrow \beta_2 v_k + (1 - \beta_2) || \mathcal{G}(X_k) ||^2$
6: $\hat{v}_{k+1} \leftarrow v_{k+1}/(1 - \beta_2^k)$
7: $r \leftarrow (1 - \beta_1^k) \sqrt{\hat{v}_{k+1} + \epsilon}$
8: $\hat{W}_k \leftarrow M_{k+1} X_k^T - \frac{1}{2} X_k (X_k^T M_{k+1} X_k^T)$
9: $W_k \leftarrow (\hat{W}_k - \hat{W}_k^T)/r$
10: $M_{k+1} \leftarrow r W_k X_k$
11: $\alpha \leftarrow \min\{lr, 2q/(||W_k|| + \epsilon)\}$
12: Initialize $Y^0 \leftarrow X_k - \alpha M_{k+1}$
13: for $i = 1$ to s do
14: $Y^i \leftarrow X_k - \frac{\alpha}{2} W(X_k + Y^{i-1})$
15: Update $X_{k+1} \leftarrow Y^s$

Convergence Analysis

Assumption 1. The gradient ∇f of the objective function f is Lipschitz continuous

 $\|\nabla f(X) - \nabla f(Y)\| \le L \|X - Y\|, \quad \forall X, Y, \text{ where } L > 0 \text{ is a constant.}$

Theorem 1. For $\alpha \in (0, \min\{1, \frac{2}{\|W\|}\})$, the iteration $Y^{i+1} = X + \frac{\alpha}{2}W(X + Y^i)$ is a contraction mapping and converges to the closed-form Cayley transform $Y(\alpha)$ given by Eq. 3. Specifically, at iteration i, $||Y^i - Y(\alpha)|| = o(\alpha^{2+i})$.

Theorem 1 shows the iterative Cayley transform converges faster than other approximation algorithms, e.g., the Newton iterative.

Theorem 2. Given an objective function f(X) that satisfies Assumption 1, let the Cayley SGD with momentum run for t iterations with $\mathcal{G}(X_k)$. For $\alpha = \min\{\frac{1-\beta}{L}, \frac{A}{\sqrt{t+1}}\}$, where A is a positive constant, we have: $\min_{k=0,\dots,t} E[\|\nabla_{\mathcal{M}} f(X_k)\|^2] = o(\frac{1}{\sqrt{t+1}}) \to 0$, as $t \to \infty$.

Theorem 2 shows the proposed algorithm will eventually converge.

Training Loss Comparison in terms of Epoch

Training loss curves of different optimization algorithms for WRN-28-10. (a) Results on CIFAR10. (b) Results on CIFAR100. Both figures show that our Cayley SGD and Cayley ADAM achieve the top two fastest convergence rates in terms of epoch.

Training Loss Comparison in terms of Time

Training loss curves of different optimization algorithms for WRN-28-10. (a) Results on CIFAR10. (b) Results on CIFAR100. Both figures show that our Cayley SGD and Cayley ADAM achieve the top two fastest convergence rates in terms of time

Comparison to SOTA

		Error Rate(%)		
	Method	CIFAR10	CIFAR100	Training time(s)
Baselines	SGD	3.89	18.66	102.5
Daschilles	ADAM	3.85	18.52	115.2
Soft orthonormality	SO [3]	3.76	18.56	297.3
	DSO [3]	3.86	18.21	311.0
	SRIP [3]	3.60	18.19	321.8
Hard orthonormality	OMDSM [19]	3.73	18.61	943.6
	DBN [20]	3.79	18.36	889.4
	Polar [1]	3.75	18.50	976.5
	QR [1]	3.75	18.65	469.3
	Wen&Yin [47]	3.82	18.70	305.8
	Cayley closed form w/o momentum	3.80	18.68	1071.5
	Cayley SGD (Ours)	3.66	18.26	218.7
	Cayley ADAM (Ours)	3.57	18.10	224.4

Error rate and training time per epoch comparison to baselines with WRN-28-10 on CIFAR10 and CIFAR100. All experiments are performed on one TITAN Xp GPU.

		Closed-Form		С	ayley SGD	Cayley	Cayley ADAM	
Model	Hidden Size	Acc(%)	Time(s)	Acc((%) Time(s)	Acc(%)	Time(s)	
Full-uRNN	116	92.8	2.10	92.		92.7	1.50	
Full-uRNN	512	96.9	2.44	96.	.7 1.67	96.9	1.74	

Table 4: Pixel-by-pixel MNIST accuracy and training time per iteration of the closed-form Cayley Transform, Cayley SGD, and Cayley ADAM for Full-uRNNs (Wisdom et al., 2016). All experiments are performed on one TITAN Xp GPU.

Hidden Size	s=0	s=1	s=2	s=3	s=4	Closed-form
n=116 n=512			7.384e-6 2.562e-5			8.273e-5 3.845e-5

Table 5: Checking unitariness by computing the error $||K^H K - I||_F$ for varying numbers of iterations in the iterative Cayley transform and the closed-form Cayley transform.

Conclusion

- We specified a scalable method to enforce the exact orthonormal constraints on parameters of deep learning networks.
- SGD and ADAM are generalized to Cayley SGD with momentum and Cayley ADAM on the Stiefel manifold.
- Theoretical analysis of convergence of the two algorithms is provided.
- Experiments show that both algorithms achieve comparable performance and faster convergence over the baseline SGD and ADAM.
- Both Cayley SGD with momentum and Cayley ADAM take less runtime per epoch than all existing hard orthonormal methods and soft orthonormal methods, and can be applied to non-square parameter matrices.

Reference

- Nitin Bansal, Xiaohan Chen, and Zhangyang Wang. Can we gain more from orthogonality regularizations in training deep cnns? (NeurIPS 2018)
- Lei Huang, Xianglong Liu, Bo Lang, Adams Wei Yu, Yongliang Wang, and Bo Li. Orthogonal weight normalization: Solution to optimization over multiple dependent Stiefel manifolds in deep neural networks (AAAI 2018)
- Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks (ICML 2016)
- Zaiwen Wen and Wotao Yin. A feasible method for optimization with orthogonality constraints
- P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix manifolds.
- P-A Absil and Jer´ ome Malick. Projection-like retractions on matrix manifolds.
- Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks (ICML 2016)
- Gary Becigneul and Octavian-Eugen Ganea. Riemannian adaptive optimization methods. (ICLR 2019)

Thank You

ACKNOWLEDGEMENT: NSF grant IIS-1911232, DARPA XAI Award N66001-17-2-4029, AFRL STTR AF18B-T002.

