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This thesis addresses numerical simulation of flow maldistribution in

microchannels. Microchannels are often associated with two phase-flows which

can generate many problems such as plugging the channel or perturbing the flow.

In this study we have used CFD and fully resolved technique to simulate what

would happen in the case of bubbles modifying the flow in a 3 parallel

microchannels structure. Such perturbations in the domain have a significant

impact on the flow rate and on the flow distribution inside the geometry which

can cause many disorders in terms of heat exchange for example, where a

continuous mass flow rate is essential to be efficient.

To restore a nominal flow, valves are added to the geometry at the entrance of

each microchannel. These valves act separately and are operated by a controller

to regulate and eventually modify the flow to flush the bubbles out. The



controller makes its decision based on the mass flow rate data provided by

sensors located at the entrance and exit of each channel. Based on this

information the controller tries to equalize the mass flow rate in each channel. In

the case of plugged channel, this means that most of the flow will be forced

through the plugged channel to push the bubble out. These valves have an

impact on the flow distribution inside the channel but allow an active and

accurate control over the flow in the geometry.

In this work the scheme used to solve the two-phase flow problem is crucial.

Since the simulation is dealing with both freely (bubbles) and forced (valves)

moving particles over the geometry, the formulation has to be able to handle this

phenomenon as well as the flow itself in a reasonable amount of time. A fictitious

domain technique, allowing high density ratio between fluid and particle, has

been used. This new approach has been extensively tested and significantly

improved for this application.
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Chapter 1 – Introduction

Microchannels are present in many applications. They can be used as heat ex-

changers either to take heat away from a heat source or to carry a heated fluid

that needs to be cooled through theses channels. Other applications in chemistry

involve micro-mixing or transport of particles. In most of the applications, mi-

crochannels are associated with two phase-flows. In the case of heat exchangers,

bubbles can appear in the fluid and be transported along the microchannel. These

bubbles can cluster together along the walls and form compact structures that can

partially or totally plug the channel as shown by Sharp et al. [1]. Such structures

happen when the concentration of bubbles increases, and the probability of bubble

aggregation increases. The nucleation of the bubbles can also be mentioned. A

bubble can grow along the wall, because of a local peak of temperature at the wall

of the channel. This bubble remains attached as long as the flow is not strong

enough to detach it from the wall. Several forces act to keep the bubble attached

to the wall. The main one being the surface tension of the bubble. This case is

the one we are trying to reproduce in this study.

Another aspect can be particles flowing with the fluid as in the case of chemical

reactions. Microchannel arrays can be used as mixing apparatus to enhance the

reaction rate. If one of the products of the reaction is a solid (like a precipitation

reaction) then small particles will flow in the channels along with the fluid. Again
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following the volume fraction of these particles, the probability of aggregation is

more or less high, but they can always cluster along the walls which would perturb

the flow in the channel and eventually affect the reaction rate in the other channels

by increasing the mass flow rate inside those channels. In this case microchannels

can be very fragile and high pressures inside one of the channels could damage the

structure of the array. If a sufficient amount of particles cluster along a wall, it

could eventually plug the channel and, in some cases, damage the structure.

In this work, direct numerical simulation (DNS) is used in order to resolve two-

phase flow in parallel microchannels. DNS is used because of the low Reynolds

number involved and the laminar behavior of the flow inside the microchannels. In

order to simulate the bubbles in our geometry, a fully resolved technique is used,

in which the motion of fluid and particles 1 is obtained from principles, without

having to regenerate the mesh every time-step. The algorithm and the numerical

scheme used will be described later. Also several test cases will be presented in

order to validate this approach along with comparisons of available results from

the literature, which will be used to validate the accuracy of our method.

1Henceforth a particle may represent a dispersed phase in the form of solid particles or va-
por/gas bubbles.
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Using the previously mentioned approach this work presents simulations of

spherical rigid bubbles flowing in a 3 parallel microchannels structure. Figure 1.1

presents the geometry that is going to be used; it also shows an illustration of flow

maldistribution in the 3 parallel microchannels geometry. The effect of a bubble

partially plugging a channel will be investigated. As mentioned earlier the bubble

plugging the channel doesn’t only have an effect on the flow inside its channel, but

it also significantly modifies the flow inside the connected channels. In order to

provide a solution to that problem and to actively help restore a nominal flow inside

the entire structure, valves are used at the entrance of each channel to regulate

the flow. These valves are independent and operated by a controller. The goal of

these valves is to equalize the flow rate inside each channel, which helps to restore

the flow if a bubble, or an obstruction is detected. A detailed description of the

behavior of the valves and their effect on the flow will be presented.

The goal of this work is to show our ability to provide a dynamic solution to a

fairly common problem with two-phase flows in microchannels. The results shown

in this thesis are based only on numerical simulations. Even if it is unlikely to see

the apparatus simulated here, the present work shows that it is possible to have an

active control on the mass flow rate of microchannel structure and that a controller

can be designed in order to achieve an optimal flow through this channel with the

ability to react in the case of an obstruction.

In a the next chapter, a brief overview over the main aspects in this study

will be presented through relevant references from the literature. Then the next

section will present the numerical formulation and the research flow solver used
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to solve the flow, before, in the following section, to validate it with elementary

cases necessary to ensure the accuracy of the solver. Finally, the simulations of

the two-phase flow through the three-channel geometry will be presented.

The work presented in this thesis has been published in a the Journal of fluids

Engineering [2] and will be presented at the 3rd International Conference on Micro-

and Nanosystems (MNS) (ASME conference in San Diego in August 2009) [3].
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Chapter 2 – Literature review

This chapter presents an overview of the current state of the knowledge about the

different issues tackled in this work. Three different aspects necessary to the global

understanding of this work are described in the following paragraphs. Since we

are dealing with bubbles in microchannels, a brief introduction on two-phase flow

regimes is presented. Then the bubble nucleation process and dynamics associated

with the bubble growth is presented and finally some cases of controlled flows are

shown.

Microchannels are used in many applications. The literature presents many

cases involving heat exchange. A fluid flowing in the microchannels is used to take

heat away and cool down certain devices. If the temperature becomes too high in

one of the microchannels, a bubble can be created. This bubble can have several

different behaviors following the fluid parameters, the flow, the temperature, and

the roughness of the wall. The next section presents the different regimes that can

occur in bubble formation.

2.1 Two-phase flow regimes

Two-phase flows in micro-channels have been widely explored. Several studies

show the different patterns of a multiphase flow in micro-channels [4, 5].
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The vapor phase can take several forms inside the channel which causes different

behaviors in the flow. Cubaud et al. [6] present the different regimes of two-

phase flow in a square channel. These regimes are determined by the size and

the occupation of the channel by the vapor phase. The first regime is the bubbly

flow where relative small bubbles compared to the size of the channel flow with

the fluid. For this regime the bubbles are mainly spherical and once they detatch

from the wall, their velocity is close to the flow velocity due to low Stokes number.

Clogging or arching structures can occur inside the channel or in sharp corners due

to the interaction of the bubbles between each other [7]. Our simulation is based

on this regime (see figure 1.1).

The other regimes concern longer bubbles where the length of the bubble is

larger than the channel height. In the wedge flow regime, the velocity of the vapor

phase becomes slower and the layer of fluid is thinner between the vapor and the

wall. If the bubble keeps growing it turns to a slug flow and the liquid fraction

lowers αL < 0.2. If the bubble becomes long enough so that its size becomes the

same as the channel length, then the liquid flows around the bubble. This leads

to the annular flow [8]. Finally the last regime, dry flow, occurs when the void

fraction αg > 0.995. The vapor phase is no longer moving and no liquid flows

along the walls of the channel. All the flow happens in the wedges.
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2.2 Bubble nucleation

Wang et al [9] show experimental results and visualization of bubble nucleation.

They have looked at transitional flow variations during the bubble growth along

the wall of a microchannel using PIV. The flow applied through the channel is

slow (Re = 0.02) to maintain a Stokes regime so that the force applied on the

bubble by the flow is not large enough to detach the bubble from the wall. They

have found that the total drag force of the bubble is very small compare to other

forces such as surface tension. In this particular case they have been able to

write a balanced equation for a static bubble involving all the acting forces. A

pressure has been determined in order to balance the static equation. This pressure

corresponds to the pressure drop required to balance the forces around the bubble.

If, because of an increase in the mass flow rate, the pressure drop increases then

the hydrodynamic force will be large enough, to overcome the other forces and

then the bubble will be released. A departure criterion can be defined from the

pressure used, to balance the equation for a static bubble.

Lee et al. [10] (in the case of a single channel) and Li et al. [11] (in the case of

two parallel microchannels) have studied the bubble dynamics. These studies look

at the bubble behavior in one or two microchannels. The bubble nucleation speed,

growth, and frequency have been observed. Also a departure criterion function of

the size of the bubble has been proposed. This criterion is a function of the pressure

drop around the bubble. As mention in the previous paragraph the departure of

the bubble happens when the liquid force becomes sufficient to overcome the forces
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that keep the bubble attached to the wall. Here the departure criterion is a function

of the size of the bubble. Indeed, surface tension is stronger for smaller radii. But,

at the same time the force of the flow is fairly small since the area of the bubble to

the flow is not very big. With its growth, the force applied on the bubble increases

and the surface tension becomes weaker. Therefore a departure criterion can be

defined based on the size of the bubble. The same behavior is observed in both

situations (single and two channels). However, in the case of two parallel channels

a limitation exists in the force that the flow can apply since it will have a tendency

to follow the easier path (unpluged channel). Therefore the departure will be a

function of the mass flow rate whereas in the single channel case the entire flow is

forced to go through the same channel.

2.3 Flow control

Active flow controls has already been used in the literature for the same type of

geometry involving microchannels. Bleris et al. [12] have used that technique

in order to improve mixing of chemical species into a reactor. The geometry is

composed of three inlets on the left side and two outlets on the right side. Through

the middle inlet, chemicals are introduced. The goal of the controller is then to

control the concentration of the chemicals in the two outlets by modifying only

the flow in the top and bottom outlet. By acting on the mass flow rate through

the top and bottom inlet, the controller can enhance the mixing in the central

plenum between the chemicals and the fluid. It can also locate these chemicals on
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one side or another following the concentration of chemical wanted through one

outlet or another. The MPC controller gives very good results once the steady

state is achieved and the chemicals can be directed very accurately through the

outlet (uniformly, or entirely through one outlet).

Mukherjee et al. [13] presents a numerical study of bubble growth inside micro-

channels. Bubble nucleation and rapid growth in microchannels with a common

head can strongly perturb the flow and even lead to reverse flows. The liquid tends

to flow through the least plugged channel. It has been shown that the upstream

interface of the bubble can move towards the inlet of a channel. This phenomenon

can lead to reverse flows in the microchannel. In order to address this problem,

Mukherjee et al. proposes the use of variable cross section shapes in order to force

the flow towards the outlet. If the cross-section at the inlet is smaller then the

pressure will be higher at that point which will prevent reverse flows from going

through this section of the channel. This case is very close to the work presented

in this thesis, however they use a passive method to regulate the flow whereas in

the work presented here an active control is used which allows better flexibility

and efficiency in terms of effects on the global flow through the geometry.

