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Direct numerical simulations were performed to study the effect of an elastically mounted
trailing edge actuator on the unsteady flow over a plunging, thin airfoil at Reynolds num-
ber of 14700 based on the chord length. The goal is to investigate potential benefits of
flow-induced passive actuation of the trailing edge to the lift and drag characteristics of
flapping MAV wings. The trailing edge, of 30% the chord length, is hinged to the wing
using a torsion spring. It may undergo flow induced rotation resulting in dynamic varia-
tions in the airfoil shape. This trailing-edge spring assembly is modeled by simple, linear,
torsion spring dynamics. A small parameter space varying the spring flexibility is explored
to investigate its effect on the airfoil performance. Firstly, the second-order fictitious do-
main based finite volume approach by Apte et al. (J. Comp. Phys. 2009) was extended
to model this fluid-structure interaction problem on a fixed, Cartesian mesh. Verification
studies were conducted on a canonical test case of a spring-mounted cylinder to show good
predictive capability. Secondly, flow over a plunging thin flat airfoil, at reduced frequency
of 5.7 (10 Hz) and 5◦ angle of attack was investigated with and without the actuation of
the trailing edge. It was found that, spring natural frequencies higher than the plunging
frequency result in the tailing edge actuation that leads to net increase in thrust. The
phase difference between the leading and trailing edge motions was found to vary based on
the spring flexibility and played a critical role in governing wing performance.

I. Introduction

There is considerable interest in biologically inspired flows with applications to small unmanned vehicles
and micro-air vehicles (MAVs).1–5 Designing efficient and stable MAVs with flapping wings that are easily
maneuverable and resistant to flow disturbances is receiving a lot of attention.6 Considerable effort has been
devoted toward flexible wings for such designs, following the bird flight such as bats.7–9 However, providing
fundamental analysis explaining resultant increase in propulsion efficiency or thrust owing to flexibility has
been a challenge due to the complexity of the fluid-structure interaction problem. Oscillating foils with
chordwise or spanwise flexibility have been studied using experiments3–5,10,11 as well as simulations1,12–17

to show positive benefits of flexibility on performance. Trailing edge ‘pop-up’ studies of Meyer et al.18 and
Schluter19 show that birds use a trailing edge flap that is self-adjusting to reduce trailing edge separation and
the result is higher lift and delayed stall at high angle of attack. Even at zero Reynolds numbers (hovering
flight conditions), wing flexibility has been shown to provide higher thrust.11,20–22

Heathcote and Gursul5,23 used a plunging teardrop airfoil with a long, slender and flexible filament at
the tail to show that there exists a range of flexibility of the trailing edge filament that provides increased
thrust and propulsion efficiency. This increase in efficiency is linked to the phase difference between the
leading edge plunging motion and the trailing edge flapping. Trailing edge flexibility causing a 90◦ phase
difference has been shown to yield the highest increase in efficiency.
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Owing to complexities of the unsteady flow and flexible wing interaction, understanding the effect of
continuous wing flexibility, with high degrees of freedom, on airfoil performance is difficult. There is a
critical need to develop a canonical problem that is simple enough and yet represents the salient features of
the wing-flexibility and flow dynamics for fundamental analysis. Recently, Eldredge and co-workers21,22,24

developed a simplified two-element rigid model of a wing that are hinged through torsion springs to study
flapping wing aerodynamics under hovering conditions (Re = 0). The torsion spring provides rotational
flexibility and the leading element of the wing is driven to undergo translational (plunge) and rotational
(pitch) kinematics. This canonical model allowed direct comparison of the computational predictions based
on a vortex method to experimental data as quantifying spring parameters is relatively straightforward.

This work investigates a hinged trailing edge mounted with torsion springs, to provide a simple yet realistic
model for flapping wing design with chordwise flexibility as observed in small birds. As the first step, effects
of flow induced actuation on the lift and drag characteristics under plunging motion is investigated. The
central hypotheses for this work are

• flow-induced, passive actuation of the trailing edge and resultant open loop control combined with
plunging motion of the airfoil (representative of flapping wing mechanism), may result in increased
thrust and propulsion efficiency for certain range of spring flexibility.;

• appropriate design of the torsion spring may result in flow-induced limit cycle oscillations of the trailing
edge and enhance lift-to-drag ratios and performance.

This exploratory study uses thin, flat airfoils as they have been shown to improve lift-to-drag ratios while
adhering to weight and size constraints. At low Re, thin flat airfoils actually delay stall to higher angles of
attack when operating at lower aspect ratios, although the lift is somewhat lower at lower angles of attack.25

One major concern of thin airfoil design, when operating at high lift conditions, is the unsteady nature of
separation at the leading edge resulting in a Kelvin-Helmhotlz type flow instability26–28 and resultant large
unsteadiness in lift and drag characteristics. However, for oscillatory or flapping wings, the angles of attack
are typically small and are dynamically changing owing to imposed plunging motions. Thin wings also help
maintain lower overall weight of the wings.

Figure 1. Schematic diagram of a thin, flat wing with a spring-mounted
trailing edge actuator.

