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Abstract

A fictitious-domain based formulation for fully resolved simulations of arbitrary shaped, freely moving rigid
particles in unsteady flows is presented. The entire fluid-particle domain is assumed to be an incompressible, but
variable density, fluid. The numerical method is based on a finite-volume approach on a co-located, Cartesian
grid together with a fractional step method for variable density, low-Mach number flows. The flow inside the fluid
region is constrained to be divergence-free for an incompressible fluid, whereas the flow inside the particle domain
is constrained to undergo rigid body motion. In this approach, the rigid body motion constraint is imposed by
avoiding the explicit calculation of distributed Lagrange multipliers and is based upon the formulation developed
by Patankar ([1]). The rigidity constraint is imposed and the rigid body motion (translation and rotational velocity
fields) is obtained directly in the context of a two-stage fractional step scheme. The numerical approach is applied
to both imposed particle motion and fluid-particle interaction problems involving freely moving particles. Grid
and time-step convergence studies are performed to evaluate the accuracy of the approach. Finally, simulation
of rigid particles in a decaying isotropic turbulent flow is performed to study the feasibility of simulations of
particle-laden turbulent flows.
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1. Introduction

Many problems in nature and engineering involve two-phase flows where solid particles of arbitrary shape and
sizes are dispersed in an ambient fluid (gas or liquid) undergoing time dependent and often turbulent motion.
Examples include sediment transport in rivers, fluidized beds, coal-based oxy-fuel combustion chambers, biomass
gasifiers, among others. Fully resolved simulation (FRS), wherein all scales associated with the fluid flow and the
motion of all particles are directly computed, are of importance to understand the fluid-particle interactions. In
these simulations, the hydrodynamic forces between the particles and fluids are obtained from direct solution of the
governing equations and are not modeled by any drag or lift coefficients. Therefore, such simulations can be used
to develop new and improved drag and lift laws. Specifically, for particle-laden turbulent flows, fundamentally
understanding the turbulence modulation due to particles and dispersion of particles due to fluctuations in the
fluid flow is important to develop reduced-ordered models for fluid-particle systems.

Considerable work has been done on fully resolved simulations of particles in laminar flows. Hu et al. [2]
developed an Arbitrary Lagrangian-Eulerian (ALE)-based finite-element approach on unstructured grids to sim-
ulate rigid particles in Newtonian and viscoelastic fluids. In this approach, the unstructured grids conform to the
immersed rigid objects that move as the particles undergo rigid motion. A new mesh and resulting connectivity
is generated when the grid becomes too distorted and an interpolation scheme is used to compute the flow field
onto the new mesh. Moving mesh algorithm based on space-time finite-element approach was also developed by
Johnson and Tezduyar [3] to calculate falling particles in a tube. Such approaches, although provide an accurate
solution at the fluid-particle interface, suffer from the complexity of the moving mesh and regeneration algo-
rithms. Use of these techniques in three-dimensions significantly increase the computational cost and memory
requirements.

Several numerical schemes based on use of fixed grids for simulation of the fluid fluid-particle system have
been investigated. For example, distributed Lagrange multiplier/fictious domain (DLM) based methods [4] and
Immersed Boundary method (IBM) [5, 6] have been developed and shown to be very effective in computing
fluid-particle systems and fluid-structure interaction problems. Lattice Boltzmann method (LBM) [7] has been
developed and effectively used for simulations of rigid as well as deforming particles. Combination of the DLM,
direct forcing based IBM, and Lattice-Boltzmann methods (termed as Proteus was recently developed [8]. A
second-order accurate fixed grid method (PHYSALIS [9]) was developed, which gives good solutions for spherical
particles by using local spectral representations of the solution near a spherical boundary.

The Immersed Boundary Method has traditionally been used for fluid-structure interaction problems wherein
the motion of the immersed object is specified (stationary, forced rigid motion, or elastically deforming objects).
The approach has been used for turbulent flow simulations at large Reynolds numbers using direction numerical
simulations (DNS) or large-eddy simulations (LES). For specified motion of immersed objects, Taira & Colo-
nius [10] proposed a new implementation of the immersed boundary method to achieve second-order accuracy.
They compared IBM with fictitious-domain based methods to point out subtle differences when the immersed
objects are constrained to undergo specified motion. Uhlmann [11] used IBM with direct forcing method for
freely moving rigid particulate flows. Recently, Kim and Choi [12] developed a new immersed boundary method
using the conservative form of Navier-Stokes and continuity equations in the non-inertial frame of reference and
applied to fluid-structure interactions problems wherein the motion of the immersed objects for specified (forced)
and also cases with freely moving rigid particles.
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In the DLM method [4], the entire fluid–particle domain is assumed to be a fluid and the flow in the particle
domain is constrained to be a rigid-body motion by using a rigidity constraint. Similar to the immersed boundary
method, this approach uses fixed background grids and eliminates the need for remeshing and moving meshes. A
Lagrange multiplier field in the particle domain is computed by treating the fluid-particle motion implicitly and
solving a combined weak formulation. The constraint of rigid body motion is represented by u = U+ω×r, where
u is the velocity of the fluid inside the particle domain, U and ω are the translational and angular velocities of the
particle, r is the position vector of a point within the particle region with respect to the particle centroid. Patankar
et al. [13] developed a new formulation, named as the stress-DLM formulation, wherein the rigid body motion
was obtained by constraining a deformation rate tensor within the particle region to be zero. As opposed to the
original DLM formulation, this approach eliminated the need for U and ω as variables from the coupled system of
equations and provided simplified approach for simulation of irregular shaped bodies. Both approaches, however,
require use of an iterative fractional step scheme and resulted in increased overhead on the solution procedure
in the presence of particles. Patankar [1] developed an adapted version of the stress-based DLM formulation,
that eliminated the need for an iterative procedure to solve the rigid body projection step. By developing a two-
stage fractional step scheme, fast computation of particle-laden fluid flows was presented [1, 14] in finite-element
and finite-volume frameworks. Recently, an equivalent formulation based on the original DLM approach [4] of
rigidity constraint in a finite-element framework was developed by eliminating the need for an iterative solution
procedure [15].

Majority of the above approaches have been applied to simulate rigid particulate flows at low Reynolds number
laminar flows. In spite of several different numerical schemes, full three-dimensional direct simulations of two-
phase turbulent flows are rare. There have been only few three-dimensional studies on fully resolved rigid particles
in turbulent flows [16, 17] in canonical flow problems. There appears to be no reported study of fully resolved
moving particles in complex geometries. Majority of the works using IBM or fictitious-domain based techniques
are based on Cartesian, staggered grids. In the present work, a fictitious-domain based approach for the motion
of arbitrary shaped rigid particles is developed in a structured, co-located grid finite-volume formulation. The co-
located grid formulation is used owing to its flexibility and potential in extending the numerical approach to fixed,
unstructured grids and simulations of turbulent flows in complex configurations [18, 19]. The approach is based on
an efficient numerical algorithm proposed by Patankar [1] to constrain the flow field inside the particle to a rigid
body motion. Sharma & Patankar [14] implemented this approach in staggered Cartesian grid solver indicating
first-order temporal accuracy in cases with freely moving rigid particles. In the present work, we extend this
approach to a time-staggered, co-located formulation and evaluate the order of accuracy of the resultant scheme
for rigid particles under freely moving as well as forced motion conditions. Domain decomposition and Message-
Passing-Interface (MPI)-based solver parallelization is performed to facilitate simulation of large number of rigid
particles. Details of the numerical scheme are outlined and the method is applied to investigate fluid-particle
interactions in laminar and turbulent flows. Both forced motion and freely moving rigid particles are simulated.

The paper is arranged as follows. A mathematical formulation of the basic scheme is first described. Numerical
implementation of the scheme in a co-located grid, finite volume framework is provided next. The numerical
scheme is validated for flow over a fixed sphere and flow induced by periodically oscillating cylinder as test cases.
Freely falling spherical particle at different Reynolds numbers is simulated and results compared with available
experimental data. A detailed analysis of the temporal and spatial discretization errors is performed to evaluate
the accuracy of the numerical scheme. Unsteady wake interactions between two particles falling under gravity are
also investigated and compared with previous numerical studies. Finally, simulation of 125 spherical particles in
an isotropic turbulent flow is performed to show the feasibility of the approach to capture multiscale interactions
between the particles and unsteady turbulent flows.

2. Mathematical Formulation

Let Γ be the computational domain which includes both the fluid (ΓF (t)) and the particle (ΓP (t)) domains.
Let the fluid boundary not shared with the particle be denoted by B and have a Dirichlet condition (generalization
of boundary conditions is possible). For simplicity, let there be a single particle in the domain and the body force
be assumed constant so that there is no net torque acting on the particle. The basis of fictitious-domain based
approach [4] is to extend the Navier-Stokes equations for fluid motion over the entire domain Γ inclusive of particle
regions. The natural choice is to assume that the particle region is filled with a Newtonian fluid of density equal
to the particle density (ρP ) and some fluid viscosity (µF ). Both the fluid and the particle regions will be assumed
as incompressible and thus incompressibility constraint applies over the entire region. In addition, as the particles
are assumed as rigid, the motion of the material inside the particle is constrained to be a rigid body motion.
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Several ways of obtaining the rigidity constraint have been proposed [4], [13], [1], [15]. We follow the formulation
developed by Patankar [1] which is briefly described for completeness.

