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Abstract
A hybrid Lagrangian-Eulerian (hLE) scheme, combining a particle-based, mesh-free technique with a finite-
volume flow solver, is developed for direct simulations of two-phase flows. The approach uses marker points
around the interface and advects the signed distance to the interface in a Lagrangian frame. The kernel–based
derivative calculations typical of particle methods are used to extract the interface normal and curvature
from unordered marker points. Connectivity between the marker points is not necessary. The fluid flow
equations are solved on a background, fixed mesh using a co-located grid finite volume solver together with
balanced force algorithm (Francois et al. JCP, 2006, Herrmann JCP, 2007) for surface tension force. The
numerical scheme is first validated for standard test cases: (i) parasitic currents in a stationary spherical
drop, (ii) small amplitude damped surface waves, (iii) capillary waves on droplet surface, (iv) Rayleigh-
Taylor instability, and (v) gravity-driven bubble/droplet in a stationary fluid. Extension of the approach
to three-dimensions is conceptually straight forward, however, poses challenges for parallel implementation.
A domain-decomposition based on balancing the number of grid points per processor gives rise to load–
imbalance due to uneven distribution of the marker points and advanced domain partitioning methods are
needed for improved efficiency of the approach.
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Introduction
Numerical methods to accurately track/capture

the interface between two fluids have been an area of
research for decades. Tryggvason et al. [1] provide
a detailed review on various methods used for di-
rect simulation of multiphase flows. Broadly, these
schemes can be classified into two categories: (a)
front tracking and (b) front capturing methods.

Front tracking methods are Lagrangian in na-
ture [2, 3, 4, 5], and the interface is tracked by a set
of connected [1] or unconnected [6] marker points
on the interface and the Navier-Stokes equations are
solved on a fixed grid in an Eulerian frame. An-
other class of Lagrangian methods include mesh-
free algorithms such as moving particle-methods [7],
vortex-in cell methods [8, 9], and smoothed-particle
hydrodynamics [10], where the interface is repre-
sented by Lagrangian points (LPs) and the flow-
field is also evaluated on these points. Pure La-
grangian methods are promising as they avoid enor-
mous memory requirements for a three-dimensional
mesh. These methods automatically provide adap-
tive resolution in the high-curvature region [8] and
have been applied successfully to many two-phase
flow problems [11, 12, 13]. However, they exhibit
other difficulties such as high cost of finding nearest
neighbors in the zone of influence of a Lagrangian
point, true enforcement of continuity (or incompress-
ibility) conditions, and problems associated with ac-
curate one-sided interpolations near boundaries [8].

In capturing methods the interface is not ex-
plicitly tracked, but captured using a characteristic
function, which evolves using the advection equa-
tion. Representative capturing methods are: vol-
ume tracking [14, 15], level set [16, 17, 18] and
phase field models. Both approaches (the VoF and
level set) are straightforward to implement, how-
ever, level-set approach does not preserve volume
of the fluids on either side of the interface. The
VOF formulation on the other hand, conserves the
fluid volume but lacks in the sharpness of the in-
terface. Several improvements to these methods in-
volving combination of the two [19], adaptive mesh-
refinement [20, 21], particle-level sets [22], refined
level-set grid scheme [23, 24, 25] have been proposed
for improved accuracy.

In the present work, some of the limitations
of the above schemes are addressed by combining
the two broad approaches mentioned above. The
basic idea is to merge the locally ‘adaptive’ mesh-
free particle-based methods with the relative ‘ease’
of Eulerian finite-volume formulation in order to
inherit the advantages offered by individual ap-
proaches. The interface between two fluids is rep-

resented and tracked using Lagrangian points or
fictitious particles [13]. Unlike particle level set
method [22] or the semi-Lagrangian methods [26],
in the present approach the interface is represented
by Lagrangian points (LPs) (or particles1) that are
advanced in a Lagrangian frame. The motion of the
interface is determined by a velocity field (interpo-
lated to the particle locations) obtained by solving
the Navier-Stokes equations on a fixed background
mesh in an Eulerian frame. The interface location,
once determined, identifies the region of the mesh
to apply jump-conditions in fluid properties. In this
sense, it is in the realm of Arbitrary Lagrangian-
Eulerian (ALE) [27] schemes, wherein the compu-
tational grid deforms to conform to the shape of
the dispersed phase. The potential advantage of the
present hybrid method is that the background mesh
could be of any kind: structured, body-fitted, or ar-
bitrary shaped unstructured (hex, pyramids, tetrahe-
drons, prisms) and may be stationary or changing
in time (adaptive refinement). Here, we use a co-
located grid, incompressible flow solver based on the
energy conserving finite-volume algorithm developed
by Mahesh et al. [28, 29].