Study of a two-dimensional wing
is carried out, since it minimizes
three-dimensional effects owing to
tip vortices which can alter the flow
structure in low-aspect ratio wings.
A large aspect ratio wing at low Re
facilitates use of a two-dimensional
DNS approach, significantly saving
computational time and facilitat-
ing investigation of the flow physics
with a wide range of parametric
studies. High-fidelity simulations
of plunging SD7003 by Visbal12,13

indicates that transition to turbu-
lence and three-dimensionality ef-
fects become important for Re >
30000. In order to test the above
hypotheses using numerical techniques, a fictitious domain method developed by Apte et al29 is used, to ac-
count for flow-induced oscillations of the trailing edge actuator with one-degree of freedom (rotation around
the hinged point). A small parameter space varying the spring flexibility, through its natural frequency (fN)
around the plunging frequency (fp), is explored to understand its effects on the wing performance.

II. Methodology

The equations for angular motion of the trailing edge with single degree of freedom can be obtained
by considering it as a compound pendulum and obtaining the net moment around the hinge location (see
figure 2). This includes the moment due to the weight of the trailing edge (mag), the moment due to the
aerodynamic forces on the trailing edge, the restoring moments due to spring, and any pre-tension in the
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spring necessary to maintain a mean position aligned with the angle of attack (i.e. θ = 0◦) in the absence of
any actuation of the trailing edge.

Figure 2. The hinged trailing edge dynamics
modeled as a compound pendulum.

Accordingly, the dimensional equation of motion of the
trailing edge is given as,

Ia
d2θ

dt2
+C

dθ

dt
+Kθ+

1
2
mag`a (cos(θ − α0)) = Mflow−Mpretension,

(1)
where Ia is the moment of inertia of the actuator about the
hinge, ma is the mass of the trailing edge actuator, α0 is the
angle of attack, θ is the deflection of the actuator, g is the
gravitational acceleration, Mflow is the aerodynamic moment
on the trailing edge, Mpretension is the moment due to pre-
tension in the spring, K and C are the spring stiffness and spring damping parameters, respectively. Note
that, spring pretension can be set to obtain the mean position of the trailing edge to align with the angle of
attack (i.e. θ = 0) and balances the moment due to the weight of the trailing edge. In order to understand
the dynamics of the trailing edge owing to only the aerodynamic forces, further simplification of the above
equation is possible, by neglecting the gravity-based term and also the pretension moment in the analysis.
These terms were found to have small effect, especially in the case of small values of θ. Using the trailing edge
length (`a) as the length scale and free stream velocity (U∞) as the velocity scale, the simplified equation
can be non-dimensionalized to get,

d2θ

dτ2
+ 4πξStN

dθ

dτ
+ (2πStN)2

θ =
3

2I∗

(
`a
ta

)
CM , (2)

where I∗ = Ia/(mf `
2
a/3) = ρa/ρf is the moment-of-inertia ratio (ratio of moment of inertia of the actuator

about the hinged point to the moment of inertia of the equivalent fluid) which turns out to be the ratio
of the actuator density to the fluid density, τ = tU∞/`a is the non-dimensional time, StN = fN`a/U∞ is
the Strouhal number based on the natural frequency of the spring (fN = 1

2π

√
K/I), ξ = C

2
√
KI is the non-

dimensionalized damping parameter, ta is the airfoil thickness, and CM is the net pitching moment around
the hinge based on the torque acting on the actuator.

In order to accurately compute the fluid-structure interaction problem, a coupled algorithm that solves
the spring dynamics and the fluid-flow equations implicitly is needed. The computational algorithm used in
this work for flow over immersed objects on simple Cartesian grids is based on a fictitious domain approach.29

In this approach, the entire fluid-rigid body domain is assumed to be an incompressible, but variable density,
fluid. The flow inside the fluid region is constrained to be divergence-free for an incompressible fluid, whereas
the flow inside the particle (or rigid body) domain is constrained to undergo rigid body motion (i.e. involving
translation and rotational motions only).

The momentum equations together with the incompressibility constraint are:

∂uj
∂xj

= 0;
∂ui
∂t

+
∂ujui
∂xj

= −1
ρ

∂p

∂xi
+

1
ρ

∂τij
∂xj

+ gi +
1
ρ
FR,i (3)

where τij is the viscous stress tensor, and FR,i is the rigidity constraint force that is present only inside the
particle region to enforce the rigid body motion. These equations are solved using a three-stage fractional
step algorithm. First, the momentum equations are solved everywhere without the rigidity constraint force,
using symmetric, energy conserving discretization.30 The incompressibility constraint is then imposed by
solving a pressure Poisson equation (obtained by taking the divergence of the momentum equation). The
resultant velocity field, at this stage satisfies the incompressibility constraint every where but may not lead to
rigid-body motion within the solid region. The flowfield inside the solid region can be decomposed into a rigid
body component (uRBM ) and a deformational component (u′); u = uRBM+u′, where uRBM = UT

p +Ωp×r,
RBM stands for rigid body motion consisting of translational (UT

p ) and rotational components, Ωp is the
angular rotation rate, and r is the position vector of an LP with respect to the immersed object centroid.

