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A numerical scheme for fully resolved simulation of particle–fluid systems with freely
moving rigid particles is developed. The approach is based on a fictitious domain method
wherein the entire particle–fluid domain is assumed to be an incompressible fluid but with
variable density. The flow inside the particle domain is constrained to be a rigid body
motion using an additional rigidity constraint in a fractional step scheme. The rigidity con-
straint force is obtained based on the fast computation technique proposed by Sharma and
Patankar (2005) [1]. The particle is assumed to be made up of material points moving on a
fixed background mesh where the fluid flow equations are solved. The basic finite-volume
solver is based on a co-located grid incompressible but variable density flow. The incom-
pressibility constraint is imposed by solving a variable-coefficient pressure equation. Use
of density-weighted reconstruction of the pressure gradients was found to give a stable
scheme for high density ratio particle–fluid systems. Various verification and validation
test cases on fixed and freely moving particles are performed to show that the numerical
approach is accurate and stable for a wide range (10�3–106) of particle–fluid density ratios.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Fully resolved simulations (FRS) of particle–fluid systems, wherein all scales associated with the fluid and particle dynam-
ics are completely captured from first principles, are of great importance for understanding disperse particulate flows with
applications in environmental engineering, biological flows, chemical reactors, and energy conversion systems; for example,
sediment transport, aeolian transport, red blood cells, coal-particle combustors, bubbly flows in fluidized beds, catalytic
reactors, among others. Many of these applications involve complex configurations and unsteady, often turbulent flows
and their fundamental understanding is of critical importance. Such direct numerical simulation techniques are useful to
obtain detailed data that can be used to develop subgrid and reduced order models used in other approaches for particulate
flows such as Euler–Lagrange discrete element modeling, wherein the disperse particle dynamics is modeled through closure
laws for drag, lift, added mass and other forces exerted by the fluid.

Several numerical schemes have been developed for fully resolved simulations of freely moving, rigid particles in a fluid
flow. These can be categorized as (i) body-fitted, (ii) mesh-free, and (iii) fixed-grid methods. The body-fitted grid approach,
such as boundary element [2] and arbitrary Lagrangian–Eulerian (ALE)-based finite-element approach on unstructured grids
[3] method, use moving grids that conform to the shape of the immersed particles. Moving mesh algorithm based on space-
time finite-element approach was also developed by Johnson and Tezduyar [4] to calculate falling particles in a tube. Such
approaches provide an accurate solution at the particle–fluid interface, but suffer from the complexity of the moving mesh
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and regeneration algorithms. Use of these techniques in three-dimensions significantly increase the computational cost and
memory requirements. Smoothed particle hydrodynamics (SPH) is a mesh-free technique commonly used for multiphase
flows with free-surfaces [5]. Fixed grid approaches, such as distributed Lagrange multiplier and fictitious-domain methods,
immersed boundary method, lattice Boltzmann method, among others, are most popular for such simulations owing to their
simplicity in computing motion of arbitrary shaped objects.

Considerable work has been done on fully resolved simulations of freely moving particles in fluid flows on fixed grids. For
example, distributed Lagrange multiplier/fictious domain (DLM) based methods [6] and immersed boundary method (IBM
by [7–11]) have been developed and shown to be very effective in computing particle–fluid systems and fluid–structure
interaction problems. Lattice Boltzmann method (LBM by [12]) has been developed and effectively used for simulations
of rigid as well as deforming particles. Combination of the DLM, direct forcing based IBM, and Lattice–Boltzmann method
(termed as Proteus) was recently developed [13]. A second-order accurate fixed grid method (PHYSALIS) has also been pro-
posed [14], which gives good solutions for spherical particles by using local spectral representations of the solution near a
spherical boundary.

The immersed boundary method has traditionally been used for fluid–structure interaction problems with the motion of
the immersed object specified (stationary, forced rigid motion, or elastically deforming objects). For such applications, two
different implementations are typically used involving ‘direct continuous forcing’ wherein a continuous forcing function
around the particle boundary is added to the Navier–Stokes equations [7,15,16] or ‘discrete forcing’ wherein forcing is either
explicitly or implicitly applied to the discrete equations [17–20,10,11]. The former is a straightforward approach that can be
implemented in any Navier–Stokes solver with relative ease, however, diffuses the interface boundary proportional to the
grid spacing owing to interpolation functions. The latter allows precise satisfaction of the boundary condition at the im-
mersed surface maintaining a sharp interface representation, however, its implementation for arbitrary shaped objects
can become fairly involved. Recently, Kim and Choi [10] developed a new immersed boundary method using the conserva-
tive form of Navier–Stokes and continuity equations in the non-inertial frame of reference and applied to fluid–structure
interactions problems with the motion of the immersed objects specified (forced) or predicted as for freely moving rigid par-
ticles. With sufficient grid resolutions, both approaches have been shown to provide grid-convergent and accurate results.