The Lagrangian points (LPs) in our interface
calculations, are particles distributed in a narrow
band around the interface [30]. These LPs are ini-
tially uniformly spaced and carry information such
as the signed distance to the interface (SDF) along
the characteristic paths. Variations in flow veloci-
ties leads to an irregular distribution of the initially
uniform LPs. Regularization of the particles are
performed by mapping the particles on a uniformly
spaced lattice [13]. Values for particle properties at
new LP locations are obtained through kernel molli-
fication as done in Smoothed Particle Hydrodynam-
ics [10] and remeshed-SPH [12]. The novelty in our
approach is that this mesh-free interface representa-
tion is integrated with a finite-volume solver where
the governing equations for flow evolution are solved.
The Lagrangian points provide sub-grid resolution
and in this respect the method is similar to the Re-
fined Level Set Grid (RLSG) approach [24, 25, 31].
However, here the LPs move in space with the flow
velocity and different discretizations are necessary
and we use high-order schemes based on mollifica-
tion kernels.

The paper is arranged as follows. The gov-
erning equations and mathematical formulation is
described followed by description of the numerical
scheme. The numerical approach is then applied to
standard test cases to evaluate the accuracy of the

1In this paper, the term ‘particles’ means Lagrangian
points (LPs) that are used to represent the interface.



scheme compared to other approaches. Finally, some
preliminary results on rising bubble in a quiescent
fluid are presented.

Mathematical Formulation and Governing
Equations

Consider two immiscible fluids labeled as ‘1’ and
‘2’ forming an interface. The regions occupied by
the two fluids can be represented by an indicator
function Ψ which can be zero or unity representing
one of the fluids. In a front tracking scheme [1],
connected marker points are used to represent the
interface surface. The marker points are embedded
in a background computational mesh. Knowing the
location of the marker points, a smoothly varying
indicator function (or color function) is constructed
on the computational mesh (Ψcv, where cv stands
for the grid control volume). Torres and Brackbill [6]
developed a point-set method where the connectivity
between the marker points was not necessary. The
present work is motivated by the point-set method.
Instead of using marker points on the interface only,
a uniformly distributed set of points (termed here as
Lagrangian points, LP) are placed in a small band
surrounding the interface. These marker points are
assigned a signed distance function (SDF, Φ) to the
interface, and thus represent the interface implicitly.

The main advantage of this approach is that
the color function can be easily constructed from
the marker points (as discussed in the following sec-
tions) and does not require a solution of the Laplace
equation (52Ψ = 0) as in the point-set method [6].
However, as the marker points are moved by the un-
derlying flow, the flow strain can cluster the LPs in
some region and spread them apart in other regions.
Such non-uniform distribution may affect the inter-
face representation (and interface properties such as
surface normals, curvature etc.) and the LPs are
periodically re-arranged to a uniform distribution
through a systematic remeshing or reconfiguration
procedure [13] typically used in remeshed Smooth
Particle Hydrodynamics [8]. The formulation thus
represents a combination of marker points, level set
methods, and smooth particle hydrodynamics and
is termed as hybrid Lagrangian Eulerian (hLE) ap-
proach. Note that this approach is different from
the particle-level set method [22] where the level
set function was advanced in an Eulerian frame and
later corrected by subgrid particles. In the present
work, the advection of the interface is performed
solely in the Lagrangian frame using the motion of
the LPs.

Hybrid Lagrangian-Eulerian (hLE) Scheme
Following Hieber & Koumoutsakos [13], the in-

terface between two fluids is represented using uni-
formly spaced Lagrangian points (LPs) or fictitious
particles in a narrow band around the interface.
Each LP is associated with position xp, velocity up,
volume Vp and a scalar function Φp which repre-
sents the signed distance to the interface. The av-
erage spacing (h between the uniformly spaced LPs
is related to the volume Vp. In this work, we use
cubic elements (h = V1/3

p ). As the LPs move, they
carry the SDF value along the characteristic paths
and implicitly represent the motion of the interface.
The evolution of the interface is calculated by solv-
ing level set equations in the Lagrangian form:

DΦp
Dt

= 0;
DVp
Dt

= 〈∇ · u〉p Vp;
Dxp
Dt

= up, (1)

where p denotes the Lagrangian point or particle.
For incompressible fluids, the velocity field is diver-
gence free and theoretically, the change in volume of
the LPs (DVp/Dt) is zero.