In the second stage, the RBM of the trailing edge can be obtained by solving the trailing edge dynamics
equation (2) by decomposing it into two coupled first-order ODEs and using an explicit third-order Runge-
Kutta scheme. The pitching moments are obtained from the velocity field computed in the above stage.
Knowing the angular velocity of the trailing edge, the rigid body motion, uRBM = UT

p + Ωp × r, can be
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easily obtained by considering rotation around the hinge point. Finally, the rigidity constraint force (non-
zero only inside the immersed object) is then computed and imposed in a third stage to make the velocity
field inside the immersed object a rigid body motion:

FR = −ρu′/∆t. (4)

In order obtain a strong coupling between the spring dynamics and the fluid-flow solver, the two sets
of equations are solved iteratively in each time-step. In the numerical implementation, small material
points/volumes of cubic shape that completely occupy the immersed object are created. Each material
volume is assigned the properties of the immersed object (e.g. density etc.). The shape of the object can be
reconstructed from these material volumes by computing an indicator or color function (with value of unity
inside the object and zero outside) on a fixed background mesh used for flow solution.

The algorithm uses colocated grid formulation for velocity and pressure field, with symmetric, central
differencing for momentum fluxes and eliminates the need for any upwind biased stencil for stability. All
variables are stored at the control volume (cv) center with the exception of the face-normal velocity uN,
located at the face centers. The face-normal velocity is used to enforce continuity equation. Capital letters
are used to denote material volume fields. Time-staggering is used so that the variables are located most
conveniently for the time-advancement scheme. Accordingly, the material volume positions (Xi) are located
at time level tn−1/2 and tn+1/2 whereas the velocity fields (ui, uN, and Ui) and the rigid body constraint
force fi,R , are located at time level tn and tn+1. This makes the discretization symmetric in time, a
feature important to obtain good conservation properties. The iterative procedure within a single time-step
is described below.

do while .NOT. done

1. Advance material point (MP) locations (Xn−1/2
i,P

Un
i,P︷︸︸︷→ X

n+1/2
i,P ).

2. for k = 1, N inner iters do

(a) Solve momentum equations (SOR ) (uni → ûki )( Crank-Nicholson for inertial and viscous
terms, latest pressure gradient)

(b) Setup and solve the pressure Poisson equation (pki ) to impose the incompressibility
constraint∇·un+1

i ( algebraic multigrid, HYPRE). Compute face-based and cv-center pressure
gradients (area-weighted pressure gradient reconstruction).

(c) Correct velocity: face-based (ûnf → ukf ) and cv-center velocity (ûi → uki ).
(d) Interpolate cv-center velocity to MP-centers (cv→ MP) and setup rigidity con-

straint force base on latest velocity (URBM,k−1
i,P )

(e) Compute net torque on the actuator around the hinge location and solve the spring
equations (RK3): θn(θ̇n)→ θk(θ̇k).

(f) Compute new rigid body motion (URBM,k
i,P ) and update the rigidity constraint force (F ki,P )

based on new velocity.
(g) Impose rigidity constraint within the rigid body using interpolation (MP→ cv). Update

cv-center velocity uki .

end for; set un+1
i = uki ; Un+1

i,P = Uni,P .

Check if done; end while

The above approach has been implemented in a fully parallel, three-dimensional and conservative finite-
volume scheme31 for accurate prediction of turbulent flows. In order to verify the solver and also assess
its predictive capability as applied to flow over airfoils over a range of Reynolds numbers [O(102 − 105)],
relevant to the operating conditions of micro-air vehicles, a systematic grid refinement study was performed
on a standard test case of flow over SD7003 airfoil. The results are also compared with AFRL’s very high-
fidelity solver FDL3DI developed by Visbal.12 For a fluid-structure interaction problem, the solver is also
tested for a spring-mounted cylinder problem as described below.
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III. Results

This section is arranged as follows. First, the computational studies involving verification tests as well as
grid refinement studies on a SD7003 plunging airfoil and comparisons to the work by Visbal12 are presented.
Next, the canonical test case of flow over a spring-mounted cylinder is used to verify the capability of the
solver to accurately capture the fluid-structure interactions. The verified solver is then applied to investigate
the effect of a passively actuated trailing edge on the thrust and lift characteristics.

A. Verification Tests

The fictitious-domain approach was used to simulate flow over a plunging SD7003 airfoil, corresponding to the
high-fidelity simulations by Visbal.12 The case with chord Reynolds numbers of 103 and 104 were investigated.
This test case is crucial to establish predictive capability of the present solver compared to AFRL’s high-
fidelity FDL3DI solver. In addition, it also allows to establish minimum grid resolution requirements to
obtain grid converged results for flat airfoils studied next. The SD7003 airfoil has a maximum thickness of
8.5% and a maximum camber of 1.45% at 35% chord length. The original sharp trailing edge was rounded
with a circular arc of radius (r/c ≈ 0.0004, c is the chord length) corresponding to the simulations by
Visbal.12 The flow conditions correspond to angle of attack (α) of 4◦, non-dimensional plunge amplitude
h0 = 0.05, reduced frequency of plunging motion, k = πfc/U∞ = 3.93, where U∞ is the free-stream velocity.
A ramp function was used to allow smooth transition to the periodic plunging motion:

h(t) = h0sin[2kF (t)t]; F (t) = 1− e−at; a = 4.6/t0; t0 = 0.5. (5)

Table 1. Grid and time-step resolutions for the SD7003 case used in present study (first three rows) and
computations by Visbal12 (bottom two rows).