The momentum equation for fluid motion applicable in the entire domain Γ is given by:

ρ

(
∂u
∂t

+ (u · ∇) u
)

= −∇p+∇ ·
(
µF

(
∇u + (∇u)T

))
+ ρg + f , (1)

where ρ is the density field, u the velocity vector, p the pressure, µF the fluid viscosity, g the gravitational
acceleration, and f is an additional body force that enforces rigid body motion inside the particle region ΓP .
For direct numerical simulation of incompressible fluid with constant viscosity, however, the viscous term can be
simplified to µF∇2u using the incompressibility constraint.The density ρ is given as:

ρ = ρF (1−ΘP ) + ρPΘP ; ΘP =
{

0 in ΓF

1 in ΓP
(2)

where ρF and ρP are the fluid and particle densities, respectively, Θp is the indicator function that assumes a value
of unity inside the particle region and zero outside. In general numerical implementations, the indicator function is
smeared over a small region (proportional to the grid spacing) around the boundary giving a smooth variation. As
the particle moves, so does the indicator function and thus DΘp/Dt = 0 on the particle boundary, where D/Dt()
represents a material derivative. Here we assume that the solid particles experience no-slip boundary conditions;
therefore, the transport of the function Θp is directly related to the local fluid velocity. The continuity equation
in Γ for this variable density Newtonian fluid is given as:

∂ρ

∂t
+∇ · (ρu) = 0. (3)

Using the definition of ρ, expanding the above equation and noting than DΘp/Dt = 0 on the particle boundaries
gives the incompressibility constraint over the entire domain Γ:

∇ · u = 0, (4)

In order to enforce that the material inside the particle region moves in a rigid fashion, a rigidity constraint
is required so that it will lead to a non-zero forcing function f in the particle region. Different ways have
been proposed to obtain f . Inside the particle region, the rigid body motion implies vanishing deformation rate
tensor [13]:

1
2

(
∇u + (∇u)T

)
= D[u] = 0,

⇒ u = uRBM = U + Ω× r

}
in ΓP , (5)

where U and Ω are the particle translation and angular velocities and r is the position vector of a point inside
the particle region from the particle centroid. The vanishing deformation rate tensor for rigidity constraint
automatically ensures the incompressibility constraint inside the particle region. The incompressibility constraint
gives rise to the scalar field (the pressure, p) in a fluid. Similarly, the tensor constraint D[u] = 0 for rigid
motion gives rise to a tensor field inside the particle region [13]. Distributed Lagrange multiplier (DLM)-based
approaches have been proposed to solve for the rigid body motion and impose the rigidity constraint which
requires an iterative solution strategy. Patankar [1] proposed an approach that provides the rigidity constraint
explicitly, thus reducing the computational cost significantly. Noting that the tensorial rigidity constraint can be
reformulated to give [13]:

∇ · (D[u]) = 0 in ΓP; (6)
D[u] · n = 0 on particle boundary. (7)

A two-stage fractional-step algorithm can be devised to solve the coupled fluid-particle problem [1]. Knowing the
solution at time level tn the goal is to find u at time tn+1.

1. In this first step, the rigidity constraint force f in equation 1 is set to zero and the equation together with
the incompressibility constraint (equation 4) is solved by strandard fractional-step schemes over the entire
domain. Accordingly, a pressure Poisson equation is derived and used to project the velocity field onto an
incompressible solution. The obtained velocity field is denoted as un+1 inside the fluid domain and û inside
the particle region.
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2. The velocity field in the particle domain is obtained in a second step by projecting the flow field onto a rigid
body motion. Inside the particle region:

ρP

(
un+1 − û

∆t

)
= f . (8)

To solve for un+1 inside the particle region we require f . Obtaining the deformation rate tensor from un+1

given by the above equation and using the equations (6, 7) we obtain:

∇ ·
(
D[un+1]

)
= ∇ ·

(
D
[
û +

f∆t
ρ

])
= 0; (9)

D[un+1] · n = D
[
û +

f∆t
ρ

]
· n = 0. (10)

The velocity field in the particle domain involves only translation and angular velocities. Thus û is split
into a rigid body motion (uRBM = U + Ω × r) and residual non-rigid motion (u′). The translational and
rotational components of the rigid body motion are obtained by conserving the linear and angular momenta
and are given as:

MPU =
∫

ΓP

ρûdx; (11)

IPΩ =
∫

ΓP

r× ρûdx, (12)

where MP is the mass of the particle and IP =
∫

ΓP
ρ[(r · r)I − r ⊗ r]dx is the moment of inertia tensor.

Knowing U and Ω for each particle, the rigid body motion inside the particle region uRBM can be calculated.
3. The rigidity constraint force is then simply obtained as f = ρ(uRBM − û)/∆t. This sets un+1 = uRBM in

the particle domain. Note that the rigidity constraint is non-zero only inside the particle domain and zero
everywhere else. This constraint is then imposed in a third fractional step and using equation 8.

In practice, the fluid flow near the boundary of the particle (over a length scale on the order of the grid size)
is altered by the above procedure owing to the smearing of the particle boundary. The key advantage of the
above formulation is that the projection step only involves straightforward integrations in the particle domain.
A similar approach was recently proposed in a finite-element framework by Veeramani et al. [15].

3. Numerical Formulation

In this work, the governing equations (equations 1 and 3) are reformulated into conservative form to obtain
better conservation properties and accuracy for unsteady, turbulent flows. A co-located grid formulation on
Cartesian grids is used. The approach can be readily extended to unstructured grids and complex configurations.
In the following sections, representation and transformations of rigid body motion, interpolation schemes between
the particle material points and the background grid, the discretization of the numerical scheme, and the complete
algorithm are described.

3.1. Material Volume Representation of a Particle
We represent a particle by introducing material volumes (MV) or points within the particle domain. These

volumes can be thought of as “sub-particles” having a specific shape and density. Here, we assume that the
material volumes are cubic elements and have same density as the particle itself. However, arbitrary shapes of the
material volumes along with varying densities can be easily assigned to represent a complex shaped particle with
non-uniform material properties. For rigid body motion of the particle there is no relative velocity between the
material volumes and the particle centroid. The relative position (or connectivity) between the material volume
centroids and the particle centroid is not necessary. The use of material volumes over the entire particle domain
(as opposed to only around the particle surface) is used as it simplifies volume integrations needed in the present
scheme.

Figure 1 shows examples of the material volumes for a particle with circular cross-section. In Figure 1a, uniform
material volumes arranged in a structured lattice are created, whereas Figure 1b shows body-fitted unstructured
material volumes. In the first approach, the boundary of the rigid body is represented in a stair-stepped fashion,
however, it is straight forward to create the material volumes using a bounding-box algorithm:
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Figure 1: Schemeatic of material volume for a circular interface: (a) uniform, stair-stepped grid, (b) body-fitted unstructured grid.

1. Determine the bounding box for the particle based on its surface representation.
2. Generate cubic grid within the bounding box.
3. Use distance searches to determine if the centroid of the control volume lies within the bounding surface of

the particle.
4. Eliminate points outside the particle domain.

The total mass of the material volumes generated will be exactly equal to the mass of the particle if the surface
of the particle aligns with the grid. The stair-stepped surface representation, however, results in an error in the
total mass of the material volumes compared to the original shape. This error reduces with increase in the total
number of material volumes per particle. A more complex grid generation process (Figure 1b) and/or Delaunay
triangulation is necessary to accurately represent the surface of the particle and one may use standard body-fitted
grid generation tools. In the present work, we follow the stair-stepped approach owing to its simplicity.

3.2. Interphase Interpolations
Any property defined at the material volumes within the particle can be projected onto the background grid

by using interpolation functions. Use of simple linear interpolations may give rise to unphysical values within the
particle domain (e.g. volume fractions greater than unity) [14] and may give rise to numerical oscillations in the
particle velocity. In order to overcome this, a smooth approximation of the quantity can be constructed from the
material volumes using interpolation kernels typically used in particle methods [20]:

Φ∆(x) =
∫

Φ(y)ξ∆(x− y)dy (13)

where ∆ denotes grid resolution. The interpolation operator can be discretized using the material volume centroids
as the quadrature points to give

Φ∆(x) =
N∑

M=1

VMΦ(XM )ξ∆(x−XM ) (14)

where XM and VM denote the coordinates and volume of the material volumes respectively and the summation
is over all material volumes for a particle. For example, in order to compute particle volume fraction, Φ(XM )
will be unity at all material points. This gives unity volume fraction within the particle domain and zero outside
the particle. In order to conserve the total volume of the particle as well as the total force/torque exerted by the
particle on the fluid, the interpolation kernel should at least satisfy

N∑
M=1

VMξ
∆(x−XM ) = 1 (15)

N∑
M=1

VM (x−XM )ξ∆(x−XM ) = 0 (16)

Several kernels with second-order accuracy include Gaussian, quartic splines etc. A kernel with compact support
requiring only the immediate neighbors of a control volume has been designed and used in immersed boundary
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methods [21]. For uniform meshes with resolution ∆ it utilizes only three points in one dimension and gives the
sharpest representation of the particle onto the background mesh:

ξ∆(x−XM ) =
1

∆3
δ

(
x−XM

∆

)
δ

(
y − YM

∆

)
δ

(
z − ZM

∆

)
, (17)

where

δ(r) =


1
6 (5− 3|r| −

√
−3(1− |r|)2 + 1, 0.5 ≤ |r| ≤ 1.5, r = (x−x0)

∆
1
3 (1 +

√
−3r2 + 1, |r| ≤ 0.5

0, otherwise.
(18)

The same interpolation kernel can be used to interpolate an Eulerian quantity defined at the grid centroids to
the material volume centroids. The interpolation kernel is second order accurate for smoothly varying fields [5].
Figure 2 shows the effect of interpolation kernel applied to compute volume fraction for a spherical particle to
show the effect of material volume refinement on particle boundary representation. The surface of the particle
is smoothed over the scale proportional to the kernel length. Recently, Uhlmann [11] used similar interpolation
scheme between the Lagrangian points and the background grid in his direct forcing immersed boundary technique.
It was shown that the effect of increased stencil or the kernel width is to smooth the function being interpolated.
Note that in order to reduce the spreading of the interfacial region, it is necessary to use compact support as well
as finer background grids and material volumes.