For freely moving particle-laden flows, use of relatively coarse grids near the interface is necessary especially if the ap-
proach is used to study large number of particles (on the order of 1000) in complex flows. In such flows, use of grid resolution
with more than 20–25 grid points per particle can become prohibitively expensive. Direct forcing techniques may result in
large oscillations in the forces exerted by the fluid on the particle if the particle moves in such a way that the local stencil
near the boundary changes abruptly. This, although not an issue for specified motion fluid–structure interaction problems,
can cause problems to freely moving particulate flow problems. It is especially important for simulations with relatively
coarse resolution of the interface between the particle and the fluid. Continuous forcing immersed boundary approaches
on the other hand do not seem to show such an issue as the forces are regularized prior to discretization [9]. The relative
ease of implementation for continuous forcing methods makes them attractive for freely moving large number of disperse
particles in complex turbulent flows. However, the numerical approach by Uhlmann [9] has been found to be stable only for
particle-to-fluid density ratio (qP=qF > 1) and has only been used for density ratios up to 10, whereas for particle-air systems
the density ratios can easily range on the order of 103. For lighter than fluid particles or neutrally buoyant particles, the
scheme has been found to become unstable. Recently, Kempe and Frohlich [21] suggested modifications to the approach that
increased the range of applicability of the method to lighter than fluid particles and tested the scheme for 0:3 < qP=qF < 10.

Taira and Colonius [22] proposed a new implementation of the immersed boundary method to achieve second-order
accuracy. They compared IBM with fictitious-domain based methods to point out subtle differences when the immersed ob-
jects are constrained to undergo specified motion. In the fictitious domain/DLM method (see [6,23]), the entire fluid–particle
domain is assumed to be a fluid and the flow inside the entire particle domain is constrained to be a rigid-body motion
through rigidity constraint in terms of a stress or a force. The rigidity constraint force is applied over the entire particle do-
main as opposed to the continuous forcing immersed boundary method of Uhlmann [9] where the forcing function is present
very close to the interface, giving rise to fluid-like flowfield inside the particle region. Sharma & Patankar [1] proposed a fast
technique to obtain the rigidity constraint force that eliminated the need for an iterative procedure to solve for the rigid body
motion in laminar flows. Recently, Veeramani et al. [24] proposed a similar approach in the context of finite-element meth-
ods and used constant fluid density even within the particle domain. Apte et al. [25] further developed the finite-volume
based fictitious domain approach by [1] to large number of particles in complex turbulent flows on co-located grids and im-
proved the temporal and spatial accuracy. Their approach [25] uses the true local density at a control volume, equal to the
fluid in the fluid region and equal to the particle in the particle region, and constant coefficient Poisson solvers based on mul-
tigrid approaches for fast convergence. This approach does not suffer the stability issue as in Uhlmann [9] and has been used
for particle-to-fluid density ratios over the range of 0:1-20.

All of the above approaches have only been applied to particle–fluid systems with relatively low range of density ratios
between the two-phases (O½10�1 � 10�). Large density ratios are common in many practical applications involving complex
flows; for example coal particles in a oxycoal boiler, aeolian particle transport, aerosol transport, microfluidics, among oth-
ers. Sharp gradients in density across the particle–fluid interface in turbulent flows, for example in gas–solid systems such as
aeolian transport, chemical reactors (O½103�) or lighter than fluid solid–liquid or bubbly flow systems, can cause numerical
‘ringing’ of the solution and lead to numerical instabilities when using the fictitious domain approach with fast computation
of the rigidity constraint [1,25]. In the present work, we extend this numerical approach to account for particle–fluid systems
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over a broad range of density ratios of O½10�3—106�. A density-weighted reconstruction procedure for velocity and pressure
gradient fields is used to obtain stable results. The stability and accuracy of the approach is investigated rigorously indicating
good properties over a wide range of density ratios.

The paper is arranged as follows. A mathematical formulation of the fictitious domain scheme is first described. Numer-
ical issues with the original formulation for high density ratios and potential remedies are discussed. A new stable approach
for broad range of particle–fluid density ratios is implemented in a co-located grid finite volume method. The approach is
first validated for basic test cases to show good predictive capability. Namely, flows over a fixed cylinder and sphere are first
investigated to quantify the accuracy of the scheme. Next, freely falling/rising spherical particles at different Reynolds num-
bers are considered and compared with available experimental data at relatively low particle–fluid density ratios. The den-
sity ratios are varied over 10�3—106 for the freely rising/falling particle to show stable and accurate solution. Finally,
interactions of a lighter than fluid sphere with a stationary Gaussian vortex is simulated to show the capability of the ap-
proach to study particle–vortex interactions.