Grid ∆x/c (or ∆s/c) ∆y/c (or ∆n/c) ∆tU∞/c
Baseline 0.00275 0.00275 0.0002
Coarse 0.005 0.005 0.0004

Non-uniform 0.005 0.0008 0.0002
Baseline12 0.005 0.00005 0.00005
Coarse12 0.01 0.001 0.0001

The grid resolution and time-step used for the present study are given in Table 1. A simple Cartesian grid
refined in a small patch around the airfoil was used. Two grid points were used in the spanwise direction, with
periodic conditions, for this two-dimensional study. Visbal12 used a body-fitted, moving grid, and a sixth-
order accurate algorithm with wall-normal resolution of 0.00005 and 0.0001 (non-dimensionalized by chord
length) for baseline and coarse grids, respectively. The corresponding resolutions along the airfoil surface
were 0.005 and 0.01, respectively. For the present simulations, a baseline grid resolution of 0.00275×0.00275
was used in axial and vertical directions. The grids were cubical whereas those used by Visbal were highly
stretched in the wall-normal direction with very high aspect ratio. In the present study, a uniform coarse
grid (twice as coarse compared to the baseline grid) was also used. In addition, non-cubic grids with much
finer resolution in vertical direction compared to the axial direction were also used as shown in Table 1. Use
of finer resolutions are feasible in the present solver; however, the simulations on thin, flat airfoil as planned
in this study used similar resolutions as for the SD7003 case, in order to facilitate several parametric studies
in reasonable time. The time-step used for the present incompressible flow simulations is also 4-times larger
than those used by Visbal12 in his compressible flow solver. The incompressible, pressure-based solver used
in the present work allows for large time-steps (CFL ∼ 0.2) with good accuracy without any numerical
instabilities.

Figure 3 shows contour plots of out-of-plane vorticity at four different phase angles (plotted at midspan)
for Re = 10, 000 compared with corresponding plots by Visbal12 showing very good qualitative comparison of
the vortex structures on the baseline grid. The phases shown correspond to the positions of maximum upward
displacement (Phase 0), maximum downward velocity (Phase 1/4), maximum downward displacement (Phase
1/2), and maximum upward velocity (Phase 3/4). Due to large effective angle of attack induced by the
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Figure 3. Instantaneous, out-of-plane vorticity contours (ωzc/U∞, range ±40) for Re = 10, 000: (a) results by
Visbal12 (on baseline grid), (b) present results on baseline grid, (c) present results on non-uniform grid, and
(d) present results on coarse grid.

Figure 4. Two-dimensional loads on SD7003 airfoil at two different Reynolds numbers compared with the
high-fidelity solver, FDL3DI:12 (a,b) Drag and lift coefficients at Re = 1000, (c,d) drag and lift coefficients at
Re = 10000. Predictions for baseline, coarse and non-uniform grids are shown.
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plunging motion during the downward stroke, leading edge separation occurs on the upper surface creating
coherent dynamic-stall-like vortices. Two distinct leading-edge vortices are formed above the upper surface.
Owing to high-frequency of plunging, these leading edge vortices travel close to the upper surface and prevent
stall conditions. Due to the vortex-surface interaction, ejection of vorticity of opposite sign from the upper
surface is also observed similar to the work by Visbal. Formation of a single leading-edge vortex on the
airfoil lower surface is also observed during the upstroke due to large negative angle of attack. All these
features relate closely on the present baseline grid compared to those observed by Visbal. Some deviations
of vortex structures in the wake region are observed for the non-uniform or coarse grids; however, around
the airfoil surface, all grids seem to provide similar flow structures. This is further confirmed by comparing
the temporal evolution of lift and drag coefficients for Re = 1000 and Re = 10, 000.

Figure 5. Spring mounted cylin-
der with two-degrees of freedom.

Quantitative comparison of the lift and drag coefficients were also ob-
tained for Re = 103, 104 as shown in figure 4. It is seen that, for both
Reynolds numbers the loads are well predicted. The drag coefficient is
slightly under-predicted for Re = 10000, near the phase 3/4 of the peri-
odic cycle. This may be attributed to the coarser wall-normal resolution
in the present simulations compared to those by Visbal.12 However, the
asymmetric nature of the drag coefficient (especially for Re = 10000) is
captured by present simulations. This asymmetry actually results in mean
thrust for these high-frequency plunging cases. This case study also veri-
fies the predictive capability of the present solver on grids comparable to
those used in the thin airfoil study described below.

Flow over a spring-mounted cylinder with two-degrees of freedom has
been studied extensively as a canonical test case for fluid-structure inter-
action problem.32–35 The motion of the cylinder center (xa, ya) due to this
fluid-structure coupling is governed by the following non-dimensionalized
equations:

d2xa
dt2

+ 4πξStN
dxa
dt

+ (2πStN)2xa =
2

πm∗
CD (6)

d2ya
dt2

+ 4πξStN
dya
dt

+ (2πStN)2ya =
2

πm∗
CL, (7)

where fN = fNx,y = 1
2π

√
(Kx,y/m), StN = fND

U∞
, ξ = ξx,y = Cx,y

2
√
mKx,y

, m∗ = mc/mf = mc/(π/4ρfD2), mc

is the cylinder mass, D is the cylinder diameter, and CD, CL are the drag and lift coefficients, respectively.