X

Y

0.078 0.079 0.08 0.081 0.082
0.078

0.079

0.08

0.081

0.082

Figure 2: Contour of particle volume fraction representing the surface of the particle and smoothing effect of the interpolation kernel:
blue line is the actual particle boundary, red and green lines denote contours of volume fraction of 0.5 obtained from ∆/∆M = 1 and
4, respectively.

3.3. Updating the Particle Position
The rigid body motion (RBM) of a particle can be decomposed into translational (UT ) and rotational (UR)

components The total velocity field at each point within the particle is given as

URBM = UT + Ω× r (19)

where UT is the translational velocity, Ω the angular velocity, and r the position vector of the material volume
centroid with respect to the particle centroid. All the material volumes have the same translational velocity as
the particle centroid (UT = UP ).

Given a velocity field and the positions (X0
M ) of the material volume centroids and the particle centroid (XP )

at t = t0, the new positions (Xt
M ) at t = t0 + ∆t are obtained by linear superposition of the rotational and

translational components of the velocity. The axis of rotation passing through the rigid body centroid XP is
given as σ̂ = Ω/ |Ω|. The new coordinates due to rotation around σ̂ are given as

X′ = R(X0
M −XP ) + XP (20)

where the rotation matrix is

R =

 tσ̂xσ̂x + c tσ̂xσ̂y − sσ̂z tσ̂xσ̂z + sσ̂y
tσ̂xσ̂y + sσ̂z tσ̂yσ̂y + c tσ̂yσ̂z − sσ̂x
tσ̂xσ̂z − sσ̂y tσ̂yσ̂z + sσ̂x tσ̂zσ̂z + c

 . (21)
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Here c = cos(α), s = sin(α), t = 1 − cos(α), and α = |Ω|dt. The material volume centroids are all uniformly
translated to give the final positions,

Xt
M = X′ + UT dt. (22)

3.4. Collision Force Modeling
As two or more particles come close to each other, a repulsive force strong enough to prevent overlapping of

particle boundaries is necessary. A collision strategy similar to that used by Glowinski et al. [4] is used and is
briefly described here for completeness. The repulsive force (Fcoll

P ) on the body P due to Q is given as

Fcoll
P =

NP∑
Q=1,Q6=P

Fcoll
P,Q +

NW∑
W=1

Fcoll
P,W . (23)

It is a short-range repulsive force exerted on the P th particle by other particles (Q = 1, NP ) and by nearby walls
(W = 1, NW ).

For simplicity, consider two spherical rigid bodies (P and Q) of radius RP and RQ, respectively, undergoing
collision. Let GP and GQ be their mass centers. The repulsive force (Fcoll

P ) on the body P due to Q is given as

Fcoll
P,Q =

CP,Q
ε

(
max

{
0,−

[
δPQ −RP −RQ − S

S

]})2
GPGQ
δPQ

, (24)

where δPQ = ‖GPGQ‖, S is the range of the short range repulsive force, GPGQ is the position vector between
the centers of the two bodies, ε is a small positive number, CPQ is the scaling factor and has the dimensions of
a force [MLT−2]. The range of repulsive force indicates the distance between the boundaries of the rigid bodies
at which the repulsive force is activated. Typically, S = ∆, where ∆ is the background grid resolution. The
magnitude of the small positive number was determined using simple analysis of a falling sphere by Glowinski
et al. [4]. Accordingly, ε ∼ ∆2 and CPQ = Mg are used, where g is the gravitational acceleration, and M is the
average mass of the particles P and Q.

The repulsive force between a particle P and wall is computed by generating a particle that is a mirror image
of P (same size and at the same distance from the wall as P ). The repulsive force is then computed between P
and its mirror image and using the above formula. Note that the above collision strategy computes a repulsive
force that is normal to the point of contact between the particles or particle and a wall. More sophisticated
collision models involving shearing forces (tangential) and applicable to arbitrary shapes can be developed and
used [22].

The collision force computation, could be very expensive (O(N2
P ) operations), if there are large number

of particles, and the force is calculated by computing the inter-particle distances between each particle. The
computational cost can be reduced owing to the material point representation of the particles. For each rigid
particle P , a list of all material points that are on the boundary of the particle can be created. These material
points then can be sorted according to the background grid cv(i, j, k) they belong to. Using the connectivity of
the background grid, and finding the material points belonging to different rigid bodies, the collision calculation
can be restricted to a few particles that are nearing actual collision. Advanced schemes involving Verlet lists [23]
and linked-lists [24] can be used to reduce the computational overhead.

4. Discretization of the Governing Equations and Numerical Algorithm

Figure 3 shows the schematic of variable storage in time and space. The particle-positions, density, pressure
and volume fractions are staggered in time with respect to the fluid and particle velocity fields, ui and Ui,
respectively. All variables are stored at the control volume (cv) center with the exception of the face-normal
velocity uN, located at the face centers. The face-normal velocity is used to enforce continuity equation. Capital
letters are used to denote particle fields. The time-staggering is done so that the variables are located most
conveniently for the time-advancement scheme. We follow the collocated spatial arrangement for velocity and
pressure field as has been used by [25], [18], [19]. The main reason to use this arrangement as opposed spatial-
staggering is the flexibility of extending the scheme to unstructured grids and/or adaptive mesh refinement. In
the present work, however, uniform Cartesian grids are used for simplicity. Accordingly, the particle positions
(Xi), density (ρ), volume fraction (Θ), and viscosity (µ) are located at time level tn+1/2 and tn+3/2 whereas the
velocity field (ui, uN, and Ui), the pressure (p), and the rigid body constraint force fi,R are located at time level
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Figure 3: Schematic of the variable storage in time and space: (a) time-staggering, (b) three-dimensional variable storage, (c) cv and
face notation, (d) index notation. The velocity field (ui, uN), the pressure field (p), and the rigid body force (fi,R) are staggered
in time with respect to the volume fraction (Θ), density (ρ), and particle position (Xi). All variables are collocated in space at the
centroid of a control volume except the face-normal velocity uN which is stored at the centroid of the faces of the control volume.

tn and tn+1. This makes the discretization symmetric in time, a feature important to obtain good conservation
properties of the numerical scheme as emphasized and used by Pierce and Moin [26] for low-Mach number, reactive
flows.

Using these variable locations, integrating the governing equations over the control volume and applying Gauss’
divergence theorem to transport volume integrals to surface integrals wherever possible, the discrete governing
equations are derived. Accordingly, the continuity equation is

ρ
n+3/2
cv − ρn+1/2

cv

∆t
+

1
Vcv

∑
faces of cv

ρn+1
face u

n+1
N Aface = 0 (25)

where the subscript “face” corresponds to the face-center, Aface is the face area, and Vcv the volume of the control
volume. The density field (at any discrete time) is a linear function of the volume fraction and is given as

ρcv = ρFΘF + ρPΘP (26)

where the subscripts “F” and “P” stand for fluid and particle, respectively. The density at the faces of a control
volume (ρface) is obtained by doing simple arithmetic averages of the density at cvs adjacent to the face. In
addition the volume fraction fields follow the conservation relation ΘP + ΘF = 1. The particle volume fraction is
a function of the position of the particle and is obtained by interpolation procedure described previously.

For the present work we assume that the fluid and particle densities are constant. However, the formulation is
general and can be used to include variations in densities of each material due to chemical reactions or temperature
variations. In addition, the density field at time level (tn+1) can be obtained by taking arithmetic averages of
values at tn+1/2 and tn+3/2 or by directly evaluating it based on material volume locations at Xn+1

i,M .
The discrete momentum equation for the ith component of velocity is

gn+1
i,cv − gni,cv

∆t
+

1
Vcv

∑
faces of cv

g
n+1/2
i,face u

n+1/2
N Aface = − ∂

∂xi
pn+1

cv +

1
Vcv

∑
faces of cv

(τij)
n+1/2
face Nj,faceAface + fn+1

i,cv , (27)
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where gi = ρui represents the momentum in the ith direction, (τij)face is the viscous stress at the faces of control
volume, and Nj,face represents the components of the outward face-normal. The velocity field (ui,face), and the
momentum ρui,face, and the density (ρface) at the faces are obtained using arithmetic averages of the corresponding
fields at two control volumes associated with the face. The values at time level n + 1/2 are obtained by time-
averaging (Crank Nicholson). fi represents the force due to the interphase coupling. This force is used to impose
the rigidity constraint within the particle domain and can be obtained by determining the rigid body motion as
described below.