Other two-phase flow applications can be seen in particle transport. Using the

density of different materials, particles are directed in one or the other direction

by buoyancy or electromagnetic forces. Small flowing particles can cluster and

interact with the walls in order to create structures which may partially block one

channel [1].
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Chapter 3 – Research flow solver and numerical methods

To handle two-phase flows one must be able to solve the flow in a domain and also

particles motion, along with their interactions with the flows. Several techniques

can be used to solve such flows: point particle approach (Euler-Lagrange), fully

resolved simulation (used in this study) and two-fluid model (Euler-Euler) [14].

In the point-particle approach the interaction forces between fluid and particles

can be computed by modeling the drag and lift forces on the particles using an

empirical model. This type of technique allows to solve two-phase flows involving

a large number of particles with a fairly coarse grid since the shape of the particles

is not actually resolved, only the interaction forces are simulated.

The work presented in this thesis uses a fully-resolved technique. This technique

requires the grid to be fine enough in order to properly resolve the shape of the

particles. The shape of the particles is actually added to the geometry and the

momentum equations are solved in the domain considering the presence of the

particles. This chapter presents the algorithm and the main numerical steps used

to solve the flow and the particles motion.
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3.1 Mathematical formulation

One of the keys of this work is the the ability to solve the flow while dealing with

moving valves and bubbles. Direct numerical simulation has been used to solve

the flow. The goal of this simulation is to be able to solve a flow with moving

particles (bubbles or valves) inside the domain without having to regenerate the

grid at each time step. To do this, a fictitious domain technique has been used.

This technique allows to generate a uniform cartesian grid over all the geometry

and defines the valves and bubbles on top of this mesh numerically which therefore

eliminates the need to modify the grid. A detailed description of the numerical

approach can be found in Apte et al. [15].

This type of technique has been described in the literature (Glowinski et al.

[16], Patankar [17], Apte et al. [15]). Also in order to improve the speed of the

simulation the flow solver is fully parallel using Message Passing Interface. As

mentioned earlier what made this simulation possible is the ability to simulate

moving bodies inside the flow without re-generating the grid.

Let’s consider a computational domain Γ. This domain contains fluid and par-

ticles. ΓF (t) represents the part of the domain occupied by the fluid and ΓP (t)

represents the domain occupied by the particles. For the purpose of this descrip-

tion only one particle is assumed to be inside the domain. The main idea of the

fictitious-domain approach as developed in Glowinski et al. [16] is to assume and

to solve for fluid over all the domain Γ, even over ΓP (t). Only the properties of the

fluid change inside the particles, such as density (ρP ) or viscosity (µP ). The fluid is
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assumed to be incompressible over the domain. The particles are also assumed to

be rigid, thus a rigidity constraint will be applied to the particles so that they can

be treated as rigid bodies. We’ll see later how this rigidity constraint is obtained.

For simplicity Dirichlet boundary conditions are assumed at the boundaries of Γ.

Equation 3.1 shows the general momentum equation over the entire domain.

Equation 3.2 is the continuity equation.

ρ

(
∂u

∂t
+ (u · ∇) u

)
= −∇p+∇

(
µf

(
∇u + (∇u)T

))
+ ρg + f (3.1)

∂ρ

∂t
+∇ · (ρu) = 0 (3.2)

where ρ is the density over the entire domain and is defined by equation 3.3, µF

is the kinematic viscosity of the fluid, g is the acceleration of gravity and f is the

body force used to enforce the rigidity constraint inside the region ΓP .

ρ = ρf (1−Θp) + ρpΘP (3.3)

ΘP =
0 in ΓF

1 in ΓP

(3.4)

where ρF is the density of the fluid and ρP is the density in the particle region. ΘP

is a function defined by equation 3.4. This function is used to locate the the particle

over the domain. It takes the value of 1 inside the particle and 0 outside, however

the transition is not sharp between the particle and the fluid, and, following the

refinement of the grid, the interface between fluid and particle can be more or less

thin, therefore the transition between 0 and 1 is more or less sharp and Θ takes
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values between 0 and 1 in a thin region around the interface.

The Navier-Stokes equations can be simplified with the incompressibility as-

sumption. This assumption is valid for the flow in the cases studied because of

the conditions and the low velocity of the flows. It also remains valid inside the

particle region ΓP since a rigidity constraint is applied ensuring that the volume

of the particle won’t change. This assumption leads to equation 3.5 and 3.6.

ρ

(
∂u

∂t
+ (u · ∇) u

)
= −∇p+ µf

(
∇2u

)
+ ρg + f (3.5)

∇ · u = 0 (3.6)

In the following part, the main steps of the algorithm that solves flow and particles

is shown.

1. The first step consists in solving the momentum equation 3.5 over all the

domain Γ without any distinction between fluid and particles. ρ is set to ρF

and the extra force term f is set to 0. Equation 3.5 is then solved using a

classic fractional-step scheme. The continuity in the domain is enforced by

solving a Poisson equation for the pressure.

The solution of equation 3.5 is a velocity field ũ. This velocity field is the

actual solution of the flow outside the objects (ΓF ) : ũ = un+1. The velocity

to the region of the particle ΓP needs to be calculated. This is done by

adding a body force f to the momentum equation as shown in equation 3.5.

This is motivated by the fact that the object needs to move as a rigid body,

therefore this extra term needs to be applied in the region where the particle
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is located. The density as well needs to be defined in function of the location

of the objects in the domain. The density ρ inside the domain is defined by

equation 3.3 where ΘP = 0 over ΓF and Θf = 1 over ΓP .

2. Now that we have the solution for the flow we need to get the solution over

ΓP . To do this we apply the rigidity constraint in the particle domain and

solve for un+1 based on the velocity field ũ (equation 3.7).

f = ρP
(un+1 − ũ)

∆t
(3.7)

where ∆t is the time step.

To be able to solve for un+1 we need to get an expression for the force term

f , this is where the rigidity constraint is applied. This rigidity constraint is

defined by the rigidity assumption and hence there shouldn’t be any defor-

mation inside the object. Several ways of obtaining the rigidity constraint

have been proposed ([16, 18, 17]). We follow the formulation developed by

Patankar [17] and described in detail by Apte et al. [15]. A brief description

is given here for completeness. The rigidity of an object can be expressed by

forcing the deformation-rate tensor D [u] (equation 3.8) to be 0 and there-

fore the velocity computed from the momentum equation including the body

force term is the velocity of the rigid body. This velocity (equation 3.13) has

to be applied in the region occupied by the body.

D [u] = 0.5
(
∇u +∇uT

)
= 0 (3.8)
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From equations 3.7 and 3.8 we obtain the gradient of the deformation-rate

tensor for un+1:

∇ ·
(
D
[
un+1

])
= ∇ ·

(
D

[
ũ +

f∆t

ρ

])
= 0 (3.9)

D
[
un+1

]
· n = D

[
ũ +

f∆t

ρ

]
· n = 0 (3.10)

The velocity of the rigid body uRBM is decomposed into its translational

(equation 3.11) and rotational (equation 3.12) components. The velocity of

the rigid body can then be easily computed with equation 3.13.

MpU =

∫
ΓP

ρũdV (3.11)

IpΩ =

∫
ΓP

ρũdV (3.12)

uRBM = U + Ω× r (3.13)

where Mp is the mass of the body, Ip is the moment of inertia and r is the

position vector of a point in the object from the centroid of the object.

Therefore the velocity of the particle is defined and can be applied in the

region of the object (un+1 = uRBM). It is now possible to find f with equation

3.7 which leads to equation 3.14.

f = ρP

(
uRBM − ũ

)
∆t

(3.14)

3. The rigidity constraint can now be applied to the force term f in a third
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fractional step using equation 3.7.

In the approach detailed above the entire domain is considered and solved as a

fluid. An extra term is added to enforce the rigidity of the particles in the region

of the particle only. An uncertainty persists at the boundary of the particle since

the transition between the 2 regions ΓP and ΓF is not sharp. The force term

representing the rigidity constraint will then be smeared between 0 and its value.

This, might cause some errors, however in the validation cases we have run, the

cases which requires good resolution of the boundary gives very good agreement

with experimental results (cylinder, sphere cases).

3.2 Numerical formulation

In this approach, one of the key element is to locate and define the particles in the

fluid domain. The particles are represented by material volumes. Typically these

material volumes are cubic and have the same properties as the object (density,

viscosity, velocity). Because of the rigid-body assumption, no relative velocity is

allowed among the material volumes.

To create the object, a cubic cartesian sub-grid is generated inside a bounding

box and then the shape is computed from a centroid. The distance of each material

volume is computed from the centroid of the object which allows us to eliminate

the material volumes that do not lay inside the final shape. From this approach it

is obvious that shapes are being represented with small cubic volumes, this is why

a fairly good resolution is important in order to achieve a good resolution of the
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final shape, especially if the shape is circular.

Properties of the object (density, volume fraction) contained in the material

volumes are interpolated onto the background mesh. A kernel type interpolation

is used in order to interpolate the properties onto the background grid. In order

to optimize the interpolation both the background mesh and the material volumes

resolution needs to be appropriate to achieve a good resolution of the shape.
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Figure 3.1: Comparison of elementary geometry reproduced by cubic material
volumes. The figures show a comparison between the real geometry (thin line),
the representation using 1 material volume per grid cell and the representation
using 4 material volumes per grid cell. Plotted is the volume fraction of 0.5 for
each resolution of material volume. Figure 3.1a shows the representation of a
square. Figure 3.1b shows the representation of a circle.

Figures 3.1 show the representation of an elementary geometry for several res-

olutions of the material volumes over the background mesh. The increase of the

number of material volumes help resolve the real shape of the geometry. In the case

of the circle (figure 3.1b) using 4 material volumes per grid cell allows to represent
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the shape of the circle exactly. However in the case of the square (figure 3.1a) the

increase in the resolution of material volumes does not significantly improve the

resolution of the shape. This is due to the coarse grid used as the background

mesh that cannot properly capture the geometry even with a sufficient number of

material volumes.

As mentioned earlier the velocity of the rigid body is defined as uRBM = U +

Ω × r where U is the translational velocity, Ω is the angular velocity and r the

position relative to the centroid of the body. Based on the velocity field calculated

earlier the translational velocity of the material volume has to be the same for all

the material volumes and the centroid. However due to the angular velocity the

position of the material volumes need to be updated with respect to the centroid

of the rigid body.

In order to handle multiple particles collisions a model based on the one de-

scribed in Glowinski et al. [16] is implemented. The position of each particle is

computed and compared to all the other particles in order to avoid overlapping

between them. In case of contact, a repulsive force is added to the particles collid-

ing in order to model the collision. The case of collision with a wall is handled in

the same way by assuming a mirror particle symmetric with respect to the wall,

then the collision is handled as described before.



20

3.3 Discretization and numerical algorithm

The mathematic formulation of the codes that allows the simulation of rigid im-

mersed bodies has been covered earlier since the fictitious domain approach is a key

feature of the work presented in this thesis. The previously mentioned approach

sets up the equations for the behavior of the flow and particles over the domain.

In order to solve this flow, specific numerical algorithms are used. If a detailed

explanation of the numerical schemes involved is not in the scope of this thesis a

brief summary of the main steps is presented.

The Navier-Stokes equations (equations 3.5 and 3.6) are discretized using finite

volume approach. These equations are discretized and solved for every single

control volume of the domain after integrating them over the control volumes.

Equation 3.15 shows the discretized continuity equation.

ρ
n+3/2
cv − ρn+1/2

cv

∆t
+

1

VCV

∑
faces of cv

ρn+1
faceu

n+1
N Aface = 0 (3.15)

where the subscript “face” corresponds to the value located at the center of the

faces, Aface is the area of the face, VCV is the volume of the current control volume.

The density field ρ is defined by the volume fraction Θ over the domain (equation

3.16):

ρcv = ρF ΘF + ρP ΘP (3.16)

where ρP and ρF , are respectively the density of the particle and the fluid and
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given as a parameter.

Equation 3.17 shows the discretized momentum equation.

gn+1
i,cv − gn

i,cv

∆t
+

1

VCV

∑
faces of cv

g
n+1/2
i,face u

n+1/2
N Aface = − ∂

∂xi

pn+1
cv +

1

VCV

∑
faces of cv

(τij)
n+1/2
face Nj,faceAface + fn+1

i,cv (3.17)

where gi = ρui is the momentum in the ith direction, τi,j is the viscous stress

tensor and Nj,face corresponds to the normal to the face in the jth direction, fi

corresponds to extra force term added inside particle regions. Values at time n+1/2

are obtained using a Crank-Nicholson time averaging.

The solver uses a collocated grid which means that pressure, velocity of the fluid

and other transport properties are stored at the center of the control volume (cv).

This allows to use structures cartesian as well as unstructured or tetrahedral grid.

For simplicity of the implementation and to ensure good conservation properties

variables are staggered in time : particle position, density, volume fraction and

viscosity are stored at tn+1/2 and tn+3/2, whereas the particle and fluid velocity,

the pressure and the rigid body extra force term are stored at tn and tn+1. Mass and

energy conservation are ensured with the use of such grid arrangements. Figure

3.2 summarizes the variable storage in time and space.

The equations 3.16 and 3.17 are solved using an iterative semi-implicit numer-

ical scheme. In order to fully understand the numerical scheme involved the steps

are listed below.
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Figure 3.2: Schematic of the variable storage in time and space: (a) time-
staggering, (b) three-dimensional variable storage, (c) cv and face notation, (d)
index notation for a given k-index in the z direction. The velocity fields (ui, uN)
are staggered in time with respect to the volume fraction (Θ), density (ρ), and
particle position (Xi), the pressure field (p), and the rigid body force (fi,R). All
variables are collocated in space at the centroid of a control volume except the
face-normal velocity uN which is stored at the centroid of the faces of the control
volume.
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The algorithm described below corresponds to 1 time-step, however the entire pro-

cess can be iterated is necessary over the same time-step in order to achieve a

correct solution.

1. The first step is to choose predictors, which are a guess of the value of

the variables at the next time step. This is achieved by using second or-

der Adams-Bashforth (explicit) for the velocity and backward Euler for the

pressure. The rigid-body constraint is updated using interpolation over the

material volume and using the predictors of velocity.

un+1,0
N = 2un

N − un−1
N (3.18)

Un+1,0
i,P = 2Un

i,P − Un−1
i,P (3.19)

un+1,0
i,cv = 2un

i,cv − un−1
i,cv (3.20)

Ωn+1,0
i,P = 2Ωn

i,P − Ωn−1
i,P (3.21)

2. The particle position is advanced from tn+1/2 to tn+1 using the predictors

defined in the previous step. With the new particle position the volume

fraction Θn+1 hence the density field ρn+1 can be calculated.

Xn+1
i,M = X

n+1/2
i,P +Rij

(
X

n+1/2
j,M −Xn+1/2

j,P

)
+ Un+1,0

i,M

∆t

2
(3.22)

3. The momentum equation (equation 3.17) is solved using the fractional step

method for the time n + 1. This is the first step of the fractional step

algorithm where the velocity field is solved all over the domain using the old
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pressure gradient.

ρn+1
cv ûk+1

i,cv − ρn
cvu

n
i,cv

∆t
+

1

Vcv

∑
faces of cv

ĝ
k+1/2
i,face u

k+1/2
N Aface =

− ∂

∂xi

(
pn+1,k

cv

)
+

1

Vcv

∑
face of cv

τ̂
k+1/2
ij,faceNj,faceAface + fn+1,k

i,cv (3.23)

where

ĝ
k+1/2
i,face =

1

2

(
gn

i,face + ĝk+1
i,face

)
τ̂

k+1/2
ij,face = µF

[
1

2

(
∂un

i

∂xj

+ (
∂ûk+1

i

∂xj

)
+

1

2

(
∂un

j

∂xi

+ (
∂ûk

j

∂xi

)]
face

u
k+1/2
N =

1

2

(
un

N + uk+1
N

)

4. The old pressure gradient is removed from the calculated velocity field.

ˆ̂gk+1
i,cv = ĝk+1

i,cv + ∆t
∂

∂xi

(
pn+1,k

cv

)
(3.24)

5. The momentum is interpolated between control volumes to get the face-

normal velocity.

ˆ̂gk+1
N =

1

2

(
ˆ̂gk+1
i,icv1 + ˆ̂gk+1

i,icv2

)
Ni,face (3.25)

6. The continuity is enforced by solving for the pressure equation. A new ve-

locity field satisfying continuity is obtained at the face-center. To solve the
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pressure Poisson equation, algebraic multigrid is used to speed up the compu-

tation. This technique uses a fictitious coarser grid to compute the solution

to the Poisson equation. The codes uses BoomerAMG from the library hypre

[19].

∑
faces of cv

δ

δN

(
pn+1,k+1

cv

)
Aface =

1

∆t

∑
facesofcv

ˆ̂gk+1
N Aface + Vcv

δρn+1
cv

δt
(3.26)

7. The face-normal velocity is updated with the newly calculated velocity.

un+1,k+1
N =

1

ρn+1
face

(
ˆ̂gk+1
N −∆t

δ

δN
pn+1,k+1

cv

)
(3.27)

8. The pressure gradient and velocity are reconstructed at the control volume

centers based on the pressure calculated at the faces. This step is the last

step of fractional step scheme for single phase flow.

δpn+1,k+1

δxi

=
¯(

δpn+1,k+1

δN

)face→cv

(3.28)

u∗,k+1
i,cv =

1

ρn+1
cv

(
ˆ̂gk+1
i,cv −∆t

δ

δxip
n+1,k+1
cv

)
(3.29)

9. The rigid constraint force is removed from the velocity field.

u∗∗,k+1
i,cv =

1

ρn+1
cv

(
u∗,k+1

i,cv −∆tfn+1,k
i,cv

)
(3.30)

10. The rigid-body motion is computed a t = n+1 using the previously computed
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solution of the flow.

URBM,k+1
M = UT,n+1,k+1

M + Ωn+1,k+1
P ×

(
Xn+1

M −Xn+1
P

)
(3.31)

11. The extra force term to enforce rigidity in the objects is computed.

F n+1,k+1
i,M = ρn+1

M

U∗∗,k+1
i,M − URBM,k+1

i,M

∆t
(3.32)

12. With the last step a new velocity field is obtained taking into account the

particles in the domain and the rigidity constraint associated to the particles.

The flow is then solve again from step 3 in order to ensure convergence of

the velocity field.

F n+1,k+1
i,M = ρn+1

M

U∗∗,k+1
i,M − URBM,k+1

i,M

∆t
(3.33)

13. Finally the particles velocities and positions are reset with the newly com-

puted values.

Un+1
i,M = UT,n+1,k+1

i,M (3.34)

Ωn+1
i,M = Ωn+1,k+1

i,M (3.35)

X
n+3/2
i,M = X

n+1/2
i,P +Rij

(
X

n+1/2
j,M −Xn+1/2

j,P

)
+ UT,n+1

i,M ∆t (3.36)

Apte et al. [15] present an error analysis based on the simulation of a simple
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Taylor vortex case. This case is relevant for an error analysis since an analytical

solution exists for the pressure and velocity fields, therefore it is straight forward to

compute the error generated by the code. In order to test both the flow solver and

the interpolation of the material points onto the background mesh, several cases

are run with and without an immersed object at several levels of grid refinement.

In the case where an immersed object is injected in the domain the analytical

solution of the Taylor vortex is applied to each material volume so that the error in

that region will come from the interpolation between the material points and the

background grid. This allows to test the interpolation method. Apte et al. [15]

show that the error both for the pressure and the velocity field converges with a

second order accuracy. However, in the case where an immersed object is present

the error for the velocity field increases by an order of magnitude.
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Chapter 4 – Validation

This section presents several test-cases necessary to ensure that the code is working

properly and gives reliable results. In order to be confident in the ability of the

code to solve both single-phase and two-phase flows several simulations are run

and compared with available results in the literature: (i) flow in a microchannel,

(ii) flow over a fixed cylinder, (iii) flow over an oscillating cylinder, (iv) flow over a

stationary sphere, (v) sphere rising in an inclined channel and (vi) equalizing flow

rates in the 3-channel geometry.

In addition to ensure the global accuracy of the code, these test cases are rele-

vant towards the goal of this work, and ensure that every aspect of the simulation

can be properly resolved by the code.

4.1 Microchannel case

The first test case is a simple flow in a 3D channel. This case has been presented

by Qu et al. [20]. Flows in a micro-channel at different Reynolds numbers (Rech =

196, Rech = 1021 and Rech = 1895) have been simulated. Velocity profiles and

pressure drops are used to compare simulation with the experimetal and numerical

results presented in Qu et al. [20]. This case is also relevant to the goal of this

work since it involves a microchannel with a high-apect ratio.



29

The geometry is composed of a channel with the following dimensions: Lch =

120 mm, Hch = 694 µm and Wch = 222 µm. Two large plenums at the inlet and

outlet of the domain ensure that the boundary conditions won’t perturb the solu-

tion inside the channel. An illustration is shown in figure 4.1 and the dimensions

of the geometry are summarized in table 4.1.

Figure 4.1: Schematic of the single channel geometry.

A fully developed velocity profile is applied at the inlet of the domain. The

flow is simulated until the steady state is reached in the channel before collecting
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Table 4.1: Dimensions of the single-microchannel geometry in [mm].

Wch Wp Hch Lp1 Lpch Lp2

0.222 6.35 0.694 6.35 120 12.7

the data.

Due to the skewness and the aspect-ratio of the geometry it hasn’t been easy

to generate a grid to solve properly the flow. A non-uniform cartesian grid has

been used in order to reduce the number of grid points and allow the flow to be

solved in a reasonable amount of time. The grid inside the channel is uniform in

the y and z directions and refined near the entrance and exit of the channel in the

x direction. 320000 grid-points are used in the channel only, 40 grid-points are

used in the y direction, 50 in the z direction and 160 in the x direction. The grid

in the plenums is refined near the entrance and the exit of the channel in order to

match the grid of the channel and have a smooth transition between plenum and

channel. A total of 740000 grid-points are distributed over the entire geometry.

Figure 4.2 compares the velocity profile at different location inside the channel

with numerical and experimental data. The parabolic profile is well achieved and

a good agreement is obtained with the numerical results. Also the velocity profile

agrees fairly well with the experimental data.

Figure 4.3 shows the velocity along the center line of the channel. A very good

agreement is achieved with experimental data. Table 4.2 presents the pressure

drop computed with the theoretical pressure drop. A good agreement is achieved

for low Reynolds number (up to Rech = 1021). For Rech = 1895 the pressure
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Figure 4.2: Velocity profiles in the center plane of the channel taken at x′ = 1 cm
and x′ = 10 cm from the entrance of the channel. • shows the experimental data
from [20], −−− the numerical simulation from Qu et al. [20] and — the present
study. The velocity is expressed in [m/s] and the y location in [µm].
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Table 4.2: Comparison between theoretic and computed pressure drop through the
channel.

Rech Pressure drop in [bar]

Numerical simulation Theory
196 0.189 0.200
1021 1.09 1.04
1895 1.33 1.93

drop is under-predicted by the simulation. This can be explained by the lack of

resolution of the boundaries and by the strong effect of the entrance and exit of the

channel. For this Reynolds number one would use a finer grid in order to capture

the appearing turbulent effects.

4.2 Flow over a cylinder

In this section the results for flows over a cylinder at different Reynolds number are

presented. These cases have been widely explored in the literature ([21, 22, 23]),

therefore our data can be compared to what has been done in the past. These cases

also provide a good case to test the behavior of the code with an immersed body in

the domain. In order to compare our results with the ones already existing, drag

and lift coefficients are computed for each case.

To compute the drag and lift forces (Fd and Fl) acting on the immersed body, a

specific routine has been implemented. This routine defines a bounding box around

an object and computes the fluxes crossing each face of the box. The balance of
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Figure 4.3: Velocity distribution along the central line of the channel. Re = 196:
N experimental data from [20], — present simulation; Re = 1895: H experimental
data, −−− present simulation. Velocity is expressed in [m/s] and the x location
in [mm].
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these fluxes over the box added to the summation of the temporal change in velocity

at each grid-point inside the box gives the drag forces (Fd, Fl and Fs). Equations

4.1 and 4.2 show the expression for the drag and lift forces and equations 4.3 and

4.4 respectively the drag and lift coefficients.The same approach has been used by

Shu et al. [24]. These simulations help to validate this routine which may be used

in computing the force acting on the bubbles in the microchannel geometry.

Fd = −
{
d

dt

(∫
Ω

ρudΩ

)
+

∫
S

[
ρuu · n + pnx − µ

(
∂u

∂xi

+
∂ui

∂x

)]
ds

}
(4.1)

Fl = −
{
d

dt

(∫
Ω

ρvdΩ

)
+

∫
S

[
ρvu · n + pny − µ

(
∂v

∂xi

+
∂ui

∂y

)]
ds

}
(4.2)

Cd =
Fd

0.5ρfU2
∞dLz

(4.3)

Cl =
Fl

0.5ρfU2
∞dLz

(4.4)

where ρ is the fluid density, u and v are respectively the x and y component

of the velocity field u, p is the pressure, n is the face normal vector, nx and ny

are respectively its x and y components, µ is the viscosity of the fluid, Ω the 3D

domain, S represents the faces of the volume Ω, d the diameter of the cylinder,

U∞ is the velocity of the flow far away from the cylinder and Lz is the size of the

domain in the z direction.

For these simulations, 2 grids have been used. A coarse mesh using 245000

(350×350×2 respectively in the x, y and z directions) grid-points with 35 along the

cylinder diameter (size of one element in the cylinder region: ∆ = 1.14×10−4mm)
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has been used for the simulations at Red = 40 and Red = 100. A finer mesh with

423200 (460×460×2) grid-points and 100 points along the diameter has been used

for higher Reynolds numbers Red = 300 and Red = 1000 (∆ = 4.0 × 10−5 mm =

0.01d). In both cases the grid is Cartesian and non-uniform. High resolution is

achieved in the region of the cylinder. The mesh is stretched so that the grid is

perfectly uniform in a region centered on the cylinder and 1.5d×1.5d large. Figure

4.4 shows the grid in the vicinity of the cylinder. The very fine mesh around the

cylinder allows to perfectly resolve the shape of the immersed body. Also it allows

us to solve the flow more accurately which is very important especially at higher

Reynolds number. A large domain is used 40d×40d in order to avoid any influence

of the boundaries. An Inflow and an outflow are used in the x direction, slip walls

are applied in the y direction and periodic boundaries are used in the span-wise

direction. For comparison Mittal et al. [21] uses non-uniform cartesian 385× 105

mesh for Red = 300 on the same domain size, and Marella et al. [22] use a uniform

cartesian 452× 452 grid on a 30d× 30d.

At Red = 40 there is no shedding but a recicurlation bubble is created in the

wake of the cylinder as shown in the figure 4.6. Ye et al. [25] show that the

length of the recirculation bubble should be Lw

d
= 2.27. The present study shows

Lw

d
= 2.24, so a very good agreement is achieved with the existing references. The

drag coefficient presented in figure 4.5a also presents an excellent agreement with

the literature as presented in the table 4.5. Note that no lift coefficient history is

presented on figure 4.5a since for this low Reynolds number the perfect symmetry

of the flow around the cylinder doesn’t produce any excess of lift force in one
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Figure 4.4: Non uniform grid employed around the cylinder for the simulation at
Red = 300. The center of the cylinder is located at x/d = 20; y/d = 20.
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Figure 4.5: Drag and lift coefficients history for Red = 40 and Red = 100.— shows
the drag coefficient and — shows the lift coefficient.
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Figure 4.6: Velocity contour and streamlines around the cylinder for Red = 40
using the coarse mesh.

direction. In this case the lift coefficient is equal to 0 all the time. The perfect

symmetry of the flow can be observed on figure 4.6. This figure presents the contour

of the velocity around the cylinder and the streamlines. It shows the symmetric

high velocity region above and underneath the cylinder, the recirculation bubble

in the wake of the cylinder and the symmetric pattern of the streamlines around

the cylinder.

At Red = 100 vortex shedding appears. This can be seen through the shape

of the lift and drag coefficients. The oscillations presented by the two signals are

characteristic of vortices shedding from the cylinder. From this oscillation the

Strouhal number can be calculated. The result for Red = 100 and Red = 300 are

presented respectively in table 4.3 and 4.4.

Table 4.3: Strouhal number for Re = 100

Study Mesh St

Current coarse 0.165
Mittal et al. [21] - ∼ 0.166



38

Table 4.4: Strouhal number for Re = 300

Study Mesh St

Current coarse 0.205
Mittal et al. [21] - ∼ 0.21

Table 4.5: Drag coefficient Cd for flow over a cylinder.

Study Mesh Red

40 100 300 1000
Current coarse 1.54 1.35 - -

fine - - 1.375 1.48
Body fitted grid 1.547 1.336 1.377 1.44
Mittal et al. [21] 1.53 1.35 1.36 1.45
Marella et al. [22] 1.52 1.36 1.28 -
Henderson et al. [23] 1.54 1.35 1.37 1.51

Figures 4.7 show the vorticity contour lines for the z component of the velocity.

Qualitatively the vorticity contours match very well with the previous simulation.

No quantitative estimation is given, however the range in vorticity for Red = 100

goes from −815 s−1 to 845 s−1 and for Red = 300 from −5100 s−1 to 6339 s−1 in

these simulations. The magnitude of the vorticity at higher Reynolds numbers is

greater compared to lower Reynolds numbers. The figures also show a reduction

in the size of the wake (before the vortices detach from the cylinder). With higher

Reynolds number, vortices are shed sooner at higher frequency and become circular

earlier. This is consistent with what has been observed in previous studies.

Figure 4.8 presents turbulence statistics in the wake of the cylinder at Red =

300. These statistics have been collected once a steady regime has been achieved,
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Figure 4.7: Vorticity contour lines in the wake of the cylinder. Red = 100 (figure
4.7a) and Red = 300 (figure 4.7b).

then averaged over time. Figure 4.8 presents a comparison between the simulations

using traditional body-fitted grid technique1 and the simulation using the fictitious

domain approach. A very good agreement is achieved between the two simulations

for each parameter and at each location. The same statistics for the same case

are presented by Kravchenko et al. [26]. Their results are not presented here for

clarity of the graphs however a very good qualitative agreement is also achieved.

Their simulations use a 3D domain to take into account the effect of 3D structures

developing at higher Reynolds numbers which cannot be compared quantitatively

with the present study since the simulations described in this dissertation are 2D.

It has be shown by Kravchenko et al. [26] and Mittal et al. [27] that with the

1Simulation results through private communication with Justin Finn.
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increase of higher Reynolds number 3D structures developing in the wake of the

cylinder have a very strong effect on the flow. This, of course, cannot be captured

in our simulation since it would require a full 3D domain which would involve a

huge number of grid-points in order to fully resolved the phenomenon. Also such

considerations are far beyond the purpose of the present simulations designed to

validate the code.

4.3 Oscillating cylinder

For the second test case, a periodic oscillating cylinder in a fluid at rest is simulated.

This case has been used throughout the literature to test the accuracy of immersed

boundary techniques as in Kim et al. [28]. Experimental data are available from

Dütsch et al. [29]. These 2 references are used to compare our results with.

A periodic oscillating cylinder can be characterized by 2 non-dimensionnal num-

bers: the Reynolds number Re = Umd/ν and the Keulegan-Carpenter number

KC = Um/fd , where Um = 0.01 m/s is the maximum velocity of the cylinder,

f = 0.2 Hz the frequency of the oscillations, d = 0.01 m is the diameter of the

cylinder and ν the kinematic viscosity.

The position of the cylinder in the x-direction is defined by the equation:

xp(t) = −Ap sinωt (4.5)

where xp(t) is the location of the centroid of the cylinder in the x-direction and Ap is
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Figure 4.8: Turbulent statistics in the wake of the cylinder at Red = 300. The
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data obtained with the fictitious domain technique are shown by — are compared
with the results from the simulation performed using body-fitted grid −−−.
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the maximum amplitude of the oscillation. The period of the oscillation is ω = 2πf ,

therefore the Keulegan-Carpenter number can be rewritten as KC = 2πAp/d.

The parameters of the simulation are the same as the one used in the reference :

Red = 100 and KC = 5.

The computational domain is a square box of 100d × 100d × d respectively in

the axial, vertical and span-wise directions. The grid is refined and uniform in

the region of motion of the cylinder and stretched towards the walls. The grid

resolution in the cylinder region is refined so that 20 grid-points are always located

along the cylinder diameter. Neumann boundary conditions are applied in the x

and y directions. Initially the cylinder is placed at the center of the domain without

any velocity, and the flow is at rest. The data are collected after the cylinder has

gone through 10 cycles.

Figure 4.9 shows the comparison of the normalized velocity in the wake of the

cylinder at 3 different angles of the cycle. Our results show excellent agreement

with both experimental from Dütsch et al. [29] and numerical simuation data from

Kim et al. [28].

4.4 Flow over a stationary sphere

To get an idea of the accuracy of the code in a 3D case, flow over a fixed sphere has

been simulated. This case is also well documented since it serves as a base test-case

in numerous validation studies for new codes. Even if the case seems pretty straight

forward at first, it gathers several of the main issues that numerical techniques have
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Figure 4.9: Normalized axial velocity (u/Um) at three different phase position.
The velocity is measured at a fixed x location (x = −0.6d) relative to the initial
location of the particle center: � Experimental data from Dütsch et al.[29]; —
present simulation; −−− Numerical results from Kim et al. [28].
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to face. First it requires a 3D domain which increases the total number of grid-

points significantly and decreases the resolution of the grid. In comparison, it was

possible to achieve 100 grid-points along the diameter of a cylinder in the previous

cases, whereas in this case only 26 grid points are distributed along the diameter

of the sphere. This has an effect on the solution of the flow in the boundary layer,

at the surface of the sphere (region that needs to be resolved as well as possible).

Simulations are run at several Reynolds numbers in order to capture the differ-

ent regimes. The transition between the different regimes can be identified based

on the Reynolds number (Red) of the flow. Johnson et al. [30] describe the differ-

ent regimes of the flow function of the Reynolds number. The first regime is steady

and axisymmetric from Red ≈ 20 to Red ≈ 210. In this regime the flow presents a

steady and symmetric wake. The next regime occurs for 210 < Red < 270. Experi-

mental results from Magarvey et al. [31] show that in this range the wake becomes

non-axisymmetric but remains steady. Finally the last regime observed is the un-

steady flow. This regime occurs at higher Reynolds number (Red > 300), typically

from previous studies the transistion has been observed for 270 < Red < 300.

After the transition, vortices start shedding and 3D vortical structures appear.

To be able to compare this with the data available in the literature, the drag

coefficient is computed for each Reynolds number. The domain is 15d in each

direction, d = 1.10−3 m is the diameter of the sphere. Figure 4.10 shows the grid

used for the simulation. The sphere is located at x = 5d and y = z = 7.5d. The

flow is defined along the x axis in the increasing x direction. The grid used is

128× 128× 128. The grid is non-uniform but it is refined and uniform around the
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sphere forming a patch of 1.5d × 1.5d × 1.5d. 26 grid points along a diameter of

the sphere. For comparison Mittal [21] uses a domain of 16d × 15d × 15d and a

grid of 192 × 120 × 120 for their highest Reynolds number of 350 and Marella et

al. [22] employed a 130× 110× 110 mesh on a 16d× 15d× 15d domain. The fluid

properties are ρ = 1kg.m−3 and the viscosity µ = 1.10−5kg.m−1.s−1. The sphere is

not located exactly in the center of the domain. The x direction is slightly moved

towards the inlet in order to increase the size of the domain in the wake. Also the

density of grid-points is increased in the wake of the sphere in order to properly

resolve the flow.

Table 4.6 shows the results for the drag coefficient compared with the results

available in the literature. Our results are in very good agreement with the other

simulations presented. The results also compare very well with the experimental

data from Clift et al. [32]. A graphic representation of the results is presented on

figure 4.11.

Table 4.6: Drag coefficient Cd for flow over a sphere at different Reynolds number

Study Re

20 50 100 150 300 350
Current 2.633 1.550 1.101 0.907 0.686 0.649
Mittal (1999) [33] - 1.57 1.09 - - 0.62
Mittal (2008)[21] - - 1.08 0.88 0.68 0.63
Clift et al. [32] 2.61 1.57 1.09 0.89 0.684 0.644
Johnson et al. [30] - 1.57 1.08 0.9 0.629 -
Marella et al. [22] - 1.56 1.06 0.85 0.621 -
Kim et al. [34] - - 1.087 - 0.657 -
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Figure 4.10: Grid used to study the flow past a stationary sphere. This shows the
refinement around the sphere.
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Figure 4.12 presents the streamlines at all the Reynolds numbers simulated.

Despite of the large number of streamlines, we can see that the flow stops being

symmetric for Red = 300. The transition actually occurs for Reynolds number

lower than 300. Figure 4.12e shows a quite perturbed wake which can be the sign

of the unsteadiness. Overall, these patterns are in good agreement with the ones

presented by Marella et al. [22].
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Figure 4.12: Streamlines past the sphere for different Reynolds numbers. Here
are presented xy planes.4.12a Red = 20, 4.12b Red = 50, 4.12c Red = 100, 4.12d
Red = 150, 4.12e Red = 300, 4.12f Red = 350.
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For the steady cases Red = 50, Red = 100, Red = 150 other key features

of the flow can be observed and compared with references. Table 4.7 presents a

comparison of the dimensions of the recirculation bubbles in the wake of the sphere.

It presents the normalized x and y locations of the center (eye) of the recirculation

regions and their normalized length. A very good agreement is obtained with the

results available in the literature.

The results obtained for the steady regimes are in very good agreement with

other references. The unsteadiness is observed for Red = 300 and Red = 350 in

the streamlines plots (figures 4.12e and 4.12f). Figure 4.13 shows the evolution of

the drag and lift coefficients for the unsteady case at Red = 350. The drag and

lift coefficients are not oscillating but they are showing irregular small variations

in time as shown by Mittal [21].

When it becomes unsteady, the flow in the wake of the sphere presents inter-

esting structures. This structure can be extracted and visualized by plotting the

vorticity (or enstrophy), however this method won’t allow to visualize properly the

actual vortical structures. In order to show the 3D vortical structures it has been

shown that plotting the imaginary part of the eigenvalue of the velocity gradient

tensor (λ) at each grid-point provides a nice and sharp representation of the vor-

tical structure. This method is proposed in Chong et al. [36] and used by Mittal

[33]. The analytical calculation details, available in Chong et al. [36], are quite

straight forward, however in order to perform these operations efficiently on a large

number of grid points the numerical library LAPACK [37] has been used. Chong

et al. [36] explain that imaginary eigenvalues appear in the velocity gradient tensor
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Figure 4.13: Drag and lift coefficients for flow over a sphere at Red = 350. Figure
4.13a shows the drag and lift coefficient over the entire time; figure 4.13b shows the
details of the variations in the temporal variations of the drag and lift coefficients.
— shows the drag coefficient and — shows the lift coefficient.

where the rotation dominates over strain and the streamlines are circular.

Mittal [33] shows the iso-surface of λ for Red = 350. It is difficult to quantita-

tively compare the results with the ones presented in the latter paper because the

intensity of the strength of the vortical structure is a function of the time when

the data are collected. Also the structure shedding in the wake of the sphere is not

stationary, rings are shed at a certain frequency. All these dependencies make it

hard to be able to actually compare 2 structures at exactly the same time. However

some characteristic features can be extracted from these structures.

Figures 4.14 show different views of the vortical structure represented by λ.

Qualitatively the plots show very similar structures as shown by Mittal [33]. The

three plots are taken at the same moment and they just present different point
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(c)

Figure 4.14: λ = 0.008 iso-surface for flow over a stationary sphere at Red = 350.
The sphere is represented in black. Figure 4.14a shows a 3D perspective of the
vortical structure. Figure 4.14b shows the view of the xy plane. and Figure 4.14c
shows the view of the xz plane. The dash-dotted line shows the symmetry axis of
the structure in this plane.

of view. This time is interesting because the birth of a vortex ring can be seen

in the near wake of the sphere whereas a bigger ring is about to detach further

in the wake which is comparable to what is shown in the reference. Another

important feature is the symmetry axis shown in the xz plane. This feature has

been observed experimentally, and this is actually a plane of symmetry for the

entire vortical structure.

It should be noted that this particular case, in order to generate the data

required to get this plot, the case has been re-run using LSRBM on a slightly

different grid in order to get a larger range and a better resolution in the wake of

the sphere.

The study of this 3D case has been very computationally demanding in terms of
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resources but provides excellent results that compare very well with the available

literature. These good results make us confident in the numerical approach and in

the code.

4.5 Single sphere rising in an inclined channel

Another example of particle motion has been used to test the scheme: bubble

rising in an inclined channel (Figure 4.15). As in the simulation, the bubble used

is a rigid spherical particle. Such a bubble is introduced in an inclined channel.

The density of the fluid is ρf = 1115 kg/m3 and the density of the particle is

ρp = 1081 kg/m3. The viscosity of the fluid is ν = 3.125 mm2/s. The Reynolds

number ReStokes
p based on the Stokes settling velocity W is defined as :

ReStokes
p =

2aW

ν
=

4a3

9ν2
|ρp

ρf

− 1|g (4.6)

where g = 9.82 m/s2 is the gravitational acceleration, a = 2 mm is the diameter

of the particle.

The domain is a rectangular box of 10 mm in the x direction, 80 mm in the

y direction and 40 mm in the z direction. The grid is cartesian and uniform over

the domain 40× 320× 160 grid points, respectively in the x, y and z directions so

that ∆ = 0.25× 10−3 m.

The results of the simulation are compared with experimental and numerical

data from [38]. The Reynolds number for this case is ReStokes
p = 13.6 and the
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Figure 4.15: Geometry of the domain, for bubble rising in an inclined channel.

inclination angle is Θ = 8.23 degrees. As shown in figure 4.16 the numerical

simulation agrees very well with both experimental and numerical results. The

bubble rises with buoyancy and gets closer and closer to the right wall of the

domain. Ultimately the particle follows the right wall without touching it, keeping

a very thin lubrication layer between the particle and the wall. Note that the results

are presented on a vertical channel. The inclination of the channel is simulated by

projecting the gravity acceleration vector on the x and y axis.

4.6 Equalizing flow rates

The last validation case uses the geometry and the features of the main simulation

of the work presented in this thesis. The entire case will be deeply described in the
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Figure 4.16: Results for bubble rising in an inclined channel. Comparison of
experimental • and numerical simulations −−− [38] with the current simulation
—. 4.16a shows the particle trajectory inside the domain (the −.− line shows
the initial trajectory due only to the effect of gravity), 4.16b the velocity of the
particle in the lateral direction and 4.16c the velocity on the vertical direction.
The particle position is expressed in [m] and the velocities are expressed in [m/s].
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next chapter. In this particular simulation, the ability of the controller and CFD

code to communicate in order to equalize the flow rate in each channel is tested

by trying to equalize the mass flow rate in the three channels of the geometry

by acting on the valve. Due to the parabolic profile of the inflow and the non-

symmetric geometry, the mass flow rate in each channel is slightly different. This

offers a good case to test the controller and the communication between the CFD

and the controller codes. Since the mass flow rate is imposed at the inlet, the

amount of fluid entering the geometry is known. Hence, without any bubble in the

geometry, the controller regulates the flow in each channel to achieve exactly the

same mass flow rate in each channel.

The geometry, boundary conditions, and the grid are detailed in the next sec-

tion. The steady state is achieved in the geometry keeping the valves fully opened.

Then the controller is activated in order to achieve the same mass flow rate in each

channel.
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Figure 4.17: Velocity contour in the 3 channel geometry when steady state is
achieved and mass flow rate equalized in each channel.

Figure 4.17 shows the velocity contour of the fluid inside the geometry once the
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Figure 4.18: — shows the data for the top channel; − − − middle channel; -.-
bottom channel. The mass-flow rates are expressed in [mg/s] and the time in
[ms].

steady state has been achieved and the flow equalized by the controller. The closing

angle of the center channel is more important than in the other channels since, due

to the inlet boundary condition and the asymmetry of the geometry (with valves),

this is where the flow rate tends to be the largest without any action.

Figure 4.18a shows the mass flow rate history in each channel. At the beginning

the mass flow rate is very different in each channel; it is maximum in the center

channel. By acting on the valves the controller partially closes the channels, reduc-

ing the flow rate in the center channel in order to increase it in the top and bottom

channels until all the three channels reach the same mass flow rate. Compared to

the theoretical value the maximum error observed once the steady state is achieved

is around 0.16%. The maximum amplitude of the difference between the mass flow



59

rates in the each channels is on the order of 0.12%.

Figure 4.18b shows the history of the controller decisions. The output of the

controller is correlated to the closing angle applied to each valve. The maximum

closing angle is used for the valve of the middle channel, then the top channel and

finally the bottom channel.
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Chapter 5 – Microchannel simulation

The code has been extensively validated for the simulations described in this chap-

ter. The flow through three connected parallel microchannels has been simulated.

The goal of these simulations is to look at the effects of bubbles appearing in the

geometry and to simulate valves acting on the flow separately in each channel in

order to flush the bubbles out and to restore a nominal flow through the geome-

try. The simulation settings are first described then the results of the simulation

involving an active control over the flow are presented.

5.1 Simulation settings

5.1.1 Geometry and model

As shown earlier in figure 1.1, the geometry we are looking at consists in three

microchannels, and two plenums for the inlet and outlet. The dimensions of the

domain are 1.8mm in the x direction, 0.4mm in the y direction and 0.025mm in

the span-wise direction. The span-wise dimension is the same for all the geometry.

The inlet plenum is 0.25 mm and 0.4 mm respectively in the x and y direction.

The outlet plenum is 0.75 mm and 0.4 mm respectively in the x and y direction.

The outlet plenum is longer than the inlet in order to avoid effects caused by the

outflow boundary perturbing the flow inside the channels. The three channels are
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exactly the same : 0.8mm in the x direction and 0.1mm in the y direction.

The grid is cubic and uniform in the three directions so that ∆ = 0.005 mm,

therefore there are five grid-points in the z direction over all the domain. In one

channel there are twenty grid-points in the y direction and 160 grid-points in the x

direction. Over the entire domain there are 128000 grid-points. Figure 3.2 shows

the geometry and the grid used in 2 dimensions.

The boundary of the domain are inlet and outlet in the x direction, no-slip walls

in the y direction and periodic boundaries in the z (span-wise) direction. Periodic

boundary conditions are used in this case because the flow is mostly 2D due to

the low Reynolds number and the geometry. No 3D effect in the z direction are

expected. Periodic boundaries allow whatever crosses one of the boundary in the z

direction to come back to the domain through the other symmetric boundary. Since

no fluxes are expected in the z direction this is a fairly reasonable assumption that

reduces the amount of grid-points without impacting on the the general behavior

inside the domain.

At the inlet boundary of the domain a 2D fully-developped parabolic profile is

applied, it is defined by equation 5.1

Ux =
3

2
Up

(
1−

( y
H

)2
)

(5.1)

where Ux is the velocity in the x direction, 3
2
Up is the maximum velocity at the

center of the domain, y is the coordinate in the y direction and H is the size of

the domain (inlet plenum) in the y direction.
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In our simulation we have used Up = 0.6m/s so that the global mass flow rate

entering the domain (in 3D), defined by equation 5.2 is ṁ = 2.4mg/s.

As mentioned earlier, due to the parabolic profile, the flow is more important

at the center of the domain and in the center channel. Paragrah 4.6 shows the

action of the controller over the flow in to regulate and equalize the flow rate in

each channel.

ṁ =

∫
ρfUxdA (5.2)

with ρf = 1000 kg/m3 the density of fluid and A the area of the inlet.

5.1.2 Controller12

In these studies Model Predictive Control (MPC) is used to maintain consistent

flow between the three channels. MPC is a type of control that uses a model to

predict the future behavior of a system. This prediction is then used to choose

appropriate control actions. MPC is a proven method in large scale plants. Its

robustness and ability to handle constraints makes it a very powerful form of

control. MPC is applied in this case because typical forms of control such as PID

are difficult to implement on multiple input and output systems (In this system

the valve positions are the inputs and the flow rate in each of the channels are the

outputs). Until recently MPC had only been applied to slow system where a lot of

computational power is available, but as microcontroller technology has improved

1Contribution through private communication with Chris Patton and Dr. John Schmitt.
2More details about the controller can be found in [2].
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MPC has been applied to a much larger range of systems.

There are two primary stages in developing a MPC controller. The first stage

is developing a model. The behavior of the microchannel system that we are

dealing with is described by the Navier Stokes equations. Full nonlinear Navier

Stokes equations cannot be solved explicitly, and computation of solutions is very

computationally expensive. A model predictive controller that implemented this

type of model would be unable to keep up with the performance of the system. The

most standard implementations of model predictive control rely on the availability

of a linear model.

To generate a linear model of this system, standard system identification tech-

niques presented in [39] are used. System Identification works by stimulating the

system with a binary white noise signal. The resulting output is used to generate

the linear model that best maps the input signal to the output.

The second stage of MPC development is tuning. The prediction horizon is

the distance that the controller predicts into the future and the control horizon is

how far into the future the controller can modify the inputs 5.1. When the model

predictive controller predicts the future behavior of the system it chooses the series

of future control actions (valve positions) that minimizes a given cost function over

the length of the prediction horizon. An example of a simple cost

J = vKv + ∆vK∆v + eKe (5.3)

Where v is the valve position, ∆v is the change in the valve position in one time
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Figure 5.1: MPC Horizons

step and e is the difference between the flow rate and the desired flow rate. Kv,

K∆v, Ke are the respective weights. Shidhar and Cooper [40] develop a systematic

method generating the desired tuning parameters. Their method provides an ini-

tial guess for weights and horizon lengths based on a few model parameters and a

conditioning parameter. This method was used to develop the initial system pa-

rameters. After initial simulation these weights were modified to tune the system

performance.
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5.1.3 Valves and bubbles

In this simulation, valves have been added to control and regulate the flow sep-

arately in each channel. The angle of the valves is directly commanded by the

controller (see paragraph 5.1.2 for details about the controller). The valves are

defined using fictitious domain technique (described in chapter 3.1). They rotate

following the orders from the controller, based on a percentage of the closing of

each channel. Once the controller has decided a new configuration of the valves,

the valves get to their new position. Since it’s mostly a 2D simulation the shape

of the valve is simply extruded in the span-wise direction.

As explained earlier, the bubble growth along the wall is not simulated in this

work. Bubbles are represented as spherical rigid body. This assumption is valid

for small Weber number. The Weber number is defined by:

We =
ρv2l

σ
(5.4)

where ρ is the density of the fluid, v the velocity, l the characteristic length (bubble

diameter) and σ the surface tension. The Weber number represents the ratio of

fluid inertia over the surface tension. If the Weber number is small enough the

surface tension of the bubble is strong enough to sustain the inertia of the flow

and therefore ensure that the bubble is not deformed by external forces. In our

case that leads to a spherical shape for the bubble which is a valid assumption in

the case of bubbly flow (diameter of the bubbles remains smaller than the height

of the channel).
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Another relevant parameter in this case is the Stokes number. It is defined by:

St =
τv
τf

(5.5)

τf =
uf

L
(5.6)

τv =
ρD2

18µ
(5.7)

where τf and τv are respectively characteristic times of the fluid and of the bubble,

D is the diameter of the bubble, µ the viscosity of the fluid, uf the speed of the

flow and L some characteristic length of the channel. In this case the calculated

Stokes number is St = 3.0× 10−4 which is smaller than 1. This indicates that the

bubble won’t have any effect on the flow. That means, as shown later, that the

bubble, once released will flow through the channel at the same speed as the fluid

without affecting the flow pattern or streamlines.

The bubble is injected very close to the wall, which is where it would grow if the

bubble growth was actually simulated along the wall. Like the valves the bubble is

simply extruded in the span-wise direction (forming a cylinder) which doesn’t really

matter since the flow looked at is mostly 2D (due to its low Reynolds number). The

diameter of the bubble is 6×10−2mm, so that the bubble plugs 60% of the channel

height.The density ratio between the fluid and the bubble is ρF/ρP = 10 or ρP =

100kg/m−3. The density of the bubble remains pretty high (ρP = 100kg/m−3)

compare to real vapor bubbles. This is due to convergence issues with the code

at the time when these simulations have been set up. Considering the very low

Stokes number the density of the particle doesn’t play a significant role, so it
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doesn’t interfere with the general behavior of bubble or the flow.

The bubbles are injected close to the entrance of the channels. In the 2 bubbles

case, the bubbles are injected at different x locations. The bubble in the top

channel is injected at x = 0.4 mm. In the bottom channel, the bubble is injected

further into the channel at x = 0.5 mm. Once the bubbles are injected they are

artificially held fixed at their location. Bubbles held fixed will strongly perturb the

flow in the channel. Figure 5.2 shows the flow without any action of the valves.

Optimal flow is assumed when the flow is equalized in each channel. If a bubble,

held fixed, is injected in the top channel. Figure 5.2a shows the velocity in the

domain. It goes from −0.23 m/s in the wake of the bubble and the wake of the

center valve to 2.24m/s in the center channel, in the region below the valve. It can

also be noticed that the velocity is pretty high (≈ 1.9 m/s) above the the bubble

itself. The mass flow rate in the unplugged channel has to increase in order to

maintain the mass flow rate crossing the domain.

Figure 5.2b shows the pressure contour in the domain. The pressure drops

slightly in the same way in both the middle and bottom channels but due to the

bubble, the pressure drop is larger in the top channel, especially around the bubble

itself. The pressure drop is slightly larger in the center channel. This is due to the

parabolic inflow profile, more flow is forced through the center channel (compared

to the bottom channel), therefore the pressure drop required to accelerate the flow

in this channel is larger than in the bottom channel. It can be noticed regions

of lower pressure, at the corner of the valves and above the bubble. These zones

correspond to high velocity zone.
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Figure 5.4 shows the pressure drop in each channel. As constated on the contour

plot, the center and bottom channels are very close to each other after the initial

pressure drop. The pressure at the entrance of the top channel is greater than in

the others. The pressure drops with the bubble lower than in the other channel

at the same location, towards the end of the channel the pressure is equivalent in

each channel. The bubble then causes an abrupt drop in pressure of a magnitude

close to 0.2bar. Figure 5.3 presents the mass flow rate history inside each channel
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(a) Velocity contour; range from −0.23 m/s to 2.24 m/s.
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Figure 5.2: Effect of a bubble held fixed in the 3 channels geometry on the velocity
and pressure fields. The lengths are expressed in [mm].

after the bubble has been injected. The mass flow rate is dropping in the top

channel and increasing at the same time in the center and bottom channel, then
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top channel; − − − middle channel; -.- bottom channel. Pressure is expressed in
[bar] and location in [mm].
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pretty fast a new steady state is achieved. The flow has significantly been reduced

in the top channel which could compromise its efficiency in case of heat exchange

for example, where the flow rate in the channel is one of the key factor for a good

heat exchange rate.

In a real microchannel with some heat apply at the walls, a bubble would form

along a wall and grow perturbing the flow until the forces (surface tension, viscous

forces) maintaining the bubble attached to the wall are too weak to sustain the

force of the flow. To simulate the effect of the flow on the departure of the bubble,

since the growth of the bubble is not taken into account in this simulation, the

bubble is held fix against the wall and the force applied by the flow on the bubble

is computed every time step. We define a threshold in the force of the flow from

which the bubble gets released once the flow becomes strong enough.

In a system without an active controller there wouldn’t be any way to modify the

force acting on the bubble. The only solution would be to increase the mass flow

rate in the entire domain to increase the force applied on the bubble so that it

gets flushed. By acting separately on the flow rate of each channel it is possible

to increase the flow rate in a specific channel for a short amount of time (just

enough time to release the bubble). Figure 5.5 shows the range of force that can

be applied on the bubble. The two most extreme cases have been looked at: all the

channels fully opened allowing the flow to resolve itself, this configuration leads

to the lower force applied on the bubble since as seen previously the mass flow

rate drops significantly in the plugged channel; the other configuration is to force

the entire flow through the plugged channel, this latter configuration obviously
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corresponds to the maximum force situation.

Figure 5.5: Temporal evolution of the total force acting on the bubble: − − −
all channels are open, — the middle and bottom channel are completely closed.
The forces are expressed in [µN ] and the time in [ms]. The horizontal dashed line
represents the threshold inertial force necessary to set the bubble in motion.

The range of the forces that can be applied to the bubble goes from 0.013 µN

to 0.19 µN .

5.1.4 Sensors and communication between CFD code and controller

The CFD code is dumping the mass flow rate provided by two sensors in each

channel (one probe is near the entrance of the channel and the other is located

near the exit). A sensor is a plane (cross-section) which measures the mass flow-

rate going through it at every time-step. The mass flow rate is then averaged over

the section and normalized by ρf . The equalizing flow rate simulation presented in

paragraph 4.6 can be used as a validation for the sensors, since once the equalized
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regime is reached the sum of the mass flow rate captured by the sensors is equal

to the theoretic mass flow rate entering the entire geometry through the inlet

boundary.

It can be noticed that 2 distinct sensors are used in each channel and they both

provide data to the controller. This has been designed in order to avoid confusion

when the bubble is crossing one of the sensors. Since the density of the bubble

is 10 times smaller than the fluid, the mass flow rate measured when a bubble

crosses a sensor experiences sharp changes that are not relevant for the mass flow

rate of the fluid. As soon as one of the sensors in one channel senses such a sharp

transition, the controller uses the data from the other sensor. Since they are both

located in the same channel the mass flow rate of the fluid is exactly the same, so

it doesn’t perturb the controller decision.

5.1.5 Flow regime

In the simulations presented in this study, even if the injection of 1 or 2 bubbles

in the domain has a strong effect on the flow, the global flow regime remains

unchanged. Different Reynolds numbers can be defined in this situation. The

Reynolds number is defined by the following equation:

Re =
ρfuf l

µ
(5.8)
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where uf is the velocity of the fluid. Several velocities can be used for the Reynolds

number calculation based on either the maximum speed in the channel, or some

kind of averaging. In the same way, the length l which can be based on the

diameter of the bubble or some characteristic dimension of the domain like the

hydrodynamic diameter (not appropriate here since it’s a 2D case) or the height

of the channel. After computing the different Reynolds number with the different

parameters, it is found that it doesn’t vary much following which value are selected.

For the steady-state without any bubble Rech = 190. For the case with a single

bubble in the domain, the Reynolds number based on the diameter of the bubble

the Reynolds number Red = 155. Finally for the 2 bubbles case, Red = 170. In

each case, the Reynolds number remains fairly low, maintaining a laminar regime

inside the domain which is often the case in flow through microchannels.

5.2 Results and full simulation

5.2.1 Single bubble simulation

For the complete simulation, the scenario is to introduce a bubble in a steady flow

already achieved by the controller. The mass flow rate has been equalized so that

the fluid flows at the same speed in each channel. Figure 5.6 presents the flow

history in each channel. At the very beginning of the simulation the mass flow

rate is 0.8mg/s for each channel. Then the bubble is injected, the mass flow rate

drops in the top channel and increases in the two other channels as expected. The



74

controller detects the change in the mass flow rate and start closing the center and

bottom channels until enough flow is forced to go through the plugged channel in

order to release the bubble. As mentioned earlier, once released the bubble flows

at the same speed as the fluid, therefore the controller just has to equalize the

flow again in order to get back to the nominal equalized regime. The abrupt drop

in the flow rate of the top channel corresponds to the bubble crossing the sensor

as we talked about earlier, at that point the controller used the data provided by

the sensor at the entrance of the channel otherwise it would dramatically affect

the decision and the behavior of the controller. Figures 5.7a and 5.7b present the
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Figure 5.6: History of the flow in each channel with injection of the bubble at
t = 0.4 ms.— shows the data for the top channel; − − − middle channel; -.-
bottom channel. The time is expressed in ms and the mass flow rate in [mg/s].

bubble velocity and location history during the simulation. At the beginning the

velocity of the bubble is 0 since the bubble has yet to be released, then as expected

the velocity in the x direction increases very rapidly to reach a final velocity. Note
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that a spike appears at the beginning, when the bubble is released. This is most

likely due to force calculation error when the bubble is suddenly released. Figure

5.7b confirms the story told by the velocity evolution, it shows that the bubble has a

very small variation in the y direction inside the channel then once the bubble exits

the channel, the bubble slows down in the x direction and goes toward the center

line of the domain in y direction. The bubble history can be summarized by looking
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Figure 5.7: Velocity and location of the bubble history.— shows velocity and loca-
tion in the x direction and − − − shows velocity and location in the y direction.
Time is expressed in [ms], velocities are expressed in m/s and bubble locations in
[mm].

at the trajectory (Figure 5.8). The bubble has a fairly straight trajectory as long

as it remains inside the channel. As soon as it exits the channel the bubble slowly

goes down towards the center line of the domain (Y = 0). About the controller,

figure 5.9 presents the evolution of the orders sent by the controller correlated

with the angles applied as a consequence of the controller orders. As soon as the
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Figure 5.8: Bubble trajectory in the geometry. Locations are expressed in [mm].

bubble is injected the controller starts closing the valves in the middle and bottom

channel and fully opens the top channel. Once the bubble is released and doesn’t

present any resistance to the flow anymore, the controller starts equalizing the flow

to resume a nominal flow inside each channel. A final value of the angle is achieved

corresponding to a new equalized steady state.

5.2.2 2 bubbles simulation

The full simulation has been achieved using a single bubble in one channel. A

simulation using two bubbles is now conducted. In this situation two bubbles

in two separate channels are injected. This case is more challenging since the

controller has now to take care of two bubbles. This simulation has been run with

the same controller as in the previous case. The conditions remain the same. The

2 bubbles are injected at the same time in a stationary steady state achieved by
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Figure 5.9: Controller output history correlated with angle applied to each valve.—
shows the controller orders; −−− shows the angle applied to the valves. Time is
expressed in [s], angles are expressed in degrees.

the controller. The force acting on each bubble is monitored and each bubble is

released separately. The controller, by trying to achieve the same mass flow rate

in each channel, increases the force acting on each bubble until the bubbles are

released.

Figures 5.10 present the velocity contour at different stages of the simulation.

They all show the effects of the valves and/or the bubbles on the flow. Figure 5.10a

shows the velocity contour in the domain after the bubbles have been injected.

Like in the one bubble simulation, the bubbles are injected when the steady state

is achieved in the domain and the mass flow rate equalized in each channel. The

presence of the bubbles increase the flow rate in the central channel and the highest

speed region is located, as in the previous case, at the entrance, under the valve of

the center channel. This is confirmed by figure 5.11 which shows that the lowest
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pressure region is underneath the valve of the center channel. The velocity is also

pretty high above the bubbles in each channel. This is due to the pressure drop

caused by the bubbles.

The range of velocity is already pretty wide, it can be noticed that the lowest

velocity is negative and is located in the wake of the valves where a recirculation

bubble may occur. On the same figure, one can notice that the low pressure region

is slightly tilted over the right side of the bubbles, this is due to the fact that the

bubbles are not injected into the center of the channels, therefore more flow is

going above the bubbles combined with the effect of the wall which tends to delay

the lowest pressure point compare to a simple case of flow over a cylinder. Once

the controller is turned on it detects the drop in the mass flow rate caused by the

introduction of the two bubbles. Figure 5.13 shows the history of the mass flow

rate in the three channels. It starts with a steady equalized mass flow rate until

the bubbles are injected. The mass flow rate in the center channel is increased

while the mass flow rate in the other two channels drops. The mass flow rate right

before the controller starts acting for the first time is quite symmetric over the

domain. This is summarized in table 5.1. The distribution of the mass flow rate is

almost perfectly symmetric over the domain despite the fact that the two bubbles

are not inserted at the same x location. The controller starts acting on the valves

and starts regulating the mass flow rate in each channel. As shown in figure 5.10b

the controller starts closing the center valve since it has detected a drop in the

the mass flow rate in both the top and bottom channels. The valves of the plug

channels are fully opened.
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The controller works by trying to equalize the flow. This is why the valves

are reacting in a symmetric way. This might not be the best way to handle the

situation because in this case in order to achieve the same mass flow rate it tends

to send the same flow through the two plugged channels. A better way would

be to shut two of the three channels in order to flush one bubble and then take

care of the remaining one. In this case we assume that the flow forced through

the plugged channels by the controller produces enough hydrodynamic force to

flush the bubbles. The range of flow speed in figure 5.10b has increased. This

is explained by the fact that naturally the flow would have a tendency to go

through the center channel. However by closing it, the controller increases the

velocity under the valve. The effect of the increased speed can also be seen in the

recirculation zone in the wake of the center valve.