Figure 6. Cross-stream displacement for
different damping coefficients compared
to published data.

For flow over cylinder at Re = 200, the computational domain
chosen was 30 times larger than the cylinder diameter in the x and
y directions. Two grid cells were used in the spanwise direction
with periodic boundary conditions. A uniform Cartesian grid was
used around the cylinder center in a small patch to have well-
resolved cylinder surface. The grid was stretched away from the
cylinder. Three grid resolutions were used around the cylinder:
D/33 (coarse), D/66 (medium) and D/83 (fine). Time step used
is 1.8 × 10−3, giving a CFL number of around 0.2 for the fine
grid. First, flow over a rigid cylinder at Re = 200 was computed
providing vortex shedding with a Strouhal number, St = 0.1986.
The natural frequency of the spring was set based on this vortex
shedding frequency by using StN = St.

Multiple inner iterations per time-step were used to solve the
fluid-structure interaction problem. It was found that, 3 and 5
inner iterations provided virtually identical solutions. With no
inner iterations, the solution significantly over-predicted the cross-
stream displacement of the cylinder. In all future simulations,
three inner iterations were used. Figure 6 shows comparison of the cross-stream displacement of the cylinder
center with other approaches based on spectral predictions by Blackburn & Karniadakis33 and body-fitted,
deforming grid algorithm of Morton et al32 for different damping coefficients. Excellent prediction is obtained
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using the present scheme. Other statistics such as variations in drag and lift coefficients were also predicted
well compared to these studies.35

B. Passively Actuated Trailing Edge

A thin, flat, two-dimensional wing is selected in order to study the effect of passively actuated trailing edge
on the flow dynamics. The wing is based on an existing physical model developed at Oregon State University
for future experimental studies.36,37 The chord length (c) is 20 cm, the thickness to chord ratio is 0.038,
the actuator length to chord ratio is 0.3, and a span to chord ratio is 3.85. The airfoil has elliptical rounded
edges with a height to length ratio of 1:5.

The numerical model of the airfoil was created by distributing material points along the surface of the
airfoil. The airfoil surface was defined by breaking the airfoil up into simpler shapes. The entire airfoil is
generated at an angle of attack of zero with an actuator angle of zero. The material points are then rotated
to the appropriate angle of attack. The five component shapes are an ellipse for the trailing edge, a line
segment for the body of the airfoil, a semicircle for the hinge joint, a line segment for the flap body, and
an ellipse for the leading edge. The origin for the airfoil is located at the trailing edge with the front of the
airfoil pointed to the left (negative x direction). Due to the symmetry of the airfoil, for each point placed
on the top surface of the airfoil, another is placed on the bottom surface by mirroring the top point across
the x-axis. The airfoil is given depth by copying the points from the first cross-section to make additional
cross-sections in the spanwise direction. The ellipses for the leading and trailing edges are generated using
the following equation for an ellipse, the thickness of the airfoil, and the ratio of length to height:

(x− xo)2

1
2rt

2
c

+ y2/t2c = 1, (8)

where xo is the x location of the center of the ellipse, r is the length-to-height ratio (5 in this case) of the
ellipse, and tc is the thickness of the airfoil. The x locations of the material points are spaced evenly between
the tip of the ellipse and the center. The y location is solved for using the above equation. The xc for the
trailing edge and leading edge are (−tcr/2) and (tcr/2c), respectively, where c is the chord length. Next
the flat airfoil and actuator sections are added. Each flat section is generated by equally spacing material
points along the flat surface. The airfoil flat surface extends from the end of the trailing edge ellipse to the
start of the actuator hinge, and similarly, from the end of the actuator hinge to the end of the leading edge
ellipse. Next the hinge material points are added. The hinge height and width are equal to the thickness
of the airfoil. The hinge is formed by fitting two semi-circles into the gap between the airfoil surface and
the flap surface. The semicircles are created tangent to both the flap and airfoil surfaces to create a smooth
transition. The upper and lower semicircles are concentric. While adding the semi-circle to the underside of
the airfoil does not match the shape of an actual hinge, the benefit is that the front actuator can be moved
smoothly without the need to add material points. The final step is to rotate all the material points around
the trailing edge by the specified angle of attack. Grid resolutions used in the present calculations are given
in Table 2. The baseline resolution is finer than that used for corresponding studies on the plunging SD7003
as discussed earlier.

Table 2. Cartesian grid resolution and time-steps for thin, flat airfoil studies.