Let u be the velocity field at the fixed grid points within the particle. The corresponding velocities at the
material volumes within the particle be UM , which can be obtained by following the interpolation procedure
described earlier. The interpolated velocity may not necessarily represent a pure rigid body motion. Hence, the
velocity field at the material volumes can be further decomposed as

UM = URBM
M + U′M (28)

where URBM
M is the rigid body motion and U′M represents the remaining non-rigid motion satisfying the continuity

equation. The rigid body motion consists of translational (UT
M ) and rotational (UR

M ) velocity components. The
rotational component at each material point is related to the angular velocity of the particle, UR

M = ΩP × r
whereas the translation component is the same as the velocity of the centroid of the particle. Here, r is the
position vector of the material point “M” from the particle centroid. The rigid body motion can be obtained as

MPUP =
N∑

M=1

VMρMUM (29)

IPΩP =
N∑

M=1

ρMVM (r×UM ), (30)

where subscripts P and M denote the particle and the material volume centroids respectively, VM is the volume
and ρM the density of each material volume,MP =

∑N
M=1 ρMVM is the total mass of the particle, and IP is the

moment of inertia of the particle about the coordinate axes fixed to the particle centroid. The moment of inertia
is given as

IP =
N∑

M=1

ρMVM [(r · r)I− r⊗ r] , (31)

where I represents the identity matrix.
The rigid-body constraint is satisfied by imposing a volumetric force on the fluid equations. The value of this

force at the material volume centroids can be obtained as,

Fn+1
i,M = −

ρn+1
M (Ui,M − URBMi,M )

∆t
. (32)

The force on the grid control volumes (fi,cv) can be obtained from Fi,M by using the same interpolation scheme
discussed earlier (equations 14). The actual implementation of the formulation requires two-stage, fractional time-
stepping wherein the continuity and rigidity constraints on the velocity field are imposed in different fractional
steps. The numerical algorithm is discussed below.

A semi-implicit numerical scheme with an iterative approach is given below. In the following steps, we are
advancing the particle positions from time level tn+1/2 to tn+3/2 and the velocity fields from tn to tn+1. The
superscript k refers to iteration cycles between the respective time levels. Note that the algorithm is designed to
allow for multiple iterations, however, it was found that, at small time steps with CFL ≤ 0.5, a single iteration is
enough to obtain accurate and stable results. We use the algebraic multigrid approach for the Poisson equation
based on the Hypre library from Lawrence Livermore National Laboratory [27], making multiple iterations per
time-step feasible.

1. Choose predictors at k = 0
Choose predictors (initial guesses) for the values of the variables at the next time level. We first choose the
velocity predictors using the Adams-Bashforth extrapolation:

un+1,0
N = 2unN − u

n−1
N ; un+1,0

i,cv = 2uni,cv − u
n−1
i,cv

Un+1,0
i,P = 2Uni,P − U

n−1
i,P ; Ωn+1,0

i,P = 2Ωni,P − Ωn−1
i,P

}
(33)
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The pressure is updated using backward Euler, pn+1,0
cv = pncv. Likewise the rigidity constraint (fn+1,0

i,cv ) is
obtained by performing interpolations from material volume locations at Xn+1

i,M and using the predictors
uni,cv, Uni,P .

2. Update particle positions and compute scalars (volume fraction and density fields)
We first advance the particle positions from tn+1/2 to tn+1 (half the time-steps) using the predictor velocities
at tn+1. The particle positions will be corrected later.

Xn+1
i,M = X

n+1/2
i,P +Rij

(
X
n+1/2
j,M −Xn+1/2

j,P

)
+ Un+1,0

i,M

∆t
2
, (34)

where Rij is evaluated from equation (21) and using particle locations at tn+1/2, Ωn+1,0
i,M , and ∆t/2 Once the

new positions are known, compute the scalar fields, Θn+1
P and the corresponding ρn+1 using equations (26).

The temporal change in density is set equal to:

δρn+1
cv

δt
=
ρn+1

cv − ρn+1/2
cv

∆t/2
(35)

3. Start iteration k + 1. Advance the momentum equations using the fractional step method.
We advance the velocity field from tn to tn+1,k+1 in few iterations. The intermediate velocity fields may not
satisfy the continuity or the rigidity constraints. These are enforced later.

ρn+1
cv ûk+1

i,cv − ρncv u
n
i,cv

∆t
+

1
Vcv

∑
faces of cv

ĝ
k+1/2
i,face u

k+1/2
N Aface = − ∂

∂xi

(
pn+1,k

cv

)
+

1
Vcv

∑
face of cv

τ̂
k+1/2
ij,face Nj,faceAface + fn+1,k

i,cv , (36)

where

ĝ
k+1/2
i,face =

1
2

(
gni,face + ĝk+1

i,face

)
;

τ̂
k+1/2
ij,face = µF

[
1
2

(
∂uni
∂xj

+
∂ûk+1

i

∂xj

)
+

1
2

(
∂unj
∂xi

+
∂ûkj
∂xi

)]
face

;

u
k+1/2
N =

1
2

(
unN + un+1,k

N

)
The convective terms and the viscous stresses in the direction of the momentum gi are treated implicitly. For
the face-normal velocities, the latest available value of uN is used in the above equation. Note that fn+1,k

i,cv is
obtained by interpolation from the material volume positions at Xn+1

i,M .
4. Remove the old pressure gradient

̂̂gk+1

i,cv = ĝk+1
i,cv + ∆t

∂

∂xi
(pn+1,k

cv ) (37)

5. Interpolate the cv-center momentum (velocities) to faces to obtain face-normal momentum
(velocity)

̂̂gk+1

N =
1
2

(̂̂gk+1

i,icv1 + ̂̂gk+1

i,icv2)Ni,face, (38)

where for face [i, j + 1/2], the neighboring cvs correspond to [i, j] (icv1) and [i, j + 1] (icv2), respectively.
6. Solve the pressure equation∑

faces of cv

δ

δN
(pn+1,k+1

cv )Aface =
1

∆t

∑
face of cv

̂̂gk+1

N Aface + Vcv
δρn+1

cv

δt
(39)
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7. Update the face-normal velocities to new continuity-satisfying field

un+1,k+1
N =

1
ρn+1

face

(̂̂gk+1

N −∆t
δ

δN
pn+1,k+1

cv

)
(40)

Note that this implies that the face-normal velocities are obtained from pressure-projection and are not
interpolated from the adjacent control volumes, thus ensuring strong coupling between the pressure-gradient
and the velocity field.

8. Reconstruct the pressure gradient and cv-center velocities

δpn+1,k+1

δxi
=
(
δpn+1,k+1

δN

)face→cv

, (41)

where ( )
face→cv

stands for reconstruction of the pressure gradient at the cv-centers from the corresponding
face-normal gradients. For example, the x-component of the cell-centered pressure gradient δp

δx is obtained
as:

δp

δx
=
∑

faces of cv
δp
δN ·~i‖Ni,faceAface‖∑

faces of cv ‖Ni,faceAface‖
(42)

For non-uniform and unstructured grids, a least-squares based face area-weighted interpolation was first
proposed by Mahesh et al [18]. For uniform Cartesian grids, it is equivalent to the above reconstruction. In
this work, we use Cartesian uniform grids, however, the numerical scheme can be extended to more complex
grids using the least-squares area-weighted reconstruction.

u∗,k+1
i,cv =

1
ρn+1

cv

(̂̂gk+1

i,cv −∆t
δ

δxi
pn+1,k+1

cv

)
(43)

Note that in the absence of a rigid body, ρ = ρF throughout the domain, and the algorithm reduces to the
standard fractional step scheme for single-phase, incompressible flow. The above velocity field will then be
denoted as un+1,k+1

i,cv and outer iterations can be continued till convergence. In the presence of rigid bodies,
the following steps are performed to enforce the rigidity constraint within the particle domain.

9. Remove the old rigidity constraint force

u∗∗,k+1
i,cv =

1
ρn+1

cv

(
u∗,k+1
i,cv −∆tfn+1,k

i,cv

)
(44)

10. Compute the rigid-body motion
First interpolate the velocity field u∗∗,k+1

i,cv from the grid cvs to the material volume centroids to obtain
U∗∗,k+1
i,M . Solve for the translational and rotational velocity fields using equations 29 and compute the rigid

body motion:
URBM,k+1
M = UT,n+1,k+1

M + Ωn+1,k+1
P × (Xn+1

M −Xn+1
P ). (45)

11. Compute the rigidity constraint force
First compute the rigid-body constraint force at the material volume centroids.

Fn+1,k+1
i,M = ρn+1

M

U∗∗,k+1
i,M − URBM,k+1

i,M

∆t
. (46)

Interpolate the rigidity constraint force to the grid control volumes to obtain fn+1,k+1
i,cv .