2. Mathematical formulation

Let C be the computational domain which includes both the fluid (CFðtÞ) and the particle (CPðtÞ) domains. Let the fluid
boundary not shared with the particle be denoted by B and have a Dirichlet condition (generalization of boundary conditions
is possible). For simplicity, let there be a single rigid object in the domain and the body force be assumed constant so that
there is no net torque acting on the object. The basis of fictitious-domain based approach is to extend the Navier–Stokes
equations for fluid motion over the entire domain C inclusive of immersed object. The natural choice is to assume that
the immersed object region is filled with a Newtonian fluid of density equal to the object density (qP) and some fluid viscos-
ity (lF). Both the real and fictitious fluid regions will be assumed as incompressible and thus the incompressibility constraint
applies over the entire region. In the numerical approach presented by [1,25], the particle region is identified by an indicator
(color) function H which has unit value inside the particle region and vanishes in the fluid region. Owing to finite number of
grid cells, the boundary region of the particle typically is smeared with 0 6 H 6 1. The density field over the entire domain is
then given as,
q ¼ qPHþ qF 1�Hð Þ: ð1Þ
The indicator function moves with the particle resulting in
DH
Dt
¼ 0; ð2Þ
where D=Dt is the material derivative. The fluid velocity field is constrained by the conservation of mass over the entire do-
main given as
@q
@t
þr � quð Þ ¼ 0: ð3Þ
The conservation of mass together with the indicator function advection implies that for an incompressible fluid,
r � u ¼ 0; ð4Þ
over the entire domain.
The momentum equation for fluid motion applicable in the entire domain C in the conservative form is then given by:
@qu
@t
þr � quuð Þ ¼ �rpþr � lF ruþ ruð ÞT

� �� �
þ qgþ ~f; ð5Þ
where q is the density field, u the velocity vector, p the pressure, lF the fluid viscosity, g the gravitational acceleration, and ~f
is an additional body force that enforces rigid body motion within the immersed object region CP .

With the above variable density field formulation, sharp changes in density over a single grid cell can lead to numerical
instabilities when the momentum and continuity equations are solved in the above conservative form. This was shown to be
a problem in volume of fluid formulations for two immiscible fluids by Rudman [26]. This problem can be remedied by per-
forming consistent flux constructions for mass and momentum fluxes at the control volume faces [26–28]. Inconsistencies in
flux calculations for mass and momentum leads to incorrect accelerations of fluids near interfaces leading to numerical
instability at high density ratios. Alternatively, one option is to keep constant density (equal to the fluid density) over the
entire domain, including the particle domain [24]. This works well for small density ratios, however, gives numerical insta-
bilities for large density ratios owing to large variations in the explicit rigid body force, especially when the rigid body is
accelerating or decelerating.

An alternative approach, that is commonly followed in interface tracking schemes based on level set methods [29,30], is
to solve the above equations in a rearranged non-conservative form, wherein computation of density jumps across cell faces
are not required especially for co-located grid formulations. However, level set methods suffer from the loss of mass owing to
the non-conservative advection of the signed-distance function especially for deforming interfaces. For the present work on
rigid body motion, the interface between the fluid and the particle is advanced by motion of Lagrangian marker points [25]
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and the surface area of the interface between the fluid and particles remains constant over time as interface deformation is
absent. Since the rigid particles are advanced in a purely Lagrangian frame their mass is conserved discretely in a numerical
formulation. When cast in the non-conservative form, and making use of the fact that the fluid velocity is divergence free
over the entire domain, the momentum equation can be written as,
@u
@t
þr � uuð Þ ¼ � 1

q
rpþ 1

q
r � lF ruþ ruð ÞT

� �� �
þ gþ 1

q
~f: ð6Þ
In the present work, we solve the momentum equation in the above form together with the incompressibility constraint
r � u ¼ 0 over the entire domain. The density field q varies depending on whether the control volume is in the fluid or par-
ticle domain. In order to enforce that the material inside the immersed object moves in a rigid fashion, a rigidity constraint
force is required that leads to a non-zero forcing function ~f. For simplicity, the rigidity constraint force per unit density is
labeled as f and is used in enforcing the rigid body motion in the formulation,
f ¼ 1
q

~f: ð7Þ
The fractional step scheme can be summarized as follows:

1. In this first step, the rigidity constraint force ~f in Eq. 6 is set to zero and the equation together with the incompressibility
constraint is solved by standard fractional-step schemes over the entire domain. A variable coefficient pressure Poisson
equation is derived and used to project the velocity field onto an incompressible solution. A density weighted pressure
reconstruction procedure is used to obtain the pressure gradients at the center of the control volumes which are then used
to correct the velocity field. The obtained velocity field is denoted as unþ1 inside the fluid domain and û inside the object.