Grid ∆x/c ∆y/c ∆tU∞/c
Baseline 0.0015 0.0015 0.0001

The thin, flat wing with spring-mounted trailing edge, gives rise to a wide range of physical and opera-
tional parameters. The main physical parameters are the trailing edge actuator size (`a/c), the torsion spring
parameters including spring stiffness (K) and damping (C) that can be expressed in the non-dimensional
form as StN = fN`a/U∞ and ξ = C/2

√
K/Ia, respectively. Here fN = 1/(2π)

√
K/Ia is the natural fre-

quency of the spring, Ia is the moment of inertial of the trailing edge actuator which can also be expressed as
moment of inertia ratio I∗ = ρa/ρf . There are also several operational parameters such as the flow Reynolds
number, Re = U∞c/ν, angle of attack (α0), the plunging amplitude (h = aLE/c), the plunging frequency
(k = πfpc/U∞) and the plunging waveform. In the present proof-of-concept work, only a small parameter
space is explored, wherein for a certain fixed operational parameter, the spring flexibility (i.e fN) is varied
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and its effect on the performance of the foil is investigated. The parameters chosen for this study are given
in Table 3. The parameter space is based on plunging frequency (fp) of 10 Hz. The spring constants are
varied such that the natural frequencies are 5, 8, 10, 12.5, and 20 Hz. The results are compared with a
non-actuated trailing edge, that is a very stiff spring (fN →∞).

Table 3. Parameter space investigated in present study.

`a/c StN ξ I∗ Re α0 h k

0.3 0, 0.27, 0.43, 0.54, 0.68, 1.09 0.01 8.4 14700 5◦ 0.05 5.7

The plunging oscillation was a simple sinusoidal oscillation given as,

h(t) =
aLE

c
sin(2kt), (9)

where aLE is the amplitude of the leading edge. With the above parameters, a plunging airfoil without any
tail actuation, the airfoil results in a small mean drag; C̄D = 0.0164 with a mean lift coefficient of C̄L = 0.645.
More than 10 complete cycles of plunging were computed before the passive actuation was initiated and the
spring natural frequencies were varied to study effect of spring flexibility on the drag and lift coefficients, as
well as performance of the foil.

Figure 7. Temporal out-of-plane vorticity contours for one period of plunging motion: (a) fp/fN = 0 (no
actuation); (b) fp/fN = 0.8, and (c) fp/fN = 1. Phase 0 is the center position going up, phase π/2 is top-most
position, phase π is center position going down, and phase 3π/2 is bottom most position.

Figure 7 shows the out-of-plane vorticity contours for four different phases for a single plunging cycle for
fp/fN = 0 (no actuation), 0.8, 1. The plots show positions of the trailing edge tip with passive actuation
compared to the corresponding positions with simple plunging motion. For f/fN = 0.8, starting with phase 0
(center position of the airfoil), the trailing edge is at its lowest downward position. From phase 0 to π/2, the
leading edge is rising upward and reaches the top most position at phase π/2. The trailing edge, starting from
its lowest position also rises upwards (rotates counter-clockwise) and is perfectly aligned with the leading
edge at the top-most position. Between phase π/2 to π, the leading edge starts its downward motion, whereas
the trailing edge is still rising (rotating counter-clockwise). Starting from phase π (the center position), the
leading edge continues to move downward and reaches its lowest point at 3π/2. Between this section, the
trailing edge also starts its downward motion (rotates clock-wise) and aligns perfectly with the leading edge
at 3π/2. When the plunging frequency and the spring natural frequency match, the displacement of the
trailing edge is the largest as seen from the extent of the trailing edge tip for fp/fN = 1. When compared
with the pure plunging case (fp/fN = 0), the vorticity contours near the trailing edge for actuated cases
are considerably altered as the motion of an actuated trailing edge dynamically pushes fluid away from the

9 of 14

American Institute of Aeronautics and Astronautics



surface. It is also interesting to note that, the vorticity contours even near the leading edge are different
between cases with and without trailing edge actuation.

Figure 8. Non-dimensionlized relative motion of the
trailing edge tips for various flexibility level of the tor-
sion spring compared with the pure plunging case. Also
shown is the sinusoidal signal of the trailing edge mo-
tion (blue line).

Figure 8 compares the relative amplitude of
an actuated trailing edge (sTE) compared to that
of a non-actuated (very stiff spring) trailing edge
(sTE,rigid) non-dimensionalized by the amplitude of
plunging motion (aLE) for various spring natural
frequencies. Also shown is waveform of the pure-
plunging motion for comparison. The positive peak
of the sine wave represents top most position of the
trailing edge whereas the negative peak is the bot-
tom most position. It is observed that the resonant
frequency case (fp/fN = 1) results in the largest
amplitude as expected. For fp/fN = 0.8, the trail-
ing edge tip is 90◦ out of phase of the leading edge.
Phase difference for the resonant case of fp/fN = 1
is slightly lower.

To investigate the effect of the trailing edge ac-
tuation on the drag force, the temporal variation of
the drag coefficient for the trailing edge actuator as
well as the trailing edge displacement (θ) are plot-
ted in figure 9 for fp/fN = 0.8 and 1 together with
pure plunging case. It is observed that for the pure plunging case, the trailing edge drag coefficient remains
positive for much of the duration of the cycle and leads to a net mean drag. However, for spring actuation
with fp/fN = 0.8, the drag coefficient on the trailing edge reverses trend, and remains negative for a major
part of the cycle, resulting in a net thrust. The corresponding plots for fp/fN = 1 show also reduced drag
coefficient compared to pure plunging case, but a net mean thrust is not obtained for this case.

(a) (b)

Figure 9. Temporal variation of the drag coefficient of the trailing edge and actuator angle (θ) over few cycles
of plunging motion: (a) CD,actuator and θ for fp/fN = 0.8; (b) CD,actuator and θ for fp/fN = 1. Also shown is the
drag coefficient for no actuation case (fp/fN = 0) and the sinusoidal motion of the leading edge.

Table 4 lists the effect of increased flexibility of the torsion spring and passive actuation of the tail on
the drag and lift coefficients, as well as the propulsion efficiency. The propulsion efficiency is defined as:

η = −FDU∞
FLv

= − CD

Cprop

; Cprop =
FLv

1
2ρU

3
∞c

, (10)
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where the negative sign is because the force considered is drag (instead of thrust)and Cprop is the average
power input for the plunging motion. Here, v is the vertical velocity due to plunging motion. The first
column fp/fN provides the ratio of plunging frequency to the spring natural frequency, starting from 0 (i.e.
rigid spring, no actuation) to increasing flexibility. The second column lists the ratio of the amplitude of
the leading edge (mainly following the plunging motion) to the trailing edge (consisting of plunging motion
together with motion due to actuation of the trailing edge). For fp/fN = 1, a resonance effect is expected
and one obtains the largest variation in the amplitude ratios. Next four columns list the mean drag and lift
coefficients on the trailing edge actuator and on the entire airfoil, respectively. It is observed that the rigid
tail gives small positive mean drag in the absence of any actuation. With passive actuation and increasing
flexibility (fp < fN), mean thrust is obtained, whereas the mean lift coefficient also increases slightly.
Further increase in flexibility (fN ≤ fp) shows increase in mean drag on the airfoil. It is also observed that
for fp/fN = 0.5 and 0.8, the trailing edge actuator itself produces thrust and resultant thrust for the entire
wing is large. With increase in flexibility of the spring, the trailing edge actuator actually results in more
drag than the overall wing, indicating that with increase in flexibility, the tail moves in a position relative
to the leading edge that is not beneficial for the system. The last column lists the propulsion efficiency. For
fp/fN = 0.5 and 0.8, net positive efficiency (thrust) is obtained for otherwise negative efficiency without any
actuation. This suggests that there exists a range of flexibility that improves performance of the flapping
wing, whereas too much flexibility can affect the efficiency adversely.

Table 4. Effect of passively actuated tail flap on performance of a plunging foil: k = πfc
U∞

= 5.71, (f = 10 Hz)

α0 = 5◦, Rec = 14700, I∗ = 8.4, ξ = 0.01.

fp/fN aTE/aLE Actuator C̄D Actuator C̄L C̄D C̄L C̄prop η

0 (rigid) 1.0 +0.1103 0.059 +0.0164 0.645 0.556 -0.032
0.5 0.815 -0.014 0.0693 -0.1 0.662 0.83 +0.133
0.8 2.24 -0.11 0.1 -0.162 0.7245 0.729 +0.244
1 2.58 +0.0715 0.13 +0.071 0.65 0.237 -0.33

1.25 2.045 +0.165 -0.067 +0.12 0.044 0.118 -1.18
2 1.245 +0.167 -0.035 +0.122 0.333 0.178 -0.76

Figure 10. Effect of spring flexibility on (a) non-dimensional trailing edge amplitude variation and (b) propul-
sion efficiency and their correlation with phase difference between the leading and trailing edge motion due to
passive actuation.

Figure 10a shows the effect of spring flexibility on the amplitude of trailing edge motion in comparison
with the leading edge and corresponding phase difference between the leading and trailing edges. Similar
plot of propulsion efficiency versus phase difference is given in figure 10b. It is observed that the amplitude

11 of 14

American Institute of Aeronautics and Astronautics



of trailing edge fluctuation is maximum for the resonant case of matching plunging frequency and spring
natural frequency, fp = fN. With increasing spring flexibility (i.e. smaller fN), the amplitude of trailing edge
oscillation decreases and approaches the pure plunging amplitude. Similarly, the phase difference between
the leading and trailing edge motion also decreases with increasing flexibility. However, it observed that with
increasing flexibility (fp/fN ≥ 1), the propulsion efficiency is negative, that is a net mean drag is obtained.
The propulsion efficiency is maximum when the phase difference between the leading and trailing edges is
90◦. This occurs for fp/fN = 0.8 in the present case. It is also observed that peak amplitude of trailing edge
fluctuation does not correspond to the peak performance. Peak performance is more dependent upon the
phase difference between the leading and trailing edge motions. To better understand these observations,
the four phases of plunging motion with and without actuation are compared below.

• Phase 0: At this point, the leading edge is at its center position and is rising up. It is observed that
the trailing edge actuator has the maximum positive θ for fp/fN = 0.8 (i.e. the trailing edge tip
is below the corresponding tip for no-actuation case) and corresponding negative CD on the trailing
edge actuator. For no actuation (or rigid tail), the drag coefficient at this position is nearly zero.
For fp/fN = 1, the actuator angle is positive but lower than its maximum value, whereas the drag
coefficient is also positive.

• Phase π/2, (maximum positive aLE/c): At this point, the trailing edge has reached its top-most position
and getting ready to start moving downwards. It is observed that for fp/fN = 0.8, the flap angle is
decreasing and reached θ = 0, i.e. trailing edge moved upward and is coinciding with the trailing edge
of a no actuation case. At this stage there is small positive drag on the trailing edge actuator. For
fp/fN = 1, the trailing edge is still moving upwards but is below the corresponding rigid airfoil edge.
This also results in positive drag.