12. Enforce the rigidity constraint force

un+1,k+1
i,cv = u∗∗,k+1

i,cv +
∆t
ρn+1

cv

(
fn+1,k+1
i,cv

)
(47)

13. Check for convergence and repeat
Set k to k+1 and go to step 3. We check for convergence in the velocity field for each iteration by evaluating
change in velocity across iterations to find whether convergence is achieved for each time-step. Typically,
with the good predictor guess convergence can be achieved in 2–3 iterations.
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14. Reset the particle positions and velocities

Un+1
i,M = UT,n+1,k+1

i,M (48)

Ωn+1
i,M = Ωn+1,k+1

i,M (49)

X
n+3/2
i,M = X

n+1/2
i,P +Rij(Xn+1/2

j,M −Xn+1/2
j,P ) + UT,n+1

i,M ∆t, (50)

where Rij is evaluated from equation 21 and using particle locations at tn+1/2, Ωn+1
i,m , and ∆t

Numerical Errors and Accuracy
From the above steps, it can be shown that the total splitting error in the above fractional step is:

un+1
i,cv − û

k+1
i,cv = −∆t

[
δ

δxi

(
pn+1,k+1

cv − pn+1,k
cv

)
−
(
fn+1,k+1
i,cv − fn+1,k

i,cv

)]
(51)

= −∆t2
[
δ

δxi

(
δpcv

δt

)
+
δfi,cv

δt

]
+O

(
δp2

cv + δf2
i,cv

)
. (52)

Note that δpcv and δfi,cv are defined as the differences between iteration levels for the pressure and the rigidity
constraint force, respectively. By performing multiple iterations within each time step, the splitting error can be
reduced. If k = 1, the splitting error is dependent on the initial guess for pn+1

cv and fn+1
i,icv . The computational

time for each subsequent iteration reduces significantly and hence the cost of multiple iterations is not significant.
Typically 3–5 iterations are sufficient. In the present work, the time-step used is such that the maximum CFL ≤
0.5 at all times and only a single iteration is used.

The other source of numerical error is the interpolation from the grid points to the material volumes and back
from the material volumes to the grid points. In the above algorithm, interpolations to the material volumes and
back to the grid points are required once per time-step.

In the absence of a rigid body, the above algorithm consistently reduces to an incompressible flow, colocated
scheme.

5. Numerical Examples

We conduct a series of numerical studies to evaluate the accuracy of the scheme and its applicability to
turbulent flows with large number of particles.

5.1. Decaying Taylor Vortex
We first examine the accuracy of interpolation operator to transfer the flow quantities defined at the material

volumes to the background grid cv-centers. The problem of stationary, decaying vortices in a periodic box is used
to study the accuracy of the numerical scheme. The temporal and spatial solution for the velocity and pressure
fields is given as

u(x, y, t) = −cos(kxx)sin(kyy)e−µ(k2
x+k2

y)t

v(x, y, t) = sin(kxx)cos(kyy)e−µ(k2
x+k2

y)t

p(x, y, t) = −0.25(cos [(2kxx) + cos(2kyy)] e−2µ(k2
x+k2

y)t

 , (53)

where kx = 2π/Lx and ky = 2π/Ly. The domain size is Lx × Ly = 2× 2 in non-dimensional units. A fictitious,
square region of length 0.5 units is placed at the center of the domain. Material volumes are generated within the
boundary by following the procedure described in section 3. Initially, the immersed boundary is oriented such
that its borders and the background mesh do not coincide as shown in Fig. 4.

The goal here is to investigate the effect of interpolation errors between the material volumes and the back-
ground mesh. The analytical solution for pressure and velocity is used as an initial condition at every grid point
outside the square boundary. In addition, the fluid velocity and pressure fields at the material volume centers
inside the square region are specified using the analytical solution at each time-step. This specified velocity field
is projected onto the grid at each time step by using the interpolation procedure described in section 3. Note that
for this test case, the region inside the immersed boundary is not constrained to undergo a rigid body motion.
Instead, the error in interpolation between the material volumes, that may not coincide with the grid cv-centers,
and the cv-centers is examined. Periodic boundary conditions are applied at the boundaries of the domain. With
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Figure 4: Instantaneous pressure contours and orientation of the immersed boundary for the Taylor vortex case. The domain size is
2× 2 units and the immersed boundary is a square object of length 0.5 units.

this input the solution is integrated in time and compared with the analytical solution by computing L∞ error of
the velocity field and pressure fields at t = 0.2. The error in space and time is evaluated by reducing the grid size
and time steps simultaneously. Computations were performed for uniform square grids with (N = 10,20,40 and
80) grid volumes for the background mesh. Constant time-steps are used and the ratio ∆t

∆ = 0.1 is held fixed. For
each background mesh, the material volume resolution is also refined by keeping the ratio ∆

∆M
= 3. The Reynolds

number is set to 10 (µ = 0.1 units). The density of the fluid and the material inside the immersed boundary
are set to be unity. Thus, in the absence of any interpolation errors, the temporal and spatial evolution of the
pressure and velocity field with or without the immersed object should be the same as the analytical solution.
Three cases are investigated:
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Figure 5: The L∞ error in u and p at t=0.2 for three cases: without the immersed boundary, with a fixed immersed boundary, with
a rotating immersed boundary. The motion inside the immersed boundary is specified using the analytical solution for fluid velocity
at the material volumes.

1. Absence of immersed boundary: In this case, the interpolation errors between the material volumes and the
cv-centers are absent, and investigates the accuracy of the basic flow solver.

2. Fixed immersed boundary: A square region of size Lsq = 0.5 is placed at the center of the domain. The
square region contains material volumes of size ∆

∆M
= 3, where ∆ is the size of the background grid and

∆M is the size of the material element. At each time-step, the analytical velocity field is specified at each
material element, and is interpolated to the background cv-centers.
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3. Rotated immersed boundary: In this case, in addition to placing a square region at the center of the domain,
the square region and corresponding material volumes are rotated anti-clockwise around the center of the
domain at each time-step. The only difference between this case and the one above is that the region occupied
by the material volumes is changing at each time-step. Thus, the region to which interpolation of the specified
velocity (at material volume centers) and the background cv-centers is applied, is changing in time. The
period of rotation (T) is set to be 0.2 giving the rate of rotation ω = 2π

T = 10π.

Figure 5 shows the L∞ error in the axial velocity (u) and the pressure. For the specified velocities at the material
volume centroids, this tests the accuracy of the interpolation scheme and also the effect of the embedded body
on the overall accuracy of the scheme. With the presence of the immersed boundary (stationary or rotating), the
interpolation between the material volumes and the background mesh, results in an order of magnitude increase
in the velocity error, however, the error converges with second order accuracy. Similar behavior for the error in
pressure is observed.

5.2. Externally Forced Motion of Particles
In order to investigate the effectiveness of the scheme in capturing the fluid flow over immersed objects which

are either fixed or forced to move in a specific manner, two problems are considered: (a) flow over a fixed cylinder,
(b) flow over a fixed sphere, and (c) flow induced by inline oscillation of a circular cylinder.

5.2.1. Flow over a Fixed Cylinder
We first perform simulations of flow past a fixed circular cylinder at Reynolds numbers of 40, 100, 300, and

1000 and compare the results with available numerical and experimental data. The computational domain is
40Dp × 40Dp in the x and y directions, respectively. We use two grid points in the z direction with periodic
boundary conditions. The domain size in the z direction is such that we obtain cubic grid elements in the region
of the cylinder. The material volume resolution is set based on the ratio ∆

∆M
= 4. Note that, in this study, the

particle is represented by cubic material volumes with stair-stepped representation of the boundary (section 3).
Uniform flow of U∞ = 1 units is imposed at the left boundary of the domain. A convective outflow boundary
condition is imposed at the exit. Slip condition ( ∂u∂N = 0; where N represents normal to the boundary), is imposed
on the boundaries in the vertical and spanwise directions. The fluid viscosity is varied to simulate flow over a
sphere at different Reynolds numbers. Since the sphere is fixed, the material volumes are assigned a velocity of
Ui,m = 0, Ωi,m = 0 and setting URBM,k+1

i,m = 0 in evaluating the rigidity constraint [i.e. step (11)] of the numerical
algorithm described in section 4.

Three grid resolutions are employed to study the grid convergence effects: (i) coarse grid, 350 × 350 with
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Figure 6: Close-up view of the computational grid (fine resolution) used for flow over a cylinder.

35 grid points inside the cylinder, (ii) medium grid, 500 × 500 with 60 grid points inside the cylinder, and (iii)
fine grid, 600 × 600 with 100 grid points inside the cylinder region (see Figure 6). The mesh is refined near the
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cylinder boundary. For comparison, Marella et al. [28] used a Cartesian grid method, and employed 452 × 452
mesh on a 30Dp × 30Dp domain for similar test case, whereas, Mittal et al. [29] used 417 × 289 grid points on
a 40Dp × 40Dp domain. The grid sizes near the cylinder interface were 0.01Dp, same as in the present fine-grid
case.
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Figure 7: Instantaneous out-of plane vorticity contours for flow over a fixed cylinder at different Reynolds numbers showing Karman
vortex shedding.

Figure 7 shows instantaneous spanwise vorticity contours for Rep = 100, 300, and 1000 showing periodic
Karman vortex shedding. Figure 8 shows the temporal evolution of the drag (CD = FD/( 1

2ρU
2
∞DpLz) and lift

(CD = FD/( 1
2ρU

2
∞DpLz) coefficients for the same Reynolds numbers, where Lz is the length in the z-direction.

The temporal evolution for drag and lift coefficients and in good agreement with those reported by Mittal et
al. [29]. The flow remains symmetric and steady at Rep = 40 resulting in a steady drag.

In order to validate the accuracy of these computations, we compare the time averaged mean and rms velocity
profiles as well as the Reynolds stress profiles in the wake regions with those obtained from a body-fitted grid
solver [19] at grid resolutions near the cylinder boundary similar to those employed in the present fictitious domain
calculations. Figure 9 compares these wake statistics, showing very good agreement with the body-fitted grid
solution.

In order to further validate the simultaions, we have computed the mean drag coefficient and the Strouhal
numbers (St = fDp/U∞), where f is the vortex shedding frequency computed from the variation in the lift
coefficient. These quantities are computed after a stationary state has been reached in each case. Table 1 shows
the comparison of the Strouhal numbers with other studies, whereas table 2 shows corresponding mean drag
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Figure 8: Temporal evolution of the drag and lift coefficients for flow over a fixed cylinder at different Reynolds numbers.
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Figure 9: Comparison of wake statistics between the present scheme and a body-fitted grid solver based on the formulation by Mahesh
et al. [18, 19]: present scheme, body-fitted grid solution.
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coefficients. The Strouhal numbers, mean drag coefficients, as well as the temporal evolutions of drag and lift
coefficients are well predicted by the present scheme.

Table 1: Strouhal numbers for flow over a cylinder at different Reynolds numbers.

Study Mesh Stp

Rep 100 300 1000
Present Scheme coarse 0.166 0.205 -

medium 0.165 0.211 -
fine 0.165 0.212 0.238

Williamson [30] 0.165 0.205 -
Mittal et al. [29] 0.165 0.21 0.231
Zhang et al. [31] 0.167 - -

Table 2: Mean drag coefficient CD for flow over a cylinder at different Reynolds numbers.

Study Mesh CD

Rep 40 100 300 1000
Present Scheme coarse 1.54 1.38 1.44 -

medium 1.53 1.37 1.42 -
fine 1.54 1.36 1.41 1.50

Henderson [32] 1.54 1.35 1.37 1.51
Mittal et al. [29] 1.53 1.35 1.36 1.45
Marella et al. [28] 1.52 1.36 1.28 -
Mittal & Balachandar [33] - - 1.37 -
Shu et al. [34] - 1.38 - -
Ye et al. [35] 1.52 - 1.38 -

5.2.2. Flow over a Fixed Sphere
We perform three-dimensional simulations of flow over a fixed sphere in a uniform stream to investigate the

accuracy of the numerical scheme to predict the drag coefficient and wake effects at different Reynolds numbers.
Similar to the cylinder case, a domain of size 15Dp × 15Dp × 15Dp is used in the present study with inflow and
convective outflow conditions in the x directions and slip-conditions in the y and z directions. The computational
grid consists of 1283 elements with uniform cubic elements in a small patch of 1.5Dp× 1.5Dp× 1.5Dp around the
sphere. This gives around 26 grid points with in the spherical region. For comparison, Mittal et al. [29] used a
domain of 16Dp×15Dp×15Dp with a non-uniform grid of 192×120×120 grid points for Rep = 350. In addition,
we have performed coarse grid simulations (with around 10 grid points within the sphere) for comparison.

Figure 10 shows streamlines in the symmetry plane over the fixed sphere at different Reynolds numbers.
The flow remains symmetric for low Reynolds numbers, whereas vortex shedding is observed at large Rep. For
low Rep, the location of the center of the recirculation bubble (xc and yc) and its length (Lb) were obtained and
compared with published data to show good agreement (see Table 3). Similarly, table 4 compares the mean drag
coefficients with other studies for the fine grid resolutions to show good quantitative predictions. Figure 11 shows
this comparison with data from Clift et al. [38] and other studies. Predictions on coarse grids (with only 10 grid
points within the sphere) also show similar trends; however, errors are in the range of 2% for large Reynolds
numbers (Rep = 350).
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Figure 10: Instantaneous streamlines for flow over a fixed sphere at different Reynolds numbers

Table 3: Comparison of key computed results for flow past a sphere with other experimental and numerical studies

Red 50 100 150
xc/Dp yc/Dp Lb/Dp xc/Dp yc/Dp Lb/Dp xc/Dp yc/Dp Lb/Dp

Present Scheme 0.617 0.204 0.382 0.757 0.287 0.866 0.324 0.32 1.2
Mittal et al. [29] - - - 0.742 0.278 0.84 0.31 0.3 1.17
Marella et al. [28] - - 0.39 - - 0.88 - - 1.19
Johnson & Patel [36] - - 0.40 0.75 0.29 0.88 0.32 0.29 1.2
Taneda et al. [37] - - - 0.745 0.28 0.8 0.32 0.29 1.2

Table 4: Mean drag coefficient CD for flow over a sphere at different Reynolds number

Study CD

Rep 20 50 100 150 300 350
Present Scheme 2.62 1.55 1.10 0.90 0.686 0.649
Mittal [39] - 1.57 1.09 - - 0.62
Mittal et al. [29] - - 1.08 0.88 0.68 0.63
Clift et al. [38] 2.61 1.57 1.09 0.89 0.684 0.644
Johnson & Patel [36] - 1.57 1.08 0.9 0.629 -
Marella et al. [28] - 1.56 1.06 0.85 0.621 -
Kim et al. [40] - - 1.087 - 0.657 -
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Figure 11: Comparison of computed mean drag coefficient with experimental and numerical data: • present numerical approach,
[38], 2 [28], ∇ [29], . [36].

5.3. Flow Induced by Inline Oscillation of a Circular Cylinder
Flow induced by periodically oscillating circular cylinder was investigated in detail using experimental and

numerical approaches by Dütsch et al. [41]. The flow is characterized by the Reynolds number Re = ρUmDP

µ and
the Keulegan-Carpenter number KC = Umf

DP
where Um is the maximum velocity of the cylinder during oscillation,

DP is the cylinder diameter, ρ and µ are the fluid density and dynamic viscosity, respectively, f is the frequency of
oscillation. The Keulegan-Carpenter number is basically inverse of a Strouhal number, except that the frequency
of oscillation is based on the cylinder motion. In this test case, a sinusoidally varying translational velocity is
imposed to the cylinder in the x-direction:

xP (t) = −AP sin(ωt), (54)

where xP is the x-location of the cylinder centroid, Ap is the amplitude of the oscillation, and ω = 2πf and the
KeuleganCarpenter number becomes KC = 2πAP /DP . The experiments by Dütsch et al. [41] were performed
at Re = 100 and KC = 5. Accordingly, we use DP = 0.01 m, f = 5 Hz, Um = 0.01 m/s, ρ = 1000 kg/m3, and
µ = 1.0082 × 10−3 kg/m.s. Since we are interested in the fluid motion induced under forced oscillations of the
cylinder, the density of cylinder is not necessary. The computational domain is a rectangular box of cross-section
100DP ×100DP ×DP in the axial, vertical, and spanwise directions. The cylinder is initially placed at the center
of the box. Note that our computations are three-dimensional, the domain length is equal to one diameter in the
spanwise direction and we apply periodic boundary conditions. For the x and y boundaries Neumann boundary
condition ∂ui

∂Nj
= 0 is used where Nj is the normal vector to the boundary faces. We use uniform Cartesian grids

in a square region of 20DP × 20DP ×DP , that covers the minimum and maximum displacement of the cylinder.
The grids are stretched away from this region. The grid resolution in the square region around the cylinder is
∆
DP

= 20, whereas outside this region the resolution is ∆
DP

= 5. The material volume grid resolution is fixed at
∆

∆M
= 4.

Figure 12 shows the comparison of the normalized axial velocity in the vertical direction at three different
cylinder positions. Our results are compared with the experimental data [41] as well as the computational results
obtained by an immersed boundary method of Kim and Choi [12]. The fluid velocity induced by oscillatory motion
of the cylinder is well predicted by our numerical scheme. Figure 13 shows the normalized spanwise vorticity
at different phase angles. The flow field developed by the oscillatory cylinder is symmetric about the horizontal
symmetry axis. The vortex formation is characterized by two counter-rotating vortices. The vortical structure
agrees very well those shown by Dütsch et al. [41] and by Kim and Choi [12].

5.4. Freely Moving Rigid Particles
Below we consider a number of cases for freely moving rigid particles in laminar and turbulent flows.
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Figure 12: Normalized axial velocity (u/Um) variation in the y-direction at three different phase positions (ωt = 2πft). The plots
are shown at a fixed x-location, x = −0.6DP relative to the particle center at ωt = 180◦: ◦ Experimental data of Dütsch et al. [41],

present numerical approach, numerical result of Kim & Choi [12].