As is done in Smoothed Particle Hydrodynamics
(SPH) and mesh-free methods, smoothed approxi-
mation of the level set function and its derivatives
can be obtained by using a mollification operator
with LPs as quadrature points. The localized mol-
lification kernel ξε generates a smooth continuous
approximation of Φ around the particle at location
xp using SDF of other particles at locations xq:

Φq =
N∑
p=1

VpΦpξε(xq − xp) (2)

where Φq = Φ(xq) and
∑N
p=1 ξεVp = 1. Differ-

ent mollification kernels have been proposed such as
quartic spline and Mn splines [10]. In this paper, we
use the quartic spline function given as:

ξε(x) =


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where s = |x|/ε. Here, ε is the radius of influ-
ence around the particle (or LP) and depends on
the spacing between the LPs and the width of the
mollification kernel. For all calculations in this work
ε is set equal to the uniform spacing between the
LPs. The surface normal and curvature calculations
require derivatives of the scalar function Φ on the
particles. These are approximated in a conservative



form by using derivatives of the mollification ker-
nel [32]:

〈∇Φ〉q =
∑
p

Vp (Φp − Φq)∇ξε(xq − xp), (3)

〈∇2Φ〉q =
∑
p

Vp (Φp − Φq)∇2ξε(xq − xp). (4)

In the above equations, kernel (ξε) and its first and
second derivatives should be properly normalized
such that corresponding non-zero moment condi-
tions are satisfied (details are given in [32]).

Once the location of the LPs and the associ-
ated Φp values are obtained, a color function Ψ(x)
can be constructed. Following the definition of color
function, finding Ψ on the LPs is straightforward:
Ψ = 0 when Φ ≥ 0 and Ψ = 1 for Φ < 0. Then
the color function field can also be obtained on the
background computational mesh by interpolating Ψ
from the LPs. In order to obtain a smooth function,
the M ′4 kernel interpolation is used:

M ′4 =

 1− 5/2s2 + 3/2s3

1/2(1− s)(2− s)2

0

0 ≤ s < 1
1 ≤ s < 2
2 ≤ s

(5)

where s = x in one-dimension. The higher-
dimensional interpolations are obtained by taking
tensorial products of their one-dimensional counter-
parts.

Once the color function Ψ is obtained at a con-
trol volume (cv), the density and viscosity are given
as:

ρcv = ρ1 + (ρ2 − ρ1)Ψcv (6)
µcv = µ1 + (µ2 − µ1)Ψcv (7)

Then the flow field is computed on a background
mesh (which could be structured or unstructured) by
solving the Navier-Stokes equations for the two-fluid
system:

∇ · u = 0 (8)

∂u
∂t

+u·∇u = −1
ρ
∇p+

1
ρ
∇·(µ(∇u+∇Tu))+g+

1
ρ
Fσ

(9)
where u is velocity vector of fluid, p is pressure, ρ and
µ are fluid density and viscosity (uniform inside each
fluid), g body force, and Fσ is the surface tension
force which is non-zero only at the interface location
(Φ = 0). Following Brackbill et al. [33], the surface
tension force is modeled as a continuum surface force
(CSF):

FCSFσ = σκn̂δ(Φ) (10)

where σ is the surface tension coefficient (assumed
constant in the present work), κ is the curvature, n̂

the interface normal, and δ(Φ) a dirac-delta func-
tion. A common issue with numerical simulations
involving surface tension force, is the development of
spurious currents (unphysical velocity field) [1, 20]
due to inaccuracies in the discrete approximations to
the surface-tension forces (equation 9). In order to
obtain a consistent coupling of the surface tension
force with the pressure gradient forces in a finite-
volume approach, Francois et al. [34] indicated that
the surface tension force must be evaluated at the
faces of the control volumes as:

FCSFσ,f = σκf (∇Ψ)f (11)

where the subscript f stands for the face of the con-
trol volume. The surface tension force at the cv-
centers can be obtained through reconstruction from
the faces of each cv.