2. The velocity field for a freely moving object is obtained in a second step by projecting the flow field onto a rigid body
motion. Inside the object:
unþ1 � û
Dt

� �
¼ 1

q
~f ¼ f: ð8Þ
To solve for unþ1 inside the particle region we require f. This is obtained by first finding the rigid body motion inside the
particle region. The velocity field in the particle domain involves only translation and angular velocities. Thus û is split into
a rigid body motion (uRBM ¼ UþX� r) and residual non-rigid motion (u0). The translational and rotational components of
the rigid body motion are obtained by conserving the linear and angular momenta and are given as:
MPU ¼
Z

CP

qPûdx; ð9Þ
IPX ¼
Z

CP

r� qPûdx; ð10Þ
where MP is the mass of the particle and IP ¼
R

CP
qP ½ðr � rÞI� r� r�dx is the moment of inertia tensor. Knowing u and X for

each particle, the rigid body motion inside the particle region uRBM can be calculated.
3. The rigidity constraint force is then simply obtained as ~f ¼ qðuRBM � ûÞ=Dt. This sets unþ1 ¼ uRBM in the particle domain.

Note that the rigidity constraint is non-zero only inside the particle domain and zero everywhere else. This constraint is
then imposed in a third fractional step.

The key advantage of the above formulation is that the projection step only involves straightforward integrations (simple
discrete summations) in the particle domain. The actual implementation of the approach and the semi-discretization are
described below.
3. Numerical approach

The preceding mathematical formulation is implemented in a co-located, Cartesian grid, three-dimensional flow solver
based on a fractional-step scheme developed by Apte et al. [25]. Accordingly, in the present work the particle–fluid system
is solved by a three-stage fractional step scheme. First the momentum equations are solved. Instead of dropping the pressure
gradient and rigidity constraint forces, an old time-level estimate is used for both, thus allowing solution of the full momen-
tum equation in the first step. The incompressibility constraint is then imposed by solving a variable-coefficient Poisson equa-
tion for pressure in the second step. Finally, the rigid body motion is enforced by constraining the flow inside the immersed
object to translational and rotational motion. An inner iteration is generally used to minimize the splitting error in the frac-
tional time-stepping scheme and to improve robustness, especially when using large time-steps. However, as shown later,
for the present application of freely moving particulate flows, the time-steps used are generally small (CFL 6 1) and a single
iteration is sufficient. The main steps of the numerical approach are given below.
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3.1. Immersed object representation

In the numerical implementation, small material volumes of cubic shape are created that completely occupy the im-
mersed object. Each material volume is assigned the properties of the immersed object (e.g. density etc.). The shape of
the object can be reconstructed from these material volumes by computing an indicator or color function (with value of unity
inside the object and zero outside) on a fixed background mesh used for flow solution. In this work, the material volumes are
forced to undergo rigid motion, based on the translational and rotational velocities of the object, resulting in no relative mo-
tion among them. At each time step the material volumes are advanced to new locations. In the present approach, the
boundary of the object is represented in a stair-stepped fashion and it is straightforward to create the material volumes using
a bounding-box algorithm as described in [25].
3.2. Discretized equations and numerical algorithm

Fig. 1 shows the schematic of variable storage in time and space. All variables are stored at the control volume (cv) center
with the exception of the face-normal velocity uN, located at the face centers. The face-normal velocity is used to enforce the
continuity equation. Capital letters are used to denote particle fields. The time-staggering is done so that the variables are
located most conveniently for the time-advancement scheme. The collocated spatial arrangement for velocity and pressure
field [31,32] is used. Accordingly, the particle positions (Xi), density (q), volume fraction (H), viscosity (l), and the pressure
(p) are located at time level tn�1=2 and tnþ1=2 whereas the velocity fields (ui;uN, and Ui) and the rigid body constraint force fi ,
are located at time level tn and tnþ1. This makes the discretization symmetric in time, a feature important to obtain good
conservation properties.

For each time-step, multiple inner iterations can be performed to improve the temporal accuracy and reduce the splitting
error in fractional time-stepping schemes. However, this does involve multiple solutions of the pressure equation which can
be costly. It was observed from the numerical test cases that multiple inner iterations are not needed for robustness of the
Fig. 1. Schematic of the variable storage in time and space: (a) time-staggering, (b) three-dimensional variable storage, (c) cv and face notation, (d) index
notation for a given k-index in the z direction. The velocity fields (ui;uN) are staggered in time with respect to the volume fraction (H), density (q), and
particle position (Xi), the pressure field (p), and the rigid body force (fi). All variables are collocated in space at the centroid of a control volume except the
face-normal velocity uN which is stored at the centroid of the faces of the control volume.