(a) ωt = 0◦ (b) ωt = 90◦

(c) ωt = 180◦ (d) ωt = 288◦

Figure 13: Temporal evolution of spanwise vorticity in the symmetry plane at different phase angles. The normalized vorticity
contours (ωzDp/Um) are plotted in the increments of 0.85 and range between −8.5 to 8.5. Dashed lines are negative contours.
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5.4.1. The Falling Sphere Problem
We consider the problem of a single sphere falling under gravity in a closed container. The particle density is

(ρp = 1120 kg/m3) and the diameter is (dp = 15 mm). The sphere is settling in a box of dimensions 10×10×16 cm3.
The particle is released at a height H = 12 cm from the bottom of the box. The boundaries of the box are treated
as no-slip walls. The fluid propertiies are varied to obtain different Reynolds numbers based on the terminal
velocity of the particle. The simulation conditions correspond to the experimental study by ten Cate et al. [42].
Table 5 provides detailed information about the parameters used in this test problem.

Table 5: Parameters for the sedimenting sphere test problem.

Case Name ρF (kg/m3) µF (10−3Ns/m2) u∞ (m/s) Rep = ρFu∞dp

µF

C1 970 373 0.038 1.5
C2 965 212 0.06 4.1
C3 962 113 0.091 11.6
C4 960 58 0.128 31.9

We simulate the above cases on a fine uniform grid of 100×100×160 points with a grid resolution of ∆ = 1 mm.
This provides around 15 grid points inside the particle domain. The material volumes are cubical with ∆

∆M
= 5,

where ∆M is the size of the material volume. Accordingly, there are around 75 material volumes along the
diameter of the spherical particle in each direction. A uniform time-step (∆t = 0.5 ms) is used for all cases.
This time step is in the same range as the one used in Lattice Boltzmann simulations by ten Cate et al. [42] and
simulations by Feng & Michaelides [8] based on Proteus. For this time step the CFL ≤ 0.1 at all times. Later
we conduct convergence study of this case with varying grid sizes and time-steps to show their effects on the
solution.
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Figure 14: Comparison with the experimental data of the sphere fall velocity and the normalized height from the bottom wall for
different Reynolds numbers: (Symbols: experiment [42], lines: present simulation) � Re = 1.5, ◦ Re = 4.1, 2 Re = 11.6, and

/ Re = 31.9. Here H = h−0.5DP
DP

where h is the height of the sphere center from the bottom wall and DP is the particle diameter.

Figures 14a-b show the comparison of the time evolution of particle settling velocity and position at different
times obtained from the numerical simulations with the experimental data [42]. The simulation predictions for
both the particle velocity and the particle position show good agreement with the experimental data. The slowing
of the particle towards the end of the simulation are to due to the presence of the bottom wall. Variations in the
predicted and experimental data towards the last stages of particle settling are strongly affected by the collision
model used.
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(a) t = 0.5 s (b) t = 1.3 s (c) t = 2.1 s (d) t = 2.8 s

(e) t = 0.25 s (f) t = 0.5 s (g) t = 0.8 s (h) t = 1 s

Figure 15: Contours of normalized velocity magnitude (
‖u‖
u∞

) at different times during the free fall for Re = 1.5 (a–d) and 31.9 (e–h).

The time instances are chosen such that the particles are at the same height from the bottom wall for each Reynolds number. Contour
lines are between 0 and 1 with equal spacing of 0.1.
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It should be noted that the Lattice Boltzmann simulations conducted by ten Cate et al [42] used a calibration
procedure which computes an effective sphere radius from an analytic expression for the drag force at low Reynolds
numbers at a given volumetrically averaged fluid velocity. Without this procedure, the velocity of the particle can
be up to 20% different from the experimental values [42]. In the present simulations, such calibration or parameter
fitting is not attempted. Use of large number of material volumes within the sphere (larger ratio between the
background grid and the material volume grid) provides an accurate description of the sphere size and surface.

Figure 15 shows the temporal evolution of the normalized velocity magnitude in the symmetry plane for
Re = 1.5 and Re = 31.9. At Re = 1.5, the fluid velocity induced by the motion of the particle is not symmetric
in the direction of motion. The evolution of fluid velocity induced at higher Reynolds number shows elongated,
but narrower wake region. At both Reynolds numbers, the effect of the bottom wall is evident when the particle
approaches the bottom wall. The fluid velocity contours in front of the falling particle get modified. The velocity
contours compare well with those measured by ten Cate et al [42].

Convergence Study: We performed a detailed grid and time-step refinement study to investigate the order of
accuracy of our numerical scheme. Accordingly, we simultaneously refined the background grid and the time-step
by keeping the ratio ∆t

∆ the same to investigate the collective spatial and temporal errors. We present the results
for high Reynolds number case (Re = 31.9). Uniform Cartesian grids with five grid resolutions of 50 × 50 × 80,
60× 60× 96, 70× 70× 112, 90× 90× 144, and 100× 100× 160 were considered with appropriate refinements of
the time-steps. The corresponding time steps used were ∆t = 10, 8.33, 7.1, 5.55, and 5 ms, respectively. Note
that we simultaneously vary the grid size and time-step in order to evaluate the collective temporal and spatial
discretization errors. The material volume resolution was also varied with subsequent background grid refinements
by keeping the ratio ∆

∆M
= 5 fixed. The simulations were performed till t = 0.8 s and compared with fine grid

solution (120 × 120 × 192) to obtain the L∞ error. Figure 16a shows the behavior of numerical error under the
grid and time-step refinement. The convergence is slightly less than second-order accuracy, however, it is much
improved compared to the first order accurate scheme presented by Sharma & Patankar [14] for the falling sphere
problem. Figure 16b shows the corresponding evolution of the particle velocity at different resolutions compared
with the experimental data.
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Figure 16: Convergence studies on particle settling velocity for Re = 31.9 under simultaneous grid and time-step refinement: (a) L∞
error in fall velocity, (b) comparison of fall velocity at different resolutions with experimental data.

Finally, we investigate the effect of time-step refinement on the particle position and velocity. Accordingly, we
use a fine grid of 100×100×160 with ∆

∆M
= 5 and compute the particle fall velocity at for cases C1–C4 with time-

steps ∆t = 0.5 and 5 ms for each. Figure 17a,b show the time-evolution of predicted particle position and velocity,
respectively. For low Re, accurate computation of the particle motion is necessary in the particle acceleration and
deceleration phases. For large time-steps, it is observed that the particle velocity is consistently over-predicted
and thus the particle position is always lower than that observed in experiments. With refinement in time-steps;
however, good comparisons are obtained. For larger Reynolds numbers, time-step refinement produced little
change in the particle position. Recently, Feng & Michaelides [8] used their direct forcing method to simulate
the sedimenting sphere problem with time steps on the order of 0.5 ms and showed similar agreement. For larger
time-steps Veeramani et al. [15] show similar results as presented here. The present numerical scheme is stable
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and gives accurate results for particle fall velocity at CFL numbers on the order of unity. For the cases studied
here, it is apparent that the implicit formulation for computing rigid body motion and rigidity constraint force
does not restrict the time steps to small values.
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Figure 17: Convergence studies on particle settling velocity for low Reynolds numbers under time-step refinement: : (a) particle
fall velocity, (b) particle poisition. (Symbols: experiment [42], lines: present simulation) ∆t = 5 ms, ∆t = 0.5 ms, �
Re = 1.5, ◦ Re = 4.1, 2 Re = 11.6, and / Re = 31.9. Here H = h−0.5DP

DP
where h is the height of the sphere center from the bottom

wall and DP is the particle diameter.

5.5. Wake Interactions of Two Particles
Interactions between wakes of two particles falling under gravity are investigated to further validate our

method. Two cases are considered: (i) identical particles falling under gravity and released with a certain
separation distance, and (ii) same size but different density particles released with certain separation but slightly
off-centered such that there is no collision between them.

5.5.1. Same density particles: Drafting, Kissing, and Tumbling
Two particles of diameter 1/6 cm are placed in a box of range (0, 0, 0) to (1, 1, 4) cm. The particle centers are

located at (0.5, 0.5, 3.5) cm and (0.5, 0.5, 3.16) cm, respectively. The densities of the particles and the surrounding
fluid are 1.14 g/cm3 and 1 g/cm3, respectively. Uniform Cartesian grids are used. Two runs with grid resolutions
1/60 cm and 1/80 cm and material volume resolution fixed at ∆

∆M
= 4 are performed. The time step is held fixed

at ∆t = 1 ms. The fluid viscosity is µ = 0.01 g/cm.s and the gravitational constant g = 9.8 m/s2. This case is
identical to that investigated by Glowinski et al. [4].

Figure 18 shows the particle positions at different times and viewed from different angles. An important flow
phenomenon known as ‘drafting, kissing and tumbling’ is clearly visible. The leading particle creates a wake of
low pressure. The trailing particle is caught in its wake. It experiences lower drag hence falls faster than the
leading one. This phenomenon is called drafting. The increased speed of the trailing particle impels a kissing
contact with the leading particle. This state is unstable in a Newtonian fluid and as a result the particles tumble
under the influence of a couple. The motion of the spheres and the tumbling process itself is dependent upon the
collision model used in the study.

Figure 19 shows the time evolution of the height of particle centers from the bottom wall, the vertical velocities
of each particle, and the separation distance between them for the finer grid resolution of 1/80 cm. The separation
distance is also plotted for a coarser resolution 1/60 cm. These variations, the time of collision and the evolution
of particle separation distances after the tumbling are in agreement with those reported by Glonwinski et al. [4].