To compute the surface tension force, accurate
estimation of the curvature of the interface is nec-
essary. Any errors in the curvature calculation and
surface tension force representation give rise to non-
physical velocity fields that could be detrimental to
the accuracy of the numerical solution [1, 6]. Her-
rmann [25, 35] developed a procedure to compute
the curvature accurately in the level-set framework.
Here we follow a similar procedure for curvature
evaluations:

• The curvature at a point on the interface is
given as:

κ = ∇ · ∇Φ
|∇Φ|

; n =
∇Φ
|∇Φ|

. (12)

First the curvature and normal are evaluated
at the LPs close to the interface (|Φ| ≤ 2∆LP ,
where ∆LP is the spacing between the LPs. The
gradients in the curvature and surface normal
computations are evaluated using using equa-
tions 4.

• For each of these LPs (with |Φ| ≤ 2∆LP ) , a
point on the interface is obtained by projecting
normals onto the interface [25]:

xinterface = xLP −
Φ
|∇Φ|

n̂ (13)

• Curvature on the interface point xinterface is
evaluated by using curvature values on LPs in
its neighborhood through M ′4-kernel based in-
terpolation (equation 5).

• Once curvatures on all interface points are eval-
uated, these values are assigned to the corre-
sponding LPs from which these interface points
were obtained.



• Curvature at the background control volume cv
is then computed by simply adding the curva-
tures of LPs that lie inside the control volume.

• Curvature at the faces of the control volume
are evaluated by arithmetic average of the two
control volumes associated with the face. Here,
the average is taken only if the both cvs contain
the interface, i.e. color function 0 < Ψcv < 1,
else κf is assigned the value of κcv containing
the interface.

Finally, the motion of the LPs is determined by
a velocity field obtained by solving the Navier Stokes
equations on a fixed background mesh. The velocity
of each LP is obtained through interpolation from
the background mesh. The motion of the LPs, may
distort the initially uniformly spaced particles and
a reconfiguration step is necessary wherein the dis-
torted LPs are mapped to a uniformly spaced Carte-
sian lattice as described below.

Particle Map Distortion, Reconfiguration and Reini-
tialization

For the present particle-based method of inter-
face representation, the LPs should overlap in order
to obtain an accurate solution and interface prop-
erties such as normals and curvature. If the par-
ticle map gets highly distorted, the color function
obtained from the LPs will no longer be smooth
and continuous. This is overcome by performing
a consistent re-configuration of the LP locations,
termed as remeshing, around the interface. Here
the Lagrangian points are redistributed on a Carte-
sian lattice with uniform spacing. After new sets
of Lagrangian points are generated the values of
the signed-distance function are obtained from the
old ones by using higher order interpolations [8].
Remeshing removes any unphysical kinks in the in-
terface and gives the ‘entropy-satisfying viscous so-
lution’ [13]. It also eliminates unnecessary points
away from the interface. For remeshing, we use
the M ′4 kernel to obtain the interpolated SDF val-
ues. Although the reconfiguration procedure pro-
vides the entropy solution, it does not guarantee
that Φ remains a signed-distance to the interface,
which is crucial to obtain accurate curvature and
interface normals. In this work, reinitialization is
implemented according to the method suggested by
Sussman et al. [36, 37] in which the following equa-
tion is solved on uniformly spaced LPs:

∂Φ
∂τ

= sign(Φ0)(1− |∇Φ|) (14)

where Φ(x, 0) = Φ0 and sign(Φ0) ≡ 2(Hε(Φ)− 1/2)
and Hε(Φ) is the Heaviside function. We apply re-

distancing in a two-layer narrow band around the in-
terface and using the procedure described in Gomez
et al. [31].

Numerical Algorithm
The governing equations are solved using a co-

located grid finite-volume algorithm [28, 29]. Ac-
cordingly, all variables are stored at the control vol-
ume (cv) centers with the exception of a face-normal
velocity, located at the face centers, and used to en-
force the divergence-free constraint. The variables
are staggered in time so that they are located most
conveniently for the time advancement scheme. De-
noting the time level by a superscript index, the ve-
locities are located at time level tn and tn+1, and
pressure, density, viscosity, the signed distance func-
tion, and the color function at time levels tn−1/2 and
tn+1/2. A balanced force algorithm [34, 35] is used
for discrete balance of surface tension force and pres-
sure gradient in the absence of any flow and other
external forces. The basic steps are summarized be-
low:

1. Advance the LPs (from tn−1/2 to tn+1/2)
according to equations (1) and using a velocity
field interpolated to the LP location from the back-
ground mesh. In this work, we use the M ′4-kernel
based interpolation. We use third-order Runge-
Kutta scheme to solve the ordinary differential equa-
tions for each LP.