114 S.V. Apte, J.R. Finn / Journal of Computational Physics 243 (2013) 109–129

Author's Personal Copy 

algorithm. If the time-steps used for particulate flow simulations are small (most simulations are conducted with CFL � 0:5
to obtain good temporal accuracy), a single iteration is sufficient. The semi-discretization of the governing equations with
multiple inner iterations in each time-step is given below for completeness.

Step 1: Starting with a solution at tn and tn�1=2, the centroids of material volumes (Xi;M) representing immersed objects are
first advanced explicitly as
Xnþ1=2
i;M ¼ Xn�1=2

i;P þRij Xn�1=2
j;M � Xn�1=2

j;P

� �
þ Un

i;MDt; ð11Þ
where Xi;M is the position vector of the material volume center, Xi;P is the position vector of the immersed object centroid,
Ui;M is the translational velocity, and Dt is the time-step. Here Rij is the rotation matrix evaluated using particle locations at
tn�1=2. The details of the particle update and the rotation matrix are similar to that presented in [25] and are given in the
appendix for completeness.

Step 2: Knowing the new positions of the material volumes and particle centroid, an indicator function (color function)
Hnþ1=2 is evaluated at the cv-center of the fixed background grid. A discrete delta-function developed by [15] is used to com-
pute the color function. The color function is unity inside the particle region and vanishes outside with smooth variation near
the boundary. This thus allows identification of the particle on the background mesh. Details of the interpolation between
the material volume centers and the cv center are similar to that presented in [25]. The density and the viscosity are then
calculated over the entire domain as
qnþ1=2
cv ¼ qPH

nþ1=2
cv þ qF 1�Hnþ1=2

cv

� �
ð12Þ

lnþ1=2
cv ¼ lPH

nþ1=2
cv þ lF 1�Hnþ1=2

cv

� �
ð13Þ
where qP is the density of the immersed particle and qF is the density of the surrounding fluid. Likewise lP is dynamic vis-
cosity of the fictitious fluid inside the particle region, and lF is the dynamic viscosity of the surrounding fluid. For fixed par-
ticles, assigning large viscosity for the particle region has been used in the past [33] together with harmonic mean of the
viscosity values near the interfaces, especially when viscosity values are obtained at the faces of the control volumes. With
large viscosity within the particle region, it is easier to obtain zero velocity for fixed particles. However, in the present work,
with use of a rigidity constraint force, the viscosity within the particle region is of little significance and hence is set to be
equal to the fluid viscosity for fixed as well as moving particles, to avoid any jumps in fluid properties across the rigid particle
boundaries.

Step 3: Choose predictors (initial guesses) for the values of the variables at the next time level. This is done to initiate
solution of the momentum equations using multiple inner iterations of preset value. Predictors are chosen using second-or-
der Adams–Bashforth extrapolation for velocity. Starting with k ¼ 0,
unþ1;k
N ¼ 2un

N � un�1
N ð14Þ

unþ1;k
i;cv ¼ 2un

i;cv � un�1
i;cv ð15Þ

Unþ1;k
i;P ¼ 2Un

i;P � Un�1
i;P : ð16Þ
The pressure is updated using forward Euler, pnþ1=2;k ¼ pn�1=2 and the rigidity constraint force f nþ1;k
i;cv is obtained by using unþ1;k

i;cv

and Unþ1;k
i;P and performing interpolations from the material points to the cv center as described later.

Step 4: Advance the momentum equations using the fractional step method. The velocity field is advanced from tn to tnþ1,
u�;kþ1
i;cv � un

i;cv

Dt
þ 1

Vcv

X
faces of cv

u�;nþ1=2
i;face unþ1=2

N Aface ¼ �
1

qnþ1=2
cv

dpcv

dxi

nþ1=2;k

þ ð17Þ

1

qnþ1=2
cv V cv

X
faces of cv

s�;nþ1=2
ij;face Nj; faceAface

 !
þ gi þ f nþ1;k

i;cv ð18Þ
where gi is the gravitational acceleration, V cv is the volume of the cv; Aface is the area of the face of a control volume, Nj;face is
the face-normal vector and
unþ1=2
N ¼ 1

2
un

N þ unþ1;k
N

� �
;

u�;nþ1=2
i;face ¼ 1

2
un

i;face þ u�;kþ1
i;face

� �
;

s�;nþ1=2
ij;face ¼ lnþ1=2

cv
1
2

@un
i;cv

@xj
þ
@u�;kþ1

i;cv

@xj

 !
þ 1

2
@un

j;cv

@xi
þ
@unþ1;k

j;cv

@xi

 !" #
face
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In the above expressions, the velocities at the ‘face’ are obtained by using arithmetic averages of the neighboring cvs attached
to the face. The face-normal velocity unþ1;k

N is estimated from previous predictor values whereas the cv-center velocities ui;cv

are treated implicitly. For the viscous terms, the velocity gradients in the direction of the momentum component are ob-
tained implicitly using Crank–Nicholson scheme, whereas other components are treated explicitly. A symmetric, centered
discretization scheme is used for spatial gradients. The predicted velocity fields may not satisfy the continuity or the rigidity
constraints. These are enforced later. The old iteration level pressure gradient and rigidity constraint force are retained in the
above solution to obtain a complete momentum equation over the entire domain. Evaluation of the pressure gradients at the
cv centers is explained below.