5.6. Different density particles
To further evaluate our numerical scheme, we considered wake interactions of two particles of same size but

different density that are initially released from different heights. The particles are off-centered such that they
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Figure 18: Drafting, kissing and tumbling of two sedimenting particles of same size and density: (a) full 3D view, (b) X-Z plane
showing tumbling, (c) Y-Z plane.
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Figure 19: Drafting, kissing and tumbling of two sedimenting particles of same size and density for two grid resolutions: (a) height
of particle centers from the bottom wall, (b) vertical velocity of each particle, (c) separation distance between the particles. Letters
‘T’ and ‘B’ represent top and bottom particle based on initial positions and ∆ = 1/60, ∆ = 1/80.
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will not come in physical contact with each other, however, may influence each others motion through wake
interactions.

The particles are placed in a box ranging from (−1,−1, 0) m to (1, 1, 8) m with uniform Cartesian grids of
60 × 60 × 240. The particle diameter is 0.4 m. The ratio between the grid resolution and the material volume
resolution ∆

∆M
is kept fixed at 4 for each particle. This gives around 24 grid points inside the particle region. The

fluid density is 1 kg/m3 whereas the top and bottom particles have densities 1.5 and 1.25 kg/m3, respectively.
The fluid viscosity is µ = 0.0005 kg/m.s and the gravitational constant is set to be g = 9.8 m/s2. The particles
are initially released from heights (−0.26, 0, 7.4) and (0.26, 0, 6.6) m. The initial separation between the particle
centers is 2DP and 1.3DP in the vertical and horizontal directions, where DP is the diameter of the particles.
The time-step used is ∆t = 1 ms. The terminal Reynolds number for the leading particle is on the order of 1200.

(a) (b) (c) (d) (e)

Figure 20: Time evolution of vorticity contours showing unsteady wake interactions between two particles of same size but different
densities released off-centered and falling under gravity: (a) 25 ms, (b) 75 ms, (c) 125 ms, (d) 175 ms, and (e) Contour legend.
Gravity is in the negative Z direction.

Figure 20 shows the time evolution of the out-of-plane vorticity together with the particle positions. The top
particle accelerates faster because of its higher inertia and overtakes the bottom particle. As the particles come
close to each other, the wake interactions become pronounced, the heavier particle deflects the lighter particle to
one side. The heavier particle also moves to the same side and unsteady wake interactions are observed showing
the capability of the numerical solver to capture such phenomena.

5.7. Particle Laden Isotropic Turbulent Flow
The numerical scheme is used to simulate particle-laden homogeneous, isotropic turbulent flow in a periodic

box of length π with grid resolution of 1283. A stationary isotropic turbulent flow is first developed using the
linear forcing proportional to the local velocity [43]. The turbulence parameters for a Reynolds number of 54
based on the Taylor microscale. The turbulence intensity is U ′ = 0.84, the dissipation rate ε = 0.2, the fluid
density ρ = 1, and the kinematic viscosity ν = 0.013. This gives the Kolmogorov length scale of η = 0.056, the
Kolmogorov time scale is τK = 0.25 the Taylor microscale λ = 0.81, the integral length scale of L = 1.65, the
integral time scale T = 1.98, and kmaxη (the measure of resolution) is 2.28. The time-step used is ∆t = 1× 10−3.

After obtaining a stationary state, the forcing function is turned off and 125 solid spherical particles are
injected into the domain, with initial uniform distribution. The diameter of the particles (Dp) is 0.2 providing
around 8 grid points over the particle domain. The particles are arranged such that they have a separation
distance of π

5 between nearest neighbors (i.e. north, south, east, west, top and bottom). The material volume
resolution is based on the ratio ∆

∆M
= 4. The particle density is ρp = 9 and the particle relaxation time is

τp = 1
18
ρp

ρ

D2
p

ν ≈ 1.77. For the present case, the size of the particle is larger than the Kolmogorov length scale.
Accordingly, different time scales can be used to normalize the particle relaxation time and define the Stokes
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number. Based on the Kolmogorov time-scale, the Stokes number, St = τp/τK = 4.42. The particle Reynolds
number (Rep = ρdp|urel|/µ), where urel is the relative velocity between the fluid and the particle, is on the order
of 10–20 in these simulations. The relative velocity urel is estimated when the particles are first injected into the
domain and represents the characteristic velocity scale based on the fluctuating slip velocity. Also in these cases
gravity is absent, and the inter-particle collision parameters are estimated based on the lubrication model used
by ten Cate et al. [17]. As was shown earlier for the flow over a fixed spherical particle, the resolution of 8–12
grid cells inside the particle domain is sufficient to resolve the fluid-particle interactions in this regime.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 21: Temporal evolution of spherical particles and out-of-plane vorticity in a decaying isotropic turbulence flow. The snapshots
are at different times after the particles are injected into the domain, t/T : (a) 0.5, (b) 2.5, (c) 5, (d) 7.5, (e) 12.5, (f) 17.5 and (g)
20. The particle kinetic energy initially increases and then decreases. Finally, the fluid-particle system comes to rest.

The particles are initially at rest. As the turbulent flow decays, the particles first accelerate, reach a maximum
velocity and then decelerate. Figure 21 shows the time-evolution of the out-of-plane vorticity contours together
with the location of the particles in the symmetry plane z = 0. Note that since a planar cut of instantaneous
particle positions is shown, the particle boundaries are circles of different sizes depending upon the instantaneous
location of the particle centers. Accordingly, the shapes and sizes of the circles shown in the figures appear
different. However, this is just the plotting artifact and in the simulations the particles retain their size. The
particles do show some clustering as they evolve from uniform distribution. The simulation was performed on
64-processors IBM machines at San Diego Supercomputing Center. It requires approximately 6 seconds per
time-step for this simulation. The overhead of the computing time due to computation of the rigidity constraint
and the motion of particles is about 10% and another 10% time is spent on inter-particle collision scheme.

To demonstrate that out approach can simulate arbitrary shaped particles, freely moving cubical particles
of size 0.2 are computed in an isotropic turbulent flow. Other flow and particle parameters are same as above.
Figure 22 shows the snapshots at different times of the cubical particles and vorticity contours in the symmetry
plane, again showing interactions between the particles and the unsteady turbulent motion. The initially uniformly
spaced particles, cluster in small vorticity regions. Rotation of the particles around their centroids is visible.

5.8. Simulating Large Number of Particles in Turbulent Flows
The numerical scheme developed is parallelized using the MPI-paradigm. Fully resolved simulations of large

number of particles in turbulent flows requires complete resolution of the smallest temporal and spatial scales.
For the above case of isotropic turbulent flow, the CPU-time distribution in each task of the numerical algorithm
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(a) (b) (c) (d)

Figure 22: Temporal evolution of cubical particles and out-of-plane vorticity in a decaying isotropic turbulence flow. The snapshots
are at different times after the particles are injected into the domain, t/T : (a) 0.5, (b) 5, (c) 10, and (f) 15.

is shown in Figure 23. For this particular case, the number of particles are roughly evenly distributed on each
processor. The time required for computation of the rigidity constraint and the particle motion itself is significantly
less compared to the time required for a single time-step in the absence of any particles. For this case, the collision
frequency among the 125 particles was small. Inter-particle collision frequency and computation of collision force,
however, may require much more CPU time than that indicated in Figure 23 owing to the N2-nature of the
collision computation. Methods based on Verlet lists and linked-lists [23] can be used to reduce this time. The
overall solution is then constrained by the solution of the Poisson system, indicating that the computational
overhead of simulating particle motion is small.

Figure 23: Computational time distribution in each time-step for rigid-particle laden isotropic turbulent flow.

Simulation of large number of particles on the order of 10, 000 particles and beyond in complex turbulent
flows is feasible with the numerical scheme. However, several issues related to numerical efficiency need to be
addressed. For example, if the particles are not uniformly distributed over the computational domain, and the
grid partitioning is based on the fluid flow solver, severe load imbalance may occur. Advanced strategies for
domain decomposition are required and will be the focus of subsequent study.

6. Summary and Conclusions

A numerical formulation for fully resolved simulations of freely moving rigid particles in laminar and turbulent
flows is developed based on a co-located grid, finite-volume method. In this fictitious domain based approach, the
entire computational domain is first treated as a fluid of density corresponding to the fluid or particle densities in
their respective regions. The incompressibility and rigidity constraints are applied to the fluid and particle regions,
respectively, by using a fractional step algorithm. The approach extends the formulation developed by Patankar [1]
to time-staggered, co-located grids. Use of consistent interpolations between the particle material volumes and the
background grid and parallel implementation of the algorithm facilitates accurate and efficient simulations of large
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number of particles. Implementation of this approach in finite-volume, co-located grid based numerical solver is
presented. The numerical approach is validated for flow over a fixed sphere at various Reynolds numbers and flow
generated by a periodically oscillating cylinder. Several fluid-structure interaction problems were also studied to
investigate the accuracy and predictive capability of the scheme for freely moving particles. Finally, simulation
spherical particles in a decaying isotropic turbulent flow is performed to show the feasibility of simulations
of turbulent flows. The overhead due to presence of particles and computing their motion is small and the
computational speed is governed by the pressure Poisson equation used to impose the incompressibility constraint,
making this approach attractive for large-scale simulations resolving the multiscale interactions between particles
and turbulent flow.
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