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Advantages of Orthonormality in Deep Learning

• Orthonormal matrices: 𝑋 ∈ 𝑅! ×#: 𝑋$𝑋 = 𝐼 , 𝑛 ≥ 𝑝.

• Enforcing orthonormality on parameter matrices in deep learning:

• Improves accuracy and empirical convergence rate (Bansal et al. 2018)

• Stabilizes the distribution of neural activations in training (Huang et al. 2018)

• Mitigates the vanishing and exploding-gradient problems (Zhou et al. 2006)



Prior Work

• Soft Orthonormality -- Regularization:
• SO: 

• DSO: 

• SRIP: 

• Limitation: cannot enforce exact orthonormality

• Hard Orthonormality – Riemannian Optimization on the Stiefel manifold:
• Projection-based method: SVD

• Retraction-based method: Closed form Cayley transform

• Limitation: computationally expensive



Our Contributions

• Improve computational efficiency of Riemannian optimization on the Stiefel manifold

• Iterative Cayley transform that avoids the matrix inverse as a parameter update.

• Implicit vector transport as a momentum update.

• Theoretical analysis of convergence of the proposed algorithm

• Faster convergence rate is empirically verified



Preliminary

Manifold:  a topological space that locally 
resembles Euclidean space near each point

Tangent Space: a linear space that locally 
approximates the manifold



Preliminary

Geodesic and Exp map:  a locally shortest curve on the 
manifold. Exponential map projects tangent vectors to geodesics. 

Exp map is a way to update parameters on a manifold. 

Parallel transport:  a way of transporting vectors along the 
geodesics while keep the norm. Parallel transport is a way to 

update momentum on a manifold.

Usually, exponential map and parallel transport are computationally expensive!



Preliminary

Usually, retraction and vector transport are computationally efficient.

Vector Transport :  an alternative way to move vectors 
along retractions on a manifold 

Retraction:  represent a smooth curve on a manifold



Stiefel Manifold

Stiefel manifold:

a Riemannian manifold that consists of all 
n × p orthonormal matrices

Cayley Transform

Cayley Transform is a retraction on the Stiefel manifold



Parameter Updates by Iterative Cayley Transform

Cayley Closed Form

Iterative Cayley Transform

Computationally efficient without matrix inversion! Numerically, 
two iterations are sufficient to achieve orthonormality.



Momentum Updates by the Implicit Vector Transport

Projection onto the tangent space is an implicit vector transport

where

By regarding the Stiefel manifold as an embedded 
submanifold of Euclidean space

Implicit Momentum Updating

Projection of 
gradient: 
Inherent in the 
Cayley transform

Computationally efficient with implicit momentum! 



Proposed Algorithms

Parameter updating

Momentum updating



Proposed Algorithms

Manifold-wise adaptive 
learning rate

Parameter updating

Momentum updating



Convergence Analysis

Theorem 1 shows the iterative Cayley transform converges faster than other approximation algorithms, 
e.g., the Newton iterative.

Theorem 2 shows the proposed algorithm will eventually converge.



Training Loss Comparison in terms of Epoch

Training loss curves of different optimization algorithms for WRN-28-10. (a) Results on 
CIFAR10. (b) Results on CIFAR100. Both figures show that our Cayley SGD and Cayley 
ADAM achieve the top two fastest convergence rates in terms of epoch.



Training Loss Comparison in terms of Time

Training loss curves of different optimization algorithms for WRN-28-10. (a) Results on 
CIFAR10. (b) Results on CIFAR100. Both figures show that our Cayley SGD and Cayley 
ADAM achieve the top two fastest convergence rates in terms of time



Comparison to SOTA

Error rate and training time per epoch comparison to baselines with WRN-28-10 on 
CIFAR10 and CIFAR100. All experiments are performed on one TITAN Xp GPU.



Experiments for RNN



Check Unitariness



Conclusion

• We specified a scalable method to enforce the exact orthonormal constraints on 
parameters of deep learning networks.

• SGD and ADAM are generalized to Cayley SGD with momentum and Cayley 
ADAM on the Stiefel manifold.

• Theoretical analysis of convergence of the two algorithms is provided.

• Experiments show that both algorithms achieve comparable performance and 
faster convergence over the baseline SGD and ADAM.

• Both Cayley SGD with momentum and Cayley ADAM take less runtime per 
epoch than all existing hard orthonormal methods and soft orthonormal 
methods, and can be applied to non-square parameter matrices.
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