Step 5: Remove the old pressure gradient and rigidity constraint force,
u��;kþ1
i;cv ¼ u�;kþ1

i;cv þ Dt

qnþ1=2
cv

dpcv

dxi

nþ1=2;k

� Dtf nþ1;k
i;cv : ð19Þ
Note that this velocity field satisfies an approximate momentum equation over the entire domain but need not satisfy the
incompressibility constraint.

Step 6: Solve the Poisson equation for pressure to enforce incompressibility constraint,
X
faces of cv

1

qnþ1=2
face

dp
dN

nþ1=2;kþ1

Aface ¼
1
Dt

X
faces of cv

u��;kþ1
N Aface; ð20Þ
where qface is obtained using arithmetic averages of density in the neighboring cvs. The face-normal velocity u��N and the face-
normal pressure gradient are obtained as:
u��;kþ1
N ¼ 1

2
ðu��;kþ1

i;nbr þ u��;kþ1
i;cv ÞNi;face

P0face ¼
1

qnþ1=2
face

dp
dN

nþ1=2;kþ1

¼ 1

qnþ1=2
face

pnþ1=2;kþ1
nbr � pnþ1=2;kþ1

cv

jscv;nbrj
where ‘nbr’ represents neighboring ‘cv’ associated with the ‘face’ of the cv, and jscv;nbrj is the distance between the two cvs.
Here P0face represents the pressure gradient per unit density at the face of a control volume. The variable-coefficient pressure
equation is solved using a Bi-Conjugate gradient algorithm [34].

Step 7: Reconstruct the pressure gradient at the cv centers using density and face-area weighting
P0;i ¼
1

qnþ1=2
cv

dp
dxi

nþ1=2;kþ1

¼
P

faces of cvP0face �~ijNi;faceAfacejP
faces of cvjNi;faceAfacej

: ð21Þ
Using the density weighted reconstruction, provides the pressure gradient per unit density at the cv centers which can be
directly used in correcting the velocity fields. Not using density weighted pressure gradient reconstruction was found to
be less stable, especially for large density ratios.

Step 8: Update the cv-center and face-normal velocities to satisfy the incompressibility constraint:
bukþ1
i;cv ¼ u��;kþ1

i;cv � DtP0;i ð22Þ

bukþ1
N ¼ u��;kþ1

N � DtP0face ð23Þ
With the above correction, the face-normal velocity field bukþ1
N will satisfy the incompressibility constraint. At this stage, the

cv-based velocity may not satisfy the rigid-body constraint inside the particle region. Note that in the absence of any rigid
body, q ¼ qF throughout the domain, and the algorithm reduces to the standard fractional step scheme for single-phase,
incompressible flow. The above velocity field will then be denoted as unþ1

i;cv . In the presence of rigid bodies, the following steps
are performed to enforce the rigidity constraint within the particle domain.

Step 9: First interpolate the velocity field bukþ1
i;cv from the grid cvs to the material volume centroids to obtain bUkþ1

i;M using the
kernel interpolation outlined in [25] and given in Appendix. Once the interpolated velocity field at the material volume cen-
ters is obtained, solve for the translational and rotational velocity of the particle, by simple additions over all material
volumes:
MPUT;kþ1
P ¼

XN

M¼1

VMqM
bUkþ1

M ð24Þ

IPX
kþ1
P ¼

XN

M¼1

qMVMðr� bUkþ1
M Þ; ð25Þ
where subscripts P and M denote the particle and the material volume centroids respectively, VM is the volume and qM the
density of each material volume,MP ¼

PN
M¼1qMVM is the total mass of the particle, IP is the moment of inertia of the particle
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about the coordinate axes fixed to the particle centroid, and r is the position vector of a point within the particle region with
respect to the particle centroid. The moment of inertia is given as
Fig. 2.
gradien
and 11
IP ¼
XN

M¼1

qMVM ðr � rÞI� r� r½ �; ð26Þ
where I represents the identity matrix. The rigid body motion at the material volume center is then obtained as
URBM;kþ1
M ¼ UT;kþ1

M þXkþ1
P � ðXM � XPÞ; ð27Þ
where UT;kþ1
M ¼ UT;kþ1

P .
Step 10: Compute the rigid-body constraint force and correct the velocity field to satisfy this constraint within the particle

region.
Fnþ1;kþ1
i;M ¼ �

ðbUkþ1
i;M � URBM;kþ1

i;M Þ
Dt

: ð28Þ
The force on the grid control volumes (f nþ1;kþ1
i;cv ) is obtained from Fnþ1;kþ1

i;M through a consistent interpolation scheme with the
same kernel as used for interpolating the cv-center values to the material volume centroids [25] and is given in Appendix.
The velocity field inside the particle region is then modified as
unþ1;kþ1
i;cv ¼ bukþ1

i;cv þ Dtf nþ1;kþ1
i;cv : ð29Þ
Step 11: Set k ¼ kþ 1, check for convergence and repeat by going to Step 4 for a preset number of inner iterations. After
completion of the inner iterations, unþ1;kþ1

i;cv ¼ unþ1
i;cv .

3.3. Density weighted reconstruction of pressure gradient

In order to understand the effectiveness of the density-weighted reconstruction of the pressure gradient at the cv centers
(Step 7 in the above algorithm), a simple one-dimensional example with uniform grid spacing of Dx as shown in Fig. 2a is
devised. As an example, the pressure values at the cv centers are assumed to be equal to 90, 100, and 110 for the W ; P,
and E control volumes, respectively, corresponding to a linear variation. A simple reconstruction of the pressure gradient
at the cv centers from the pressure values at the cv centers is given as,
dP0

dx

CD

¼ 1
qcv

dp
dx

CD

¼ 1
qcv

pE � pW

2Dx

� �
; ð30Þ
(a)
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Comparison of the standard centered difference (CD) and density weighted (DW) pressure gradient construction: (a) grid stencil, (b) pressure
t for wide range of density ratios with HP ¼ 0;0:5;1 values together with HW ¼ 1 and HE ¼ 0. Pressure values at P;W and E are assumed as 100, 90,

0, respectively, corresponding to a linear variation.
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where E and W correspond to the east and west neighbors of point P, respectively. For simplicity, the superscripts associated
with time-level are dropped in this example without lack of generality. This is the standard centered difference approxima-
tion for the first derivative.

A density-weighted reconstruction given by Eq. (21) provides the following expression for the pressure-gradient at the cv
centers,
dP0

dx

DW

¼ 1
qcv

dp
dx

DW

¼
1
qe

pE�pcv
Dx Ae � 1

qw

pW�pcv
Dx Aw

Ae þ Aw
ð31Þ

¼
1
qe

pE þ 1
qw
� 1

qe

� �
pcv � 1

qw
pW

2Dx
; ð32Þ
where DW stands for density-weighted reconstruction, e and w correspond to the east and west faces of the control volume
cv;Ae and Aw are the areas of the east and west faces (assumed equal for uniform grids), respectively. Notice that for uniform
density, qe ¼ qw ¼ qcv the above expression is identical to the standard central differencing.

For the example considered, the interface between the solid and fluid is assumed to lie within the control volume P, with
the west cv being pure solid H ¼ 1 and east cv a pure fluid H ¼ 0. The interface location within the cv P, can be varied by
changing HP values between 0 and 1. For each interface location, the density-to-fluid ratio is varied over the range of 10�3–
103 and the pressure gradients (dp=dx) as obtained from the central differencing and the density weighted construction are
plotted in Fig. 2(b). The central differencing predicts a constant pressure gradient across the interface, irrespective of the
interface location. However, the density-weighted reconstruction assigns different weights to the face-based pressure gra-
dients, and appropriately alters the pressure gradient at the cv P. As is shown later through a wide range of test-cases, this
pressure-gradient construction is found to be stable as well as accurate and approaches the standard gradient approximation
based on central differencing in the limit of density ratios close to unity (or neutrally buoyant particles).
3.4. Numerical errors

As mentioned earlier, multiple inner iterations (k > 1), are usually employed when using large time-steps to minimize the
splitting error and to improve robustness of the algorithm. From the above steps, it can be shown that the total splitting error
in the above fractional step is
unþ1;kþ1
i;cv � u�;kþ1

i;cv ¼ �Dt
1

qnþ1=2
cv

d
dxi

pnþ1=2;kþ1
cv � pnþ1=2;k

cv

� �
� f nþ1;kþ1

i;cv � f nþ1;k
i;cv

� �" #
ð33Þ

¼ �Dt2 1

qnþ1=2
cv

d
dxi

dpcv

dt

� �
þ dfi;cv

dt

" #
þO dp2

cv þ df 2
i;cv

� �
: ð34Þ
Note that dpcv and dfi;cv are defined as the differences between iteration levels (k and kþ 1) for the pressure and the rigidity
constraint force, respectively. By performing multiple iterations within each time step, the splitting error can be reduced. If
k ¼ 1, the splitting error is dependent on the initial guess for pnþ1=2;k

cv and f nþ1;k
i;icv . With multiple iterations, the Poisson solver is

solved multiple times per iteration. After the first iteration, subsequent solutions of the Poisson solver are not as computa-
tionally intensive. In the present work, the time-step used is such that the maximum CFL 6 1 at all times and only a single
iteration is sufficient in the test cases studied in this work.

The other source of numerical error is the interpolation from the grid points to the material volumes and back from the
material volumes to the grid points. In the above algorithm, interpolations to the material volumes and back to the grid
points are required once per time-step. It is important to use at least second-order, conservative kernels that will conserve
the inter-phase force and torque during the interpolation procedure. The interpolation operator described in Appendix is
used in this study. Recently, Kempe and Frohlich [21] looked at improving the immersed boundary method based on the
approach first proposed by Uhlmann [9] in order to improve the stability of the original scheme. They found that inconsis-
tencies in interpolations between the background grid and the Lagrangian points can result in considerable inaccuracies in
enforcing the no-slip conditions at the fluid–solid boundary. In order to improve the accuracy and reduce any inconsisten-
cies, they proposed a less costly inner iteration, wherein the iterations are done over steps 9 and 10 only in the algorithm.
This avoids solution of the pressure solve multiple times, but evaluates the control volume material point interpolations in a
more consistent manner. In the present approach, subgrid resolution of the material volumes is used and the rigidity con-
straint force is applied over the entire rigid body region as opposed to only near the interface region by Uhlmann [9] and
Kempe and Frohlich [21]. The subgrid material volumes used in the present approach allows consistent interpolations be-
tween the material volumes and the background grid and multiple iterations to reduce interpolation errors are not neces-
sary, as is shown below.
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4. Numerical test cases

The above numerical algorithm is implemented in a parallel, finite volume framework and validated for a number of test
cases: (i) flow over a fixed cylinder and sphere, (ii) particle subjected to constant acceleration for varying particle–fluid den-
sity ratios, and (iii) freely falling/rising particles at low and high density ratios. Finally, interactions of a buoyant sphere with
a stationary Gaussian vortex at different density ratios are simulated to test the capability of the algorithm.

4.1. Flow over a cylinder

Flow over a fixed circular cylinder is investigated following the case previously considered by Mittal et al. [11] for testing
their sharp interface immersed boundary method. A cylinder with diameter d is centered in a 2d� 2d domain. The flow is
started from rest and driven by a uniform inflow velocity, U1, in the axial (X) direction so that Re ¼ U1d=m ¼ 100. Similar to
[11] we set U1 and d to unity, so that all quantities may be considered dimensionless. Periodic boundaries are applied in the
vertical (Y) direction. This small test case allows thorough investigation of the spatial convergence of the scheme for mod-
erate Reynolds number flows.

For this short domain, there is no exact solution for the problem. In order to investigate spatial discretization errors, a
solution up to t ¼ 0:2 s on a very fine, 800� 800, grid with a small timestep, dt ¼ 1� 10�5, is computed to ensure that tem-
poral discretization errors are small. The same flow is then computed on a sequence of coarser grids so that the spatial order
of convergence may be observed. Grid resolutions used within the particle region are d=D ¼ 25;50, and 100 corresponding to
D ¼ 0:04;0:02, and 0:01, respectively. The error on each grid is computed by interpolating the very fine grid solution to the
coarse grid nodes and calculating the difference in solutions. In Fig. 3, the L1; L2, and L1 norms of both the axial and vertical
velocity errors are shown as a function of grid spacing. The magnitude of these errors is comparable to those obtained by
Mittal et al. [11] on similar grid resolutions. Slightly lower convergence rate is observed for the present approach on coarser
meshes, however, near second order convergence is obtained for sufficiently refined grids as shown in Fig. 3. Since the cyl-
inder boundary is represented by material volumes in a stair-stepped fashion, with grid refinement, the boundary is approx-
imated much more accurately, and all errors converge at a rate close to second-order.

Next, the uncertainty in the velocity field is evaluated using the Grid Convergence Index (GCI) [35]. The GCI does not rely on
the existence of an exact solution or the assumption that a very fine grid solution may be taken as such (as was done above),
and is robust as a general post-processing tool for error estimation in CFD calculations. This approach is used to provide an
error band for some later results, and this case serves to demonstrate the method in some detail. To compute the GCI uncer-
tainty of the flow variable, /, the procedure outlined by Cadafalch et al. [36] and Celik et al. [37] is followed, which requires
the solution for / to be obtained on three grids with (not necessarily equal) refinement ratios r21 ¼ D2=D1 and r32 ¼ D3=D2.
The fine and medium grid solutions, /1 and /2, are first interpolated to the coarse grid, where the variations,
�32ðxÞ ¼ /3ðxÞ � /2ðxÞ, and �21ðxÞ ¼ /2ðxÞ � /1ðxÞ, are computed. From �32ðxÞ and �21ðxÞ, