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Direct Numerical Simulation of a Flat Wing with a 
Movable Front Flap at High Angles of Attack and Low 

Reynolds Numbers 
 
 
 

1) INTRODUCTION  
 
Background 

 Recently, there has been increasing interest in the aerodynamics of low Reynolds 

number airfoils. Low Reynolds number airfoils have applications in the development are 

of micro-air vehicles (MAVs). MAVs are typically compact and unmanned devices 

designed for surveillance, military, or remote sensing. Depending on the application, 

MAVs can be autonomous or piloted remotely. Removing the risk to a human also makes 

MAVs ideal for detecting radioactive or biological hazards. 

 These applications combined with advances in miniaturizing sensors have been a 

driving force to better understand the aerodynamics of small scale airfoils. Airfoils for 

MAVs can be characterized by the Reynolds (Re) number based on the free stream 

velocity (v∞) and the chord length (c) of the airfoil. Figure 1 shows a possible airfoil 

design at an angle of attack (α) with a front flap of a given length (lf) and flap angle (θ). 

 
 

 

Figure 1: Schematic of a possible airfoil for a MAV. 
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Airfoils having a Reynolds number less than 105 are generally grouped as low Reynolds 

number airfoils. The Reynolds number dictates the general behavior of an airfoil. As the 

Reynolds number decreases, airfoils begin to exhibit different characteristics, some of 

which degrade performance. 

 How the boundary layer develops around an airfoil is one of the most important 

features in determining the performance of the airfoil. Additionally, the boundary layer 

characteristics are a strong function of the Reynolds number. Two common features of a 

boundary layer are flow separation and laminar to turbulent transition. Flow separation is 

caused by an adverse pressure gradient that forms a recirculation region near the surface 

of the airfoil. After flow separation, the laminar flow can transition to turbulent. The 

increased mixing in turbulent flow can cause the flow to reattach to the airfoil. For 

Reynolds numbers between 10,000 and 70,000 Carmichael [1] found that once flow 

separates, the turbulent transition will not occur in time to allow the flow to reattach to 

the airfoil. At higher angles of attack, flow separation causes a large recirculation zone 

that can cover the upper surface of the airfoil. This recirculation decreases airfoil 

performance and is generally called stall. In order to generate enough lift at low 

airspeeds, MAVs need to operate at higher angles of attack which make MAVs 

vulnerable to stall.  

The stall angle of attack can be increased by adding camber to the airfoil. Camber 

is defined as the difference between the midline of the airfoil and the line that connects 

the leading and trailing edges. Camber can be increased through changing the cross-

section of the airfoil or by the addition of a flap. There are many different types of flaps. 
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This investigation focuses on an airfoil with a leading edge flap. The camber of this 

airfoil can be increased by rotating the front flap downward (see Figure 1). 

 At higher angles of attack, the lift and drag coefficients of airfoils have some time 

dependency as turbulence from the leading edge moves across the upper side of the 

airfoil. These fluctuations can show a dominant frequency depending on how the 

turbulence occurs, specifically, how separated vortical structures travel down stream. 

This frequency can be characterized by its Strouhal number based on the free-stream 

velocity (v∞) and the projected height of the airfoil, (h = csinα). 

     
fh

St
v∞

=      (1) 

 The performance of a flat airfoil with a leading edge flap was investigated in this 

study. It is expected that the numerical study will show that the addition of a front flap 

will increase the lift to drag ratio of the airfoil. Additionally, it is expected that by 

oscillating the front flap, the lift and drag of the airfoil should become periodic by 

matching the flap frequency. The computer model is based upon an actual airfoil 

produced by Kapsenberg et al. [2]. The chord length is 20cm with the leading edge flap 

making up 30% of the chord length. The airfoil thickness is 7.6mm and the leading and 

trailing edges are elliptical. Each ellipse has a length to height ratio of five. Two 

dimensional numerical results from this study are validated against two dimensional 

experimental data for the overall lift of the airfoil collected by Kapsenberg [3].  

 This numerical study uses a direct numerical simulation (DNS) solver for 

incompressible fluids. In DNS, the Navier-Stokes equations are solved on a fine grid 

resolving all length and time scales associated with the flow. DNS uses no turbulence 

model and therefore can fully resolve the turbulence around the airfoil. While 
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computationally expensive, DNS offers insight into how turbulence develops and its 

effects on the performance of the airfoil. In the present DNS study, the incompressible 

Navier-Stokes equations are solved using a finite volume approach and a pressure 

Poisson equation to appropriately correct the pressure and velocity fields to satisfy 

continuity. The solver is time accurate and can model moving rigid bodies through a 

hybrid Lagrangian-Eulerian (HLE) approach. In time, a fractional step method allows the 

solver to resolve the dynamic aerodynamic properties of rigid bodies. These rigid bodies 

are modeled as a collection of Lagrangian points that have user prescribed velocities. The 

rigid body motion is imposed over a Cartesian background mesh using a fictitious 

domain approach. Rigid body motion is enforced inside the rigid body through the 

addition of a force density term to the Navier-Stokes equation. The no-slip boundary 

condition is applied in bands of cells surrounding a rigid body. 

  

Literature Review 

 Numerical and experimental work has been done to characterize the dynamic 

behavior of airfoils at low Reynolds numbers. Broeren and Bragg [4] studied the 

oscillations in lift for thin airfoils at angles of attack near stall at Re = 300,000. The 

oscillations in lift increased dramatically as the airfoils reached stall. Also, the Strouhal 

number for the dominant oscillations was shown to be a strong function of angle of 

attack. Broeren and Bragg reported that the magnitude of lift oscillations depends on the 

which of three types of stall occurs, leading edge, trailing edge, or thin airfoil stall. Some 

of the largest oscillations occurred with a combination of stall types. The stall types were 

first identified by McCullough and Gault [5]. 
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Uranga et al. [6] recently conducted Large Eddy Simulations of stationary airfoils 

at low Reynolds numbers using a high-order Discontinuous Galerkin method on a body 

fitted grid. These simulations were for three dimensional airfoils at low angles of attack. 

The Re = 10,000 case showed that the flow remained essentially two dimensional over 

the airfoil surface. Schlüter [7] has done experimental work with asymmetric airfoils at 

low Reynolds numbers. The experiments studied the effect of a flap mimicking how a 

bird uses its feathers at high angles of attack and found that the addition of a rear flap 

increased the lift of an airfoil. The experimental work was done in a water tunnel at Re = 

30,000 and 40,000. 

Taira and Colonius [8] conducted numerical studies of flat-plate airfoils beyond 

stall at ultra-low Reynolds numbers of 300 and 500 and found that the coefficient of lift 

and drag could show a dominant frequency of oscillation depending on the angle of 

attack. The frequencies were found to be around Sth = 0.14 depending on the Reynolds 

number. Morse and Liburdy [9] have done experimental work to evaluate how vortices 

are shed from flat wings at high angles of attack for a Reynolds number of 14,700. They 

found that the shear region near the leading edge has a dominant frequency 

corresponding to a Sth = 3.4. The Strouhal number increased with both angle of attack 

and Reynolds number. In the recirculation region, low frequency oscillations have the 

largest amplitudes with no dominant frequency. 

 Visbal et al. [10] conducted extensive simulations of airfoils at low Reynolds 

numbers. These simulations used a finite difference method and a body fitted grid with 

compressible flow formulation. The study showed how the flow transitions from laminar 

to turbulent for low angles of attack and then develops into full flow separation around 
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the stall angle. These simulations were run at a Reynolds number of 60,000. Simulations 

were also run at an angle of attack of eight degrees for a variety of Reynolds numbers. 

The larger Reynolds number cases transitioned to turbulent flow quickly and showed 

little flow separation. The lower Reynolds number cases had larger flow separation. 

Visbal et al. [10] also simulated an airfoil going through a plunging motion. This study 

showed that flow remained mostly two dimensional for a Reynolds number of 10,000. 

For low-speed flows, use of a compressible formulation severely limits the time-step 

based on the speed of sound. An incompressible flow solver capable of handling arbitrary 

shaped moving rigid bodies is advantageous. 

The numerical technique used in this study was developed by Apte et al. [11]. 

This method uses a fictitious-domain approach to model incompressible fluids interacting 

with rigid particles. The fluid and particles can be different densities. The fluid region is 

constrained by the continuity equation and the particle region is constrained to undergo 

rigid body motion. Finn [12] continued to develop the fictitious domain approach into the 

HLE scheme used in this investigation. While Finn’s work was directed at bubble vortex 

interaction, Finn also validated the HLE method for many different types of rigid bodies 

including a hydrofoil at Re = 2000. This study uses the same solver as Finn’s work. 
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2) NUMERICAL IMPLEMENTATION 

Overview of Numerical Scheme 

 This section provides an overview of the numerical schemes used in the solver. 

For a complete and rigorous explanation see Finn’s derivation of the HLE technique [12] 

and Apte et al. fictitious domain technique [11]. 

 Fundamentally, the solver works by taking the computational domain and 

discretizing it into many control volumes (CVs). Each CV is constrained by conservation 

of momentum and mass. The fluid of interest in this case is air. For low Mach numbers (< 

0.3), air can be assumed to be incompressible. The Navier-Stokes equations represent 

conservation of momentum for a Newtonian fluid, and is given as 

( )v
v v P v S

t
ρ µ∂ + ⋅∇ = −∇ + ∇ ⋅ ∇ + ∂ 

,   (2) 

where ρ is the fluid density, v is the velocity vector, P is the pressure, µ is dynamic 

viscosity, and S is an additional momentum source. For an incompressible fluid, Equation 

3 represents conservation of mass, also referred to as the continuity equation. 

     0v∇ ⋅ =      (3) 

 A distinguishing factor among fluids solvers is how the domain is broken up into 

CVs. For flow around objects, one way is to make a body-fitted grid where the faces of 

the CVs are aligned with the surface of the object. This method can be efficient for static 

objects. However, this study requires the solver to be able to handle moving objects. For 

moving objects, body-fitted grids become more computationally expensive. Each time the 

object moves, the grid must be regenerated and the flow variables interpolated onto the 
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new grid. These steps create computational cost and can introduce error. For these 

reasons, this study used a fictitious domain approach. 

 In the fictitious domain method, the entire computational domain is discretized 

into a static background grid. The Navier-Stokes and continuity equations are solved over 

the entire domain. Parallel processing is used to divide the computation among multiple 

processors. Objects are introduced into the domain by constraining the fluid velocity 

inside the object to the rigid body velocity of the object through the addition of a force 

density term to the Navier-Stokes equations. The object is assumed to be a rigid body, 

meaning the body’s velocity is the sum of translational and rotational motion. This 

method requires a way to track what CVs are inside of an object. The HLE method tracks 

the surface of a rigid body using Lagrangian particles. 

 These Lagrangian particles or material points start at user defined locations in the 

shape of the immersed object. At each time step, the material points are moved to a new 

location based on their velocity. As the material points move, so does the surface of the 

object. The solver defines the surface of the object by tagging the CVs that contain 

material points. These CVs create a band. The solver then creates two additional bands 

consisting of the CVs adjacent to the first band. Figure 2 shows a two dimensional 

representation of the banded approach. By using three bands, the solver smears the 

interface between object and fluid. To account for this, a color function can by calculated. 

Inside the object, the color function is one; outside the color function is zero; and inside 

the banded region the color function is some fraction of one. The color function scales 

whether the CV is constrained to rigid body motion or not. The fact that this rigid body 
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constraint is smeared over multiple CVs requires that the grid always be refined near the 

surface of the object. 

 
 

 

Figure 2: Banded approach for an arbitrary object. 

 

Variable Storage and Solution Algorithm 

 The flow variables are stored at the center of each CV in accordance with a 

collocated arrangement with the exception of the face-normal velocities which are stored 

at the face centers. While this study uses structured grids, a collocated arrangement 

makes the solver more adaptable to unstructured grids. Figure 3 shows a diagram of the 

variable storage and time discretization. The variables are staggered in time with the CV 

velocities (ui), face centered velocities (uN), particle velocities (Ui), and rigid body forces 

(f i,R) known at each time step and the pressure (p), particle position (Xi), density (ρ), and 

volume fraction (Θ) known at each half time step. This staggering has the advantage of 
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making the time discretization symmetric which helps the conservative properties of the 

numerical scheme.  

 
 

 

Figure 3: Diagram of variable storgae: (a) Time staggering, (b) three dimensional variable storage. 

 
 The following solution sequence is a summary of Finn’s description of the HLE 

algorithm [12]. The solution algorithm begins with initial conditions for all flow variables 

and material point positions. First the material points are explicitly advanced in time 

based on the rigid body velocity. With the new material point positions, the color 

function is calculated over the entire domain. Next the velocities are advanced in time 

using the fractional step method. The result is a predicted velocity field that may not 

satisfy continuity. Velocity gradients are handled implicitly using the Crank-Nicholson 

method and spatial gradients use the centered discretization scheme. 

 Next, the pressure is solved for in a Poisson equation. With the new pressure 

values, the face-centered velocity field can then be corrected to satisfy the continuity 

equation. Finally, the CV velocities inside the object are corrected to meet the rigid body 

constraint. This requires the user to specify the translational and rotational velocities of 

the rigid body. 
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Airfoil Model 

 In order to run simulations on an airfoil, first a computational model must be 

generated. This study models an existing thin airfoil with a front flap. The trailing and 

leading edges are rounded into an elliptical shape with a length to height ratio of five. 

The chord length is 20cm, the thickness is 7.6mm, and the front flap makes up 30% of the 

chord length. Figure 4 shows the actual airfoil that the numerical model simulates. 

 
 

 

Figure 4: Side view of the actual airfoil built by Kapsenberg et al [2]. 

 
The numerical model of the airfoil was created by distributing material points 

along the surface of the airfoil. The airfoil surface was defined by breaking the airfoil up 

into simple shapes. The entire airfoil is generated at an angle of attack of zero with a flap 

angle of zero. The material points are then rotated to the appropriate angle of attack. The 

five component shapes are an ellipse for the trailing edge, a line segment for the body of 

the airfoil, a semicircle for the hinge joint, a line segment for the flap body, and an ellipse 

for the leading edge. The origin for the airfoil is located at the trailing edge with the front 

of the airfoil pointed to the left (negative x direction). Due to the symmetry of the airfoil, 

for each point placed on the top surface of the airfoil, another is placed on the bottom 

surface by mirroring the top point across the x-axis. The airfoil is given depth by copying 

the points from the first cross-section to make additional cross-sections in the z direction. 
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 The ellipses for the leading and trailing edges are generated using the general 

equation for an ellipse, the thickness of the airfoil, and the ratio of length to height. 

Equation 4 shows the equation that can be solved for the y location of a point on an 

ellipse centered on the x-axis,  

( )2 2

2 2
1

1
2

cx x y

t
rt

−
+ =

 
 
 

,     (4) 

where xc is the x location of the center of the ellipse, t is the thickness of the airfoil and r 

is the ratio of length to height. The x locations of the material points are spaced evenly 

between the tip of the ellipse and the center. The y location is solved for using Equation 

4. The xc for the trailing edge and leading edge are (-t*r / 2) and (t*r / 2 – c) respectively 

where c is the chord length.  

Next the flat airfoil and flap sections are added. Each flat section is generated by 

equally spacing material points along the flat surface. The airfoil flat surface extends 

from the end of the trailing edge ellipse to the start of the flap hinge. The flat flap surface 

extends from the flap hinge to the end of the leading edge ellipse.  

 At this point the airfoil and flap are both horizontal. The next step is to rotate the 

flap to the specified flap angle. The flap angle is defined as positive counterclockwise. 

Each material point in the flap is rotated around the flap hinge using a matrix 

transformation. 

 Next the hinge material points are added. The hinge’s height and width are equal 

to the thickness of the airfoil. The hinge is formed by fitting two semi-circles into the gap 

between the airfoil surface and the flap surface. The semicircles are created tangent to 

both the flap and airfoil surfaces to create a smooth transition. The upper and lower 
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semicircles are concentric. While adding the semi-circle to the underside of the airfoil 

does not match the shape of an actual hinge, the benefit is that the front flap can be 

moved smoothly without the need to add material points. The final step is to rotate all the 

material points around the trailing edge by the specified angle of attack. Angle of attack 

is defined as positive counterclockwise. Figure 5 shows how the material points are 

distributed to create a cross-section of the airfoil. In practice many more material points 

are used to more accurately define the interface 
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Figure 5: Diagram of material point distribution. 

 
Figure 6 shows a contour plot of the volume fraction of the airfoil. The volume fraction 

varies between unity inside the airfoil and zero outside. At the interface between the 

airfoil and fluid, the volume fraction is smeared over three control volumes which 

accounts for the blurring of the airfoil edges in Figure 6. 
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Figure 6: Plot of volume fraction contours for the airfoil model. 

 Figure 6 was generated on a coarse background grid. The blurring of the airfoil 

surface can be reduced by refining the grid in the region of the airfoil. The boundary of 

the airfoil is defined by the surface with a volume fraction of 0.5. 
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3) VALIDATION 

Flow Past A Cylinder 

 The solver is validated by simulating flow past a cylinder at Reynolds numbers of 

100 and 300 based on the cylinder diameter. These Reynolds numbers provide 

coefficients of drag and frequencies of vortex shedding that can be compared to previous 

simulations. The computational domain is a 256 X 256 X 3 Cartesian grid. The flow is 

assumed to be two dimensional. The cylinder is three cells wide and has periodic 

boundary conditions to ensure a two dimensional flow. The grid is refined in the region 

of the cylinder with 24 CVs across the diameter of the cylinder. A cross-section of the 

grid is square with sides equal to 32 cylinder diameters. The upper and lower surfaces 

have slip wall boundary conditions; the left side has a velocity inlet boundary; and the 

right side has an outlet boundary. See Appendix A for diagrams of the computational 

domain. 

 At a Reynolds number of 100, the wake of a cylinder is known to be two 

dimensional and develop periodic vortex shedding. Equation 5 shows the definition of a 

lift or drag coefficient.  

21
2

F
C

U Aρ
=      (5) 

F is the force to be non-dimensionalized; ρ is the density of the fluid; U is the free stream 

velocity; and A is the characteristic area or the length times the diameter of the cylinder. 

Figure 7 shows how the lift and drag coefficients develop over time. Time is non-

dimensionalized by multiplying by the free stream velocity and dividing by the diameter 

of the cylinder. 
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Figure 7: Time evolution of lift and drag coefficients, Re = 100. 

 

 Over time the cylinder develops the characteristic oscillations in both lift and 

drag. Since the cylinder is symmetric, the lift coefficient is centered about zero while the 

drag coefficient is centered about a positive value. After t * U / d = 80, the oscillations 

reach a steady amplitude and mean. The mean value for the drag coefficient is 1.38. 

Table 1 shows the drag coefficient compared to past work. The lift coefficient closely 

agrees with the other work. Additionally, the Strouhal number can be calculated for the 

frequency of lift oscillations using the diameter of the cylinder and the free stream 

velocity. Equation 6 shows the definition of the Strouhal number. 

fd
St

U
= ,     (6) 
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where f is the frequency; d is the characteristic length or the cylinder diameter; and U is 

the free stream velocity. The Strouhal number is 0.163. Table 1 compares this Strouhal 

number to past work and shows close agreement. 

 
Table 1: Comparison of Cd and St for a 2D cylinder, Re = 100. 

 

  Cd St 
Present Study 1.38 0.163 
Mittal et al. [13] 1.35 0.166 
Marella et al. [14] 1.36 - 
Henderson [15] 1.35 - 
Shu et al. [16] 1.3833 0.16 

 

For the Re = 300 case, the same grid is used. At this Reynolds number, the wake 

behind the cylinder is known to be three dimensional. Therefore the two dimensional 

assumption will introduce some error. Figure 8 shows the coefficients of lift and drag 

over time. The lift and drag coefficients appear similar to the Re = 100 case. There is 

some transient behavior at the beginning before the coefficients reach steady state 

oscillations. The drag coefficient has a mean value of 1.43. The lift oscillations come out 

to a Strouhal number of 0.210. Both of these values are similar to past numerical results 

as seen in Table 2. 
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Figure 8: Time evolution of lift and drag coefficients, Re = 300. 

 
Table 2: Comparison of Cd and St for a 2D cylinder, Re = 300. 

 

  Cd St 
Present Study 1.43 0.210 
Mittal et al. [13] 1.36 0.21 
Marella et al. [14] 1.28 - 
Mittal and Balachandar [17] 1.37 - 
Henderson [15] 1.37 - 
Kravchenko et al. (3D) [18] - 0.203 

 

Figure 9 shows vorticity contours around the cylinder for both cylinder cases. 

Qualitatively, the vorticity distributions for each case are consistent with periodic vortex 

shedding. The distance between vortices is slightly smaller for the Re = 300 case 

reflecting its slightly higher Strouhal number compared to the Re = 100 case. 
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(a) Re = 100 

 
(b) Re = 300 

 

 

Figure 9: Vorticity contours around a cylinder at (a) Re = 100, (b) Re = 300. 

 

Cylinder Grid Refinement Study 

 In order to determine an appropriate grid resolution for running airfoil cases, 

cylinder cases for a Re = 100 were run at different grid resolutions and compared. The 

computational domain was shrunk to 12 X 13 cylinder diameters to reduce computation 

time. Boundary conditions were the same except the top and bottom walls were no-slip 

walls. While no-slip walls are not good practice for getting realistic drag values, this 
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study is focused on the relative behavior between grid resolutions. The fine grid used 400 

X 400 X 4 CVs and is assumed to be near to the true numerical solution. The cylinder is 

located near the center of the domain and is in a refined grid region. See Appendix B for 

diagrams of the grid distribution. This grid resolution places 75 CVs across the diameter 

of the cylinder. Two other cases were run with 18.8 and 9.4 CVs across the diameter of 

the cylinder. Figure 10 shows how the drag coefficient develops over time. 
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Figure 10: Drag coefficient over time for three different grid resolutions. 

  
The mean coefficient of drag for the three grid refinements are 1.53, 1.57, and 

1.56 in order of decreasing resolution. While the means agree closely, the transient 

behavior differs considerably. The 75 CV and 18.8 CV cases have one dominant 

frequency, while the 9.4 CV case has two significant frequency components. The 9.4 CV 

case also has a smaller amplitude of oscillation. The dominant frequencies for all cases 
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are similar with Strouhal numbers of 0.180, 0.189, and 0.200 in order of decreasing 

resolution. The effect of decreasing the grid refinement has a large impact on the results. 

Using a grid resolution of 9.4 produced satisfactory values for a mean coefficient of drag 

and Strouhal number, but the transient results became distorted. 
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4) RESULTS 

Computational Domain for the Airfoil 

 The computational domain for the airfoil is setup to provide the required 

resolution around the airfoil while minimizing the total number of CVs used. The domain 

is two meters by two meters and is discretized into a Cartesian grid. The airfoil is 

centered vertically and slightly upstream of the center in the horizontal direction. The 

airfoil is in a refined region that is 0.24 m wide by 0.16 m tall. The refined region is large 

enough to always contain the airfoil and to resolve the important flow features. All CVs 

in the refined region are cubic. 

Three different grid resolution are used, a coarse, an intermediate, and a fine grid. 

The three grids are 480 X 320, 720 X 480, and 840 X 560 in order of increasing 

refinement. All of the grids are three CVs wide in the spanwise direction which assumes 

that the flow is two dimensional. The left side is a velocity inlet boundary condition, the 

right side is an outlet, the top and bottom are no-slip walls, and in the spanwise direction, 

the boundary conditions are periodic. The coarse, intermediate, and fine grids have 7.6, 

11.4, and 13.3 CVs across the thickness of the airfoil. See Appendix C for diagrams of 

the grids. While the coarse grid has insufficient resolution to obtain precise results, it can 

be used to get qualitative results. Even with parallel processing, the more refined grids 

are significantly more computationally expensive to run. In order to obtain satisfactory 

spectral resolution, cases needed to be simulated over longer time periods. These larger 

times add computational cost requiring the use of supercomputing facilities. In the 

present work, coarse grids were used for parametric studies. Even on a coarse grid, one 
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case takes approximately 1500 CPU hours to complete. Table 3 summarizes the results of 

the seven different cases. 

Table 3: Summary of the lift and drag results for all seven cases. 

Case Re α θ 

Flapping 
Frequency 

Mean 
CL 

Mean 
CD 

1 70,000 10° -10° - 0.85 0.06 

2 70,000 14° -10° - 1.16 0.19 

3 14,700 20° 0° - 1.38 0.56 

4 14,700 20° -20° - 1.38 0.24 

5 14,700 20° -20° 1 Hz 1.47 0.31 

6 14,700 20° -20° 3 Hz 1.39 0.26 

7 14,700 20° -20° 5 Hz 1.37 0.22 
 
 

Fixed Flap Angle Cases 

The first two cases are of the airfoil with a constant flap angle and a Reynolds 

number of approximately 70,000. These two cases duplicate some preliminary 

experimental results collected by Kapsenberg [3] of the overall lift of the actual airfoil. 

The two cases have angles of attack of 10 and 14 degrees. Both cases use a flap angle of  

-10 degrees and the coarse grid. The experimental data is time averaged and eliminates 

tip effects by placing splitter plates flush with the sides of the airfoil. Figure 11 shows the 

transient numerical results for the coefficient of lift. Table 3 compares the experimental 

and numerical averaged lift coefficients. For the mean lift coefficient, the numerical 

results are time averaged starting after the initial transient. For both cases the numerical 

results are slightly higher than the experimental results. Since the experimental results are 

still preliminary, there is no reported uncertainty in the lift values. Therefore it is difficult 

to make a definite conclusion about the accuracy of the numerical results. 



 24

 
(a) Lift Coefficient for α = 10°, θ = -10°. 

 
   (b) Lift Coefficient for α = 14°, θ = -10° 

 

 

Figure 11: Transient Lift Coefficient for the airfoil at two angle of attack on the coarse grid, Re = 70,000. 

 

Table 4: Comparison of coefficient of lift for experimental and numerical studies of the airfoil for two 

angles of attack, θ = -10°, Re = 70,000. 

 
Angle of 
Attack 

Experimental 
Results [3] 

Numerical 
Results 

10° 0.79 0.85 
14° 1.06 1.16 
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Two additional cases were run for the airfoil at a higher angle of attack to test the 

effect of the front flap. Both cases use an angle of attack of 20 degrees, but the flap is 

changed between -20 and 0 degrees. Both cases were run at a Reynolds number of 

14,700. The zero degree flap angle case was run on the coarse, intermediate, and fine 

grids.  
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(a) Coarse grid, 8 sec simulation 
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(b) Intermediate grid, 2 sec simulation     (c) Fine grid, 2 sec simulation 

 

 

Figure 12: Coefficient of lift for the airfoil, α = 20°, θ = 0°, Re = 14,700. 
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 On all three grids, the lift coefficients begin to oscillate after an initial transient. 

The coefficient of lift varies significantly over time with extreme values of 2.26 and 0.36 

on the coarse grid. Qualitatively, the lift coefficients for the three grids appear to be 

similar. However, the average lift values vary considerably from 1.38, 1.52, and 1.24 

from the coarse to fine grid. When taking an average, the first second of results is 

discarded as the initial transient. Since this leaves only a second of data for the 

intermediate and fine grids, these averages might not reflect the true average over a long 

period of time. Generally, the coefficient of drag’s oscillations are in phase with the 

coefficient of lift. For plots of drag data, see Appendix D. Figure 13 shows pressure 

contours around the airfoil. Vortices are generated in the shear regions above the leading 

edge and trailing edge. As these vortices interact and travel over the upper surface of the 

airfoil, the pressure differences change the overall lift and drag forces. 

 
 

 

Figure 13: Pressure (Pa) contours around the airfoil, α = 20°, θ = 0°, Re = 14,700. 
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Similar cases were run for the airfoil at an angle of attack of 20 degrees with a 

flap angle of -20 degrees. Lowering the flap makes the flap parallel to the oncoming air 

and increases the camber of the airfoil. Figure 14 shows how the lift coefficient develops 

over time on the coarse grid. Pressure contours around the wing are plotted in Figure 15. 

 
 

 

Figure 14: Coefficient of lift for the airfoil, α = 20°, θ = -20°, Re = 14,700. 

 

The lift coefficient also oscillates as vortical structures pass over the airfoil. The 

average coefficient of lift is 1.38 and varies between extremes of 1.92 and 0.83. While 

the average coefficient of lift is identical between the θ = 0º and the θ = -20° cases, the θ 

= -20° case oscillates over a smaller range. To further compare the two cases, a spectral 

analysis was run on the two coefficient of lift signals. The amplitude of oscillation is 

plotted versus the Strouhal number in Figure 16. 



 28

 
 

 

Figure 15: Pressure (Pa) contours around the airfoil, α = 20°, θ = -20°, Re = 14,700. 

 

   

(a) θ = 0° 
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(b) θ = -20° 

 

 

Figure 16: Spectral analysis of coefficient of lift for two flap angles, α = 20°, Re = 14,700. 

 
The spectral analysis shows that the coefficient of lift is predominantly made up 

of low frequency oscillations. The θ = 0° case has much larger oscillations with a peak 

Strouhal number of 0.062 corresponding to a frequency of 1Hz. The θ = -20° case had a 

much smaller oscillations with a dominant Strouhal number of 0.17 or a frequency of 

2.71 Hz.  

 

Flapping Cases 

 Three additional cases were run with a moving flap at different frequencies, 1, 3, 

and 5 Hz. In each case, the flap angle oscillates sinusoidally with an amplitude of ten 

degrees and an average angle of -20 degrees. All three cases use the coarse grid. Figure 
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17 shows how the coefficients of lift vary over time. Plots of the drag coefficients are in 

Appendix E, 

0 1 2 3 4
0

0.5

1

1.5

2

2.5

t * U / d

L
ift

 C
o

e
ffi

ci
e

nt

 

 

C
L

Flap Frequency

 
(a) Flap Frequency of 1Hz 
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(b) Flap Frequency of 3Hz 
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(c) Flap Frequency of 5Hz 

 

 

Figure 17: Coefficients of lift for the airfoil with oscillating front flap angle at three different flapping 

frequencies. 

  
 For all three frequencies, the lift coefficient oscillations are in phase with the flap 

motion. The average lift coefficients for the 1Hz, 3Hz, and 5Hz cases are 1.47, 1.39, and 

1.37 respectively. The average drag coefficients decrease with increasing flapping 

frequency and yield lift to drag ratios of 4.70, 5.33, and 6.36. Figure 18 shows the 

frequency content of the lift coefficient signals. All three signals have dominant 

frequencies equal to the flapping frequency. The 1Hz case also has oscillations of 

significant amplitude around a Strouhal number of 0.23 or 3.67 Hz. As the frequency 

increases, the lift coefficients become more sinusoidal with the 5Hz case having a large 

dominant frequency of 5Hz. 
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(a) Flapping frequency of 1Hz 

 
(b) Flapping frequency of 3Hz 
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(c) Flapping frequency of 5Hz 

 

 

Figure 18: Spectral analysis of the lift coefficient of the airfoil at three different flapping frequencies. 
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5) CONCLUSIONS 

 While the DNS simulations of the wing provided lift and drag coefficients that are 

close to the preliminary experimental results, more work needs to be done before the 

numerical methods can be conclusively verified. The cylinder grid refinement study 

demonstrated that coarse grids can provide results that are somewhat accurate, but more 

refined grids are needed to completely and quantitatively capture both the dynamic and 

the time averaged behavior of the rigid body. For cylinders, the appropriate level of grid 

refinement can be determined. However, it is still unclear what grid refinement is 

appropriate for the shape of a thin airfoil. Experimental results would be invaluable in 

determining the appropriate level of grid refinement for the airfoil shape. The present 

work assumes the flow over the airfoil is two dimensional. Three dimensional 

simulations or experimental results are needed to verify this assumption. 

 The results from the cases examining the effect of the front flap came out as 

expected. Lowering the front flap, provided significant increase in performance at a high 

angle of attack. While the coefficient of lift remained unchanged, the addition of camber 

by the flap decreased the coefficient of drag from 0.56 to 0.24. Additionally, the lift and 

drag oscillations were significantly reduced by lowering the flap. Reducing the 

oscillations in the airfoil, especially the lower frequencies, makes the airfoil more stable. 

With the addition of the flap, the largest oscillations shifted from a Strouahl number of 

0.062 to 0.17. This data shows that lowering the flap by 20 degrees improved the 

performance of the airfoil. However, more simulations should be run to get a full 

understanding of the flap’s effect. Cases of the flap at a larger variety of angles would 

show whether the improvements are smooth transition as the flap is lowered or if there is 
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a critical flap angle. There also should be an angle where lowering the flap further would 

degrade performance. Further studies are required to describe this angle. Simulations of 

greater length would also improve the resolution of the spectral analysis. Twenty seconds 

of data would better describe the dominant frequencies in lift and drag data. 

 As expected, the flapping cases showed that the motion of the flap significantly 

affected the nature of the lift coefficient. For all three flapping cases, the dominant 

frequency content in the lift and drag coefficients corresponded to the flapping frequency. 

The lift coefficient plots show that the lift was generally in phase with the flap motion. 

When the flap is up, the lift is higher and vice versa. However, the 1Hz case has some 

higher frequency content. Figure 19 shows pressure contours of the 1Hz case when the 

flap is near the top and bottom of its cycle. The low pressure spots are vortices being shed 

from the leading edge. Near the top of a cycle, strong vortices are shed from the leading 

edge and cause fluctuations in the lift coefficient as they pass over the airfoil. When the 

flap is down, fewer and weaker vortices are shed from the leading edge. 

The case with a static flap angle of zero degrees showed that there were 

significant lift fluctuations as high as 3Hz. At a flapping frequency of 1Hz, these lift 

fluctuations have time to develop as the flap rotates up. The 5Hz case appears almost 

sinusoidal. One explanation is that the higher flap frequency does not allow time for the 

lower frequency lift fluctuations to form. While preventing these lower frequency 

fluctuations from forming improves airfoil stability, the 5Hz flapping motion makes large 

5Hz lift fluctuations. A more practical consideration is that powerful actuators would be 

required to move the flap at this frequency. The added weight of actuators would degrade 

the overall aircraft performance. 
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(a) Flap approaching the top of its cycle 

 
(b) Flap approaching the bottom of its cycle 

 

 

Figure 19: Flapping airfoil at 1Hz at two different flap angles, α = 20°, Re = 14,700. 
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While this study has shown that a fictitious domain approach has promise to 

accurately predict the lift and drag properties of a thin airfoil, there is still a significant 

amount of numerical and experimental work that needs to be done before the numerical 

methods can be verified. However, the results can be used to guide further research. The 

addition of a front flap to a thin airfoil has the potential to greatly increase the 

performance of the airfoil. Additionally, moving the front flap has a large impact of the 

lift and drag of the airfoil. This effect depends on many factors including the frequency 

that vortices are shed from the leading edge.  
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Appendix A – Grid for Flow Over A Cylinder 

 
 

Figure A1: Grid for flow over a cylinder. 

 

 
 

Figure A2: Cylinder cross-section and grid for flow over a cylinder. 
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Appendix B - Cylinder Grid Refinement Study Grid 

 
 

Figure B1: Fine grid for flow over a cylinder grid refinement study. 

 

 
 

Figure B2: Cylinder cross-section using the fine grid for the flow over a cylinder grid refinement study. 
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Appendix C - Airfoil Grids 
 

 
 

Figure C1: Coarse airfoil grid. 

 

 
 

Figure C2: Airfoil cross-section on the coarse grid. 
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Figure C3: Intermediate airfoil grid. 

 

 
Figure C4: Airfoil cross-section on the intermediate grid. 
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Figure C5: Fine airfoil grid. 

 

 
Figure C6: Airfoil cross-section on the fine grid. 
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Appendix D - Fixed Flap Angle Cases Drag Data 

 
 

Figure D1: Coefficient of drag for the airfoil, α = 20°, θ = 0°, Re = 14,700. Average value = 0.56, varies 

between 0.96 and 0.26. 

 

 
 

Figure D2: Coefficient of drag for the airfoil, α = 20°, θ = -20°, Re = 14,700. Average value = 0.24, varies 

between 0.37 and 0.13. 
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Figure D3: Spectral analysis of the coefficient of drag for the airfoil, α = 20°, θ = 0°, Re = 14,700. Peak 

Strouhal number = 0.062 with an amplitude of 0.046. 

 
 

Figure D4: Spectral analysis of the coefficient of drag for the airfoil, α = 20°, θ = -20°, Re = 14,700. Peak 

Strouhal number of 0.17 with an amplitude of 0.020. 
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Appendix E - Flapping Cases Drag Data 
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Figure E1: Coefficient of drag for the airfoil flapping at 1Hz, Re = 14,700. Average = 0.31, varies between 

0.52 and 0.12. 
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Figure E2: Coefficient of drag for the airfoil flapping at 3Hz, Re = 14,700. Average = 0.26, varies between 

0.41 and 0.03. 



 49

 

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t * U / d

D
ra

g
 C

o
e

ffi
ci

e
n

t

 

 

C
D

Flap Frequency

 
 

Figure E3: Coefficient of drag for the airfoil flapping at 5Hz, Re = 14,700. Average = 0.22, varies between 

0.35 and 0.07. 

 

 
 

Figure E4: Spectral analysis of the coefficient of drag for the airfoil flapping at 1Hz, Re = 14,700. Peak 

Strouhal number = 0.062 with an amplitude of 0.12. 
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Figure E5: Spectral analysis of the coefficient of drag for the airfoil flapping at 3Hz, Re = 14,700. Peak 

Strouhal number = 0.19 with an amplitude of 0.09. 

 

 
 

Figure E6: Spectral analysis of the coefficient of drag for the airfoil flapping at 5Hz, Re = 14,700. Peak 

Strouhal number = 0.31 with an amplitude of 0.052. 



 