• Phase π: At this point, the trailing edge has reached its center position again and getting ready to
start moving further downward. It is observed that for fp/fN = 0.8, the flap angle has reached its
highest negative value, i.e. trailing edge continued to move upward and is now further up compared
to the trailing edge of a no actuation case. At this stage there is again negative drag (thrust). For
fp/fN = 1, the trailing edge is also moving upwards and a negative drag (thrust) is obtained.

• Phase 3π/2: At this point, the trailing edge has reached its lowest position and getting ready to start
moving upward. It is observed that for fp/fN = 0.8, the flap angle is zero, i.e. trailing edge continued
to move downward and is now coinciding with the trailing edge of a no actuation case. At this stage
there is again small positive drag. For fp/fN = 1, the trailing edge is moving downwards and still
above the trailing edge without no actuation. This also results in positive drag.

The four phases of the airfoil cycle indicate that, for fp/fN = 0.8, the trailing edge actuator adds an
additional kicking motion that results in displacing the fluid away from the airfoil. Together with the
plunging motion the cumulative of the trailing edge oscillation is to provide a resultant thrust on the airfoil.
The case with fp/fN = 1 also has similar effect, but lags in its position of the trailing edge tip and results
in a small net drag.

IV. Conclusion

Effect on airfoil performance due flow-induced passive actuation of a spring-mounted trailing edge at low
Reynolds number was investigated using two-dimensional DNS studies. The trailing edge, attached with a
torsion spring at 30% the chord length, is modeled as a spring-mounted compound pendulum with single-
degree of freedom. It may undergo flow induced rotation resulting in dynamic variations in the effective
airfoil shape. A second-order, fictitious domain method29 was further extended to account for flow-structure
interaction problems and verified to show good predictive capability, compared to AFRL’s flow-structure
interaction solver (FDL3DI).12

Of particular importance is application of the spring-mounted trailing edge actuator concept to a plunging
wing. High-frequency, low amplitude plunging is used to approximate wing motion in a flapping wing design.
It should be noted that, in this study there is no explicitly imposed pitching motion of the wing. However,
an implicit pitching like motion is present owing to flow-induced rotation of the trailing edge. This model
problem involves a single degree of freedom for the trailing edge motion but introduces several parameters.
The main physical parameters are the length of the trailing edge actuator compared to the chord length
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(`a/c), the actuator moment of inertia (Ia), the spring stiffness (K) governing its natural frequency (fN),
and spring damping coefficient (C). The main operational parameters are the flow Reynolds number (Re),
the angle of attack (α0), the pitching amplitude (h = aLE/c), and the pitching waveform (reduced frequency
k and shape). Although a systematic parametric study over a wide range of parameter space is necessary to
investigate the effect of passive actuation on wing performance, only a small parameter space is explored in
this work.

Effect of trailing edge actuation on a sinusoidally plunging (k = 5.71, h = 0.05) thin, flat airfoil was
investigated at 5◦ angle of attack. For the parameters chosen, without any actuation (extremely stiff spring),
the foil resulted in a small net positive drag in the mean. By introducing some spring flexibility, the
drag coefficient decreased and lift coefficient increased resulting in better performance of the wing. For
certain spring parameters resulting in spring natural frequencies slightly larger than the plunging frequency
(fp/fN = 0.5 − 0.8), dramatic increase in performance was observed. The wing motion resulted in thrust
and higher lift coefficients with a propulsive efficiency as high as 24.4%. It was found that most increase
in propulsive efficiency was obtained when the trailing edge tip was 90◦ out-of-phase with the leading edge,
an observation consistent with experimental data on plunging teardrop airfoils with flexible tail filament by
Heathcote and Gursul.5,11,38 It was also observed that, there exists a range of spring flexibility that results
in enhanced performance (increased thrust and/or propulsive efficiency). However, too much flexibility of the
spring can adversely affect performance, again a consistent result similar to observations on purely flexible
trailing edge filament. The advective time scales (c/U∞), the plunging time scale (1/fp) and the spring
flexibility time scale (1/fN) play a major role in governing the dynamics of the passively actuated trailing
edge. Future work will involve variation of the flow Re as well as plunging waveforms and amplitudes to
investigate the correlations between these time scales and airfoil performance. In addition, a physical setup
of a two-dimensional passively actuated trailing edge wing is being built to measure lift, drag, and pitching
moments together with detailed time-resolved, three-component PIV studies in a wind-tunnel at Oregon
State University.

This proof-of-concept work suggests that use of a single-degree of freedom spring-mounted trailing edge
and resultant passive control can be used as a simplified canonical mechanism to study effect of trailing edge
flexibility on flapping wing design. The results are of direct relevance to other forms of flow control which
are more amenable to small scale MAV implementation; for example, surface deformations via piezo-electric
actuators or aero-elastically tailored structures. Use of trailing edge actuators (either actively or passively
controlled) provide an effective way to increase foil performance and provide means to control the lift and
drag characteristics under transient maneuvers or flow disturbances.
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