In that particular simulation the bottom bubble is released first since the force

becomes large enough sooner as it can be seen on figure 5.18. As in the one

bubble case a time is allowed for the force calculation to be effective. Figure 5.18

presents an initial spike that doesn’t have any physical meaning, it just appears

when the bubbles are injected. Once the bubbles are released the force acting on

them drops close to 0 since the Stokes number is small enough so that the bubbles

doesn’t produce any effect on the flow. Figure 5.13 shows a sudden jump in the

flow rate of the bottom channel when the bubble is released, at the same time

the flow rate drops in the top channel (still plugged) since the bottom channel is

fully opened and offers a wide open path to the flow. The release of the bottom

bubble first can be explained by the fact that since the bubble is injected further



81

from the entrance of the channel, the flow is less influenced by the entrance effects.

Figure 5.10c shows the flow after the bottom bubble has been released. Since it

is not producing any perturbation in the bottom channel anymore the controller

acts on the center and bottom valves in order to increase the flow through the

top channel only. This corresponds to the single bubble case studied earlier. The

release of the second bubble can be shown on the figure 5.13 when the mass flow

rate suddenly increases in that channel. The controller regulates the flow in order

to equalize the flow rate again in each channel. As before the spikes on the flow

history plot correspond to the bubbles crossing the sensors used to determine the

mass flow rate in each channel. This discrepancy is caused by the large density

ratio between the two phases and doesn’t affect the accuracy or the behavior of

the controller. Figures 5.15 and 5.16 present the bubbles trajectory and velocity
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Figure 5.11: Pressure contour over the domain before the bubbles are released.
The range of pressure of the domain goes from −4.1× 10−2 bar to 3.29× 10−3 bar.
The lengths are expressed in [mm].

history. The first set of plots (figure 5.15) presents the data for the bubble in the

top channel. The initial flat line on the plots correspond to the time while the

bubble remains fixed because it hasn’t been flushed away yet. Once the bubble is
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bottom channels. — shows the data for the top channel; − − − middle channel;
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Figure 5.13: Mass flow rate history measured at the end of each channel. — shows
the data for the top channel; −−− middle channel; -.- bottom channel. The mass
flow rates are expressed in [kg/s] and the time in [ms].
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Figure 5.14: History of the hydrodynamic force applied on each bubble. — shows
the force history for the bubble initially in the top channel; −−− shows the force
history for the bubble initially in the bottom channel. Time is expressed in [ms],
force is expressed in [µN ].

Table 5.1: Mass flow rate in the channels right before the controller starts acting
in the 2 cases looked at.

1 bubble 2 bubbles
time (in [ms]) 0.053 0.098
top channel 0.70 0.74
middle channel 0.85 0.91
bottom channel 0.85 0.75
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released, a sudden jump occurs in the bubble velocity. Figure 5.15a shows the x

and y components of the velocity history of the bubble. The u component of the

velocity goes from 0 m/s to almost 1 m/s (it’s terminal velocity) very rapidly, once

again this is explained by the very low Stokes number. The bubble keeps roughly

the same velocity until it exits the channel and enters the outlet plenum where its

velocity decreases due to the decrease in the flow speed. This observation can be

reenforced by looking at the figure 5.15b. The figure shows that the x component

of the bubble location is linearly increasing. A slight change in its slope occurs

when the bubble enters the outlet plenum. The amplitude of the v component is

less significant. One can say that the bubble’s trajectory remains fairly straight

in the channel. This can also be seen on the figure 5.15b where the position of

the bubble does not change while the bubble is in the channel then it drops as it

enters the outlet plenum. This is due to the low pressure region along the vertical

piece of wall between the top and middle channels (see figure 5.11).

Figures 5.16 present the same plots for the second bubble. This bubble is

injected in the bottom channel and released first that’s why the flat segment at the

beginning of its plot is shorter than in the previous case. The same observations

can be made concerning the behavior of this bubble. The x component of the

velocity jumps from 0m/s to it’s terminal velocity ≈ 1m/s as soon as the bubble

is released. The velocity then decreases when it enters the outlet plenum. The

bubble initially seems to position itself close to the center of the channel and then,

according to figure 5.16b, slightly decreases in the channel until it exits the channel.

Here for the same reason as previously but in the opposite direction, the bubble
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is pulled up by the low pressure region just above the exit of the channel. Figure
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Figure 5.15: Velocity and location of the bubble history.— shows velocity and
location in the x direction and −−− shows velocity and location in the y direction.
Time is expressed in [ms], velocities are expressed in [m/s] and bubble locations
in [mm].

5.17 summarizes the observation about the behavior conducted previously. One

can notice that the bubbles tend to locate themselves towards the center of their

respective channel as soon as they are released. This is due to shear force effect

in the parabolic profile of a channel flow. It also shows the change in trajectory

due to the entrance in the outlet plenum. The figure shows a shorter trajectory

for the top bubble, this is due to the fact that the simulation has stopped as

soon as the first bubble released hit the outlet boundary of the domain. Figure

5.18 shows the simulation from the controller perspective. This plot shows the

history of the commands from the controller correlated with the angle applied by

each valve. The controller is reacting to the change in mass flow rate over the
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Figure 5.16: Velocity and location of the bubble history.— shows velocity and
location in the x direction and −−− shows velocity and location in the y direction.
Time is expressed in [ms], velocities are expressed in [m/s] and bubble locations
in [mm].
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domain, the interpretation of the commands is closely related to the evolution of

the mass flow rate in the domain. Initially the mass flow rate drops in the top

and bottom channels and increases in the center channel leads the controller to

close the valve in the center channel (increase of the angle) and to fully open the

top and bottom channels (decrease to 0 of the angle applied). As soon as the first

bubble is released the mass flow rate increases suddenly in the bottom channel. In

reaction, the controller shuts the bottom valve maintaining the top channel fully

open in order to flush to remaining bubble. Once all the bubbles are released,

the controller comes back to the nominal state where the flow is equalized in each

channel.
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Figure 5.18: Controller output history correlated with angle applied to each
valve.— shows the controller orders; −−− shows the angle applied to the valves.
Time is expressed in [ms], angles are expressed in degrees.
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Chapter 6 – Conclusions and recommendations for future work

In this research a computational model has been used to compute flow through

a 3 parallel microchannels domain. This model allowed to simulate flows with

obstructions. In the case we looked at, one or two bubbles were injected inside the

domain. The results show that the effect of such perturbations in an equalized flow

are very strong. These perturbations of course can have dramatic consequences in

terms of heat exchanger efficiency for example.

In order to provide a solution to help the flow to come back to an optimal

regime, valves have been added at the entrance of each channel. From a computa-

tional point of view and contrary to the bubbles which are allowed to move freely

in the domain. The valves are moved and operated by a controller. This controller

designed by Chris Patton with the help of Dr. John Schmitt, decides of opening

of each channel based on data of the mass flow rate in each channel. Pressure

has been considered for a while unfortunately it wouldn’t accurately predict what

exactly happens in the channel. The best idea was then to consider the mass flow

rate to achieve and compare it to the one captured by the sensors for each channel.

This approach gave extremely convincing results, after a long period of tests

and calibration, a controller has been designed and is able to, first, equalize the

mass flow rate in each channel very accurately, and second, react in case of sudden

obstruction in one of the channels. If a drop in the mass flow rate is detected
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the controller will force more and more flow through this channel which will have

the result of increasing the hydrodynamic force acting on the bubble and then

eventually flush it out of the domain.

Of course the exact behavior of the growing bubble couldn’t be simulated.

After a lot of attempts and different scenarii, it has been decided that the closest

model to the physics considering what is possible to simulate, is to maintain the

bubble along the wall computing the force acting on it at every time step. The

bubble is artificially held fixed as long as the force is not sufficient to release it.

Unfortunately no criterion could be found in order to compute the threshold to

release the bubble. Our study showed that the possible range of force that can

be applied on the bubble seems to be in the range of values observed from the

literature in the cases of a bubble being attached to a wall in a microchannel.

This work shows excellent results in terms of efficiency to help to flush the

bubble out of a microchannel. The action of the valves is significant and gives the

ability to increase the force acting on the bubbles drastically. In case of a sudden

nucleation of a bubble this method will massively reduce the time to resume an

optimal flow, in certain cases or in certain conditions in which the surface tension

would be too strong to allow the bubble to detach from the wall, this approach

can allow to detach the bubble anyways.

Some of the limitations of the model are mentioned in this conclusion. The

physical aspect of the phenomenon has been looked at and considered in order to

try to make the simulation as realistic as possible. CFD limits what can be done

but the overhaul simulation gives very good qualitative results and quantitative
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results that are in the range of what has been observed.

However, several aspects could be slightly improved. The design of the valves

motion could certainly be improved by allowing an actual rotation motion. This

would allow smoother transition when the valves are rotating even if the controller

updates are fairly small. The other improvement that can be made is about the

controller. As mentioned before the controller reacts only to mass flow rate which

might not be sufficient to detect a bubble. If the simulation works fine with only

one bubble in the domain it causes troubles when two bubbles are injected. This

is due to the fact that the controller doesn’t actually detect a bubble it detects

changes in the mass flow rate and try to correct it. That means that if we were to

inject three bubbles, one in each channel, the controller would simply find a way

to equalize the flow without trying to optimize the force applied on the bubbles.

Addressing this issue would take to consider maybe other parameters. Pressure

seems again to be the one to look at. But dealing with several parameters and

different behaviors makes the design of the controller more challenging.

Future work would include simulations of applications where that kind of ge-

ometry can be used. One application for this geometry could be to use it for solar

fuel, production of hydrogen by heating natural gas. This process involves flowing

reactants through microchannels while they are heated by sun rays. The reaction

rate depends on the respect of the optimum mass flow rate, but some secondary

solid products might be formed which would lead in the situation studied here.

Another extension of this work (already in progress) would be to study microchan-

nel blocking due to bubbles aggregation and arching. This is computationally
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challenging because in order to be relevant the simulation has to involve a large

number of bubbles so that the probability of arching and blocking is sufficient.
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