2. Remesh and reinitialize the particle-map if
necessary. Remeshing of LPs is necessary only if
the particles cease to overlap as they adapt to the
flow map. This is indicated by the distortion index
(DI) [13]:

DI =
1
N

∑
p

|Hp(t)−Hp(0)|
Hp(0)

, (15)

where Hp(t) =
∑
q vq(t)ξε(xp(t) − xq(t)), N is the

number of Lagrangian points, vq the volume of each
LP, and ξε the quartic spline mollification kernel. By
selecting a proper threshold for DI the remeshing
procedure can be triggered. Reinitialization is only
necessary after a few remeshing steps, thus making
the hybrid approach attractive. Reinitialization is
done on remeshed LPs so that standard 5th-order
WENO scheme [38] can be used.

3. Once the LPs are advanced, curvature κLP
is evaluated using the procedure outlined in the pre-
vious section. M ′4-kernel based interpolations are
performed from the LPs to the background mesh
to obtain curvature (κn+1/2

cv ). Similarly, Ψn+1/2
cv

is obtained through interpolations and ρ
n+1/2
cv , and

µ
n+1/2
cv are calculated from equations (7). The face-



based surface tension force is then obtained as:

F
n+1/2
σ,f = σκ

n+1/2
f

Ψn+1/2
icv2 −Ψn+1/2

icv1

|sn|
(16)

where sn is the vector joining the control volumes
icv1 to icv2.

4. The remaining steps are a variant of the co-
located fractional step method as described by Ham
& Young [20]. We present the semi-descretization
here for completeness. First, a projected velocity
field ûi at the cv-centers is calculated:

ûi − uni
∆t

= gi +
1

ρ
n+1/2
cv

(− ∂p

∂xi

n−1/2

+

F
n+1/2
v,i + F

n+1/2
σ,i )

where Fv,i represents the viscous, Fσ,i the surface
tension, and gi the gravitational forces at the cv cen-
troids. The viscous terms are treated implicitly us-
ing second order symmetric discretizations and the
surface tension force is treated explicitly. The cv-
based surface tension force is obtained from Fσ,f us-
ing area weighted least-squares interpolation consis-
tent with the pressure reconstruction scheme devel-
oped by Mahesh et al. [28]. This is the essence of
the balanced force algorithm [20, 34, 25].

5. Subtract the old pressure gradient:

u∗n+1
i = ûi + ∆t

1

ρ
n+1/2
cv

δp

δxi

n−1/2

(17)

6. Obtain an approximation for the face-based
velocity:

U∗n+1
f = u∗n+1

i −∆t

F
n+1/2
i

ρ
n+1/2
cv

−
F
n+1/2
σ,f

ρ
n+1/2
f

 (18)

where ρn+1/2
f = (ρn+1/2

icv1 + ρ
n+1/2
icv2 )/2 and the inter-

polation operator, η = ni,f [ηicv1 + ηicv2]/2, yields a
face-normal component from the adjacent cvs asso-
ciated with the face and the normal ni,f .

7. Solve the variable coefficient Poisson equa-
tion to obtain pressure:

1
∆t

∑
faces of cv

U∗n+1
f Af =

∑
faces of cv

1

ρ
n+1/2
f

Af
δp

δn

n+1/2

(19)
where Af is the face area.

8. Update the face-normal velocities by impos-
ing a divergence free constraint and update the cv-
based velocities from the reconstructed pressure gra-
dient at the cv-centers:

Un+1
f − U∗n+1

f

∆t
= − 1

ρ
n+1/2
f

∂p

∂n

n+1/2

un+1
i − u∗n+1

i

∆t
= − 1

ρ
n+1/2
cv

∂p

∂xi

n+1/2

where the pressure gradient at the cv-centers
(∂p/∂xi)n+1/2is obtained from the face-normal gra-
dient using the same area-weighted least-squares
minimization approach [28] used for the surface ten-
sion force above.

9. Interpolate the velocity field u
n+1/2
i,cv to the

LP locations and advance the LPs to the next time
level.

Results
In this section, some numerical examples of stan-

dard test cases using the hLE scheme are presented.
First, the accuracy of the pure Lagrangian advec-
tion approach is evaluated by performing standard
test cases such as the Zalesak disc rotation and the
evolution of a circular interface in a deformation
field [39]. These showed comparable results with
published data [13] and are not shown here. The
accuracy of the surface normal and curvature evalu-
ation procedure for a circular interface is compared
with analytical solution to show second-order con-
vergence. Next, we test the balanced-force algorithm
and curvature evaluations on a stationary bubble in
a quiescent, zero-gravity environment to investigate
the level of spurious currents obtained due to errors
in surface tension force representation. A systematic
grid-refinement study is performed. Test cases such
as damped surface waves, oscillating liquid column,
Rayleigh Taylor instability, and rise (or fall) of bub-
bles (or droplets) under gravity are also simulated
to show good accuracy.

Estimation of Surface Normal and Curvature
The accuracy of the surface normal and curva-

ture calculation by using the procedure described be-
fore is tested on a circular interface. The Lagrangian
points (LPs) are uniformly distributed in a narrow
band around the interface and initialized by exact
signed distance function. The surface normals and
curvatures are first calculated on the LPs using the
equations (4). Only those LPs are considered where
|Φ| ≤ 2∆LP , where ∆LP is the LP-spacing. The
average relative error in surface normal calculation
is shown in Figure 1 indicating second order con-
vergence. For all these LPs, corresponding points
on the interface are calculated using the normals
and signed distance function (Φ) (equation 13). The
interface-projected curvature values at the interface
points are evaluated using the M ′4-kernel based in-
terpolation from the neighboring LP values. These
curvatures are then compared with the exact curva-
ture κexact = 1/R for a two-dimensional interface.
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Figure 1: Average relative error (L2) in surface nor-
mal for a circular interface.

The corresponding L1-errors are plotted at differ-
ent LP-resolutions in Figure 2, showing second order
convergence similar to Herrmann [25]. Error calcu-
lations based on the κ values at the LPs are also
plotted, showing only a first-order convergence, in-
dicating the importance of the interface projected
curvature calculation.

Figure 2: L1-error in curvature for a circular in-
terface: (a) convergence with refinement in LP-
resolution. Circles indicate error based on κ at LP
location, and squares indicate error based on κ on
the interface.

Static Drop in Equilibrium
To validate the curvature and surface tension

force calculation in hLE, we consider the test of
static drop in a quiescent medium with zero grav-
ity. The pressure gradient across the interface bal-
ances the surface tension force resulting a zero ve-

locity and static drop at all times. Errors in rep-
resentation of the surface tension and curvature at
the interface, however, lead to non-zero velocity, or
the so called ‘spurious currents’. The exact solution
for the pressure jump across the interface for a cir-
cular two-dimensional drop is: ∆Pexact = σκexact
where κexact = 1/R and R is the radius of the drop.
We consider a square domain having sides of eight
units. A drop of radius R = 2 is placed at the center
of the domain. The surface tension coefficient σ is
taken to be 73, the drop density is 1 and the sur-
rounding fluid density is 0.1. Accordingly, the pres-
sure jump across the interface should be ∆P = 36.5
units. All parameters are in SI units and correspond
to the test case simulated by Francois et al. [34].
The background grid consists of uniform Cartesian

Table 1: L1 error in the total kinetic energy for a
static drop in zero gravity ∆

∆LP
= 4.5.

∆ Error
0.044 4.5×10−8

0.033 1.27×10−8

0.0266 4.09×10−9

elements with resolution of R/∆ = 10. The resolu-
tion of the Lagrangian points is refined successively
to have R/∆LP = 45, 60, 75. The time step is fixed
at ∆t = 10−3. The interface remains a perfect circle
after t = 0.5 with low magnitudes of spurious cur-
rents. Table 1 shows the convergence of L1-error in
total kinetic energy at t = 0.5, indicating larger than
second order convergence. Remeshing and reinitial-
ization are suppressed in the above calculations, and
the overall spurious current magnitudes are compa-
rable to those reported by Herrmann [25].

Damped Surface Waves
Small amplitude damped surface wave between

two immiscible fluids is investigated by compar-
ing the numerical solution to the theoretical solu-
tion of the initial value problem obtained by Pros-
peretti [40]. Initially the interface between the two
fluids inside a box [0 2π] × [0 2π] is perturbed by a
sinusoidal wave disturbance of wavelength λ = 2π
and amplitude A0 = 0.01λ [35]. Periodic boundary
conditions are used in the x direction, and slip condi-
tions are used in the y-direction. The case analyzed
consists of two fluids of equal density ρ1 = ρ2 = 1,
and equal kinematic viscosities ν = 0.006472. For
σ = 2 and ∆t = 0.02, the time-evolution of the am-
plitude of the surface is plotted in figure 3. Two
different grid resolutions 162 and 322 are used for



this test case with the ∆
∆LP

= 4. The coarse grid
solution shows large errors in period and amplitude,
however, with grid refinement, converging results are
obtained.

time

Α
/λ

5 10 15 20
-0.01

-0.005

0

0.005

0.01

Figure 3: Time evolution of a damped surface wave
for two grid resolutions ∆ = 162 (dashed) and 322

(dash dot) compared with theoretical result (solid).
The LP resolution is held fixed at ∆

∆LP
= 4.

Droplet Oscillation
Simulation of oscillating droplet or liquid col-

umn due to perturbations on the surface under zero-
gravity conditions are performed to analyze the ac-
curacy of the solver for capillary waves. A cylindrical
liquid column with the radius perturbed according
to:

r = r0 + αcos(nθ), (20)

has a frequency of oscillation given by

ω2
n =

(n3 − n)σ
(ρd + ρe)r3

0

(21)

where ρd and ρe are the density, interior and exterior
to the liquid column, respectively [6]. The cases con-
sidered include σ = 1, α = 0.1 (this is 10% larger
than the perturbation considered in [6]), ρd = 1,
ρe = 0.01, r0 = 2 in a [−10, 10]2 doubly connected
computational domain. The grid resolution is 322

and the Lagrangian particle resolution is fixed at
∆

∆LP
= 4.5. The second, third, and fourth modes

are simulated. Figure 4 shows the time evolution
of an initially perturbed column over one period for
the second mode. The relative error in period of
oscillation Eperiod = |Tnumericalωn/2π − 1| is given
in Table 2. The errors are comparable to those re-
ported in [6], even for ten times larger perturbation
used in the present study.

Figure 4: Time evolution of an oscillating cylindri-
cal column over the initial period together with the
streamline pattern: (a) t = T/200 (or close to ini-
tial), (b)t = T/4, (c) t = T/2, (d) t = 3T/4.

Table 2: Error in the predicted period of an oscillat-
ing liquid column for different modes on a 322 grid
with ∆

∆LP
= 4.5.

Mode Predicted ω Theoretical ωn Eperiod
2 0.844 0.862 0.020
3 1.671 1.726 0.0328
4 2.58 2.719 0.0519

Figure 5: Time sequence of Rayleigh Taylor insta-
bility of ∆ = 1/64 grid.



Rayleigh Taylor Instability
The common test of heavier fluid over a lighter

fluid giving rise to Rayleigh-Taylor instability is per-
formed to evaluate the accuracy of the scheme ([41,
31, 35]. The simulation parameters are: ρ1 = 1.225,
µ1 = 0.00313 (heavy fluid), ρ2/ρ1 = 0.1383, µ2

µ1
= 1,

g = 9.81, σ = 0 in a computational domain of size
[1, 4]. Initially the interface between the two fluids
(at the center of the domain) is perturbed by a cosine
wave of amplitude 0.05. The heavier fluid falls due
to gravity, giving rise to a Rayleigh-Taylor instabil-
ity of the interface perturbation. The surface tension
forces are neglected. The boundaries in the x direc-
tion are assumed periodic whereas slip conditions are
employed in the y direction. The time step is fixed
at 5×10−4 and the flow evolutions for different grid
resolutions are compared at certain time instances.
The grid resolutions used are ∆ = 1/64, 1/128, and
1/288. The LP resolution relative the grid is fixed
at ∆

∆LP
= 4.5. The figures (5,6,7) show the instan-

taneous snapshots obtained from these grid resolu-
tions. Loss of interface in high deformation regions

Figure 6: Time sequence of Rayleigh Taylor insta-
bility of ∆ = 1/128 grid.

is noticeable for the coarse grid (1/64 at t = 0.9 and
1). Increased resolution captures the thin filaments
properly at t = 0.9 and the results are comparable
to those by Herrmann [35] for respective resolutions.

Gravity Driven Motion of a Single Bubble and
Droplet Column

Lastly, we consider the rise of an air bub-
ble column in water and fall of water column
in air under gravity [42]. Two cases involving
small bubble/droplet columns are simulated. For
small bubble/droplet, the computational domain is
[−0.01 0.01] × [0 0.03] in the x − y direction with
no-slip wall conditions on the edges. A bubble (or
droplet) of diameter 2/300 is initially released from

Figure 7: Time sequence of Rayleigh Taylor insta-
bility of ∆ = 1/288 grid.

a distance of 0.01 from the bottom wall (or top wall
for droplet). The fluid properties of air and water
are: ρa = 1.226, ρ` = 1000, µa = 1.78 × 10−5,
µ` = 1.137 × 10−3, σ = 0.0728 and g = 9.81 in
SI units.

Time evolution of the small bubble and droplet
columns are shown in figures 8,9, respectively. The
simulation was performed on a 80 × 120 grid with

∆
∆LP

= 4. This corresponds to the finest grid used by
Kang etal. [42] and the results are in good agreement
with [42, 34]. The total volume loss at t = 0.05
was less than 0.8% for the bubble and 0.4% for the
droplet.

-0.01 0 0.01-0.01 0 0.01-0.01 0 0.01
0

.01

.02

.03

Figure 8: Time evolution of a small bubble rising
under gravity: (a) t=0.02, (b) t=0.035, (c) t=0.049 s

A large bubble column (of size 100 times the
above case) is also simulated in order to test the
capability of the solver. Here the surface tension
forces are too small to influence the inherent Kelvin-
Helmholtz and Rayleigh-Taylor instabilities. The
computational domain is [−1 1]×[0 3] and the bubble
of diameter 2/3 is released from unit distance from
the bottom wall. Figure 10 shows the time evolu-
tions obtained on a 80 × 120 grid with ∆

∆LP
= 4.

In this case, the deformation of the bubble is larger,
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-0.01 0 0.01 -0.01 0 0.01

Figure 9: Time evolution of a small droplet column
falling under gravity: (a) t=0.02, (b) t=0.035, (c)
t=0.049 s

and the volume loss obtained is on the order of 1.5%.
Results are in agreement with the terminal shapes
reported by Kang et al. [42].
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Figure 10: Time evolution of a large bubble rising
under gravity: (a) t=0.2, (b) t=0.35, (c) t=0.5 s

Summary
A new hybrid Lagrangian-Eulerian (hLE)

scheme, combining a mesh-free Lagrangian tech-
nique with a finite-volume flow solver, has been de-
veloped for direct simulations of two-phase flows
with fully resolved interfaces. This approach merges
the naturally adaptive nature of particle-based
schemes, for efficient representation of the interface
between two media, with the relative flexibility of-
fered by grid-based solvers for complex flows. In
hLE, a mesh-free, particle-based scheme for inter-
face tracking [13] is integrated with a co-located
grid based finite volume solver. The potential ad-
vantage of the hLE method is that the background
mesh could be of any kind: structured, body-fitted, or
arbitrary shaped unstructured (hex, pyramids, tetra-
hedrons, prisms) and may be stationary or changing
in time (adaptive refinement). In this work, we used

uniform Cartesian grids for the background mesh. A
balanced force algorithm [25, 34] for accurate repre-
sentation of surface tension forces and considerably
reduced magnitudes of spurious currents, is used to
solve the two-phase flow equations. The accuracy
of the hLE scheme is first verified for standard test
cases on interface tracking including passive advec-
tion by a specified velocity field (Zalesak’s disk, vor-
tex in a box [39]). Test cases presented include (i)
parasitic currents for a static drop in equilibrium,
(ii) damped surface waves, (iii) capillary waves on
oscillating droplet column, (iv) Rayleigh Taylor in-
stability, and (v) rise (fall) of bubble (droplet) un-
der gravity. Good predictive capability compared to
other schemes is obtained.

Presence of the interface (and hence Lagrangian
points) only on some processors partaking in the
simulation, however, gives rise to load imbalance, es-
pecially if the computational domain is partitioned
based on the background mesh. Dual-constraint
partitioning that optimize the number of grid cells
and the number of Lagrangian points are necessary
to balance the load and improve the efficiency of
the scheme. These dynamic-load balancing strate-
gies together with advanced methods for finding the
nearest neighbors within the mollification kernels
will make the current approach feasible for full three-
dimensional simualtions [9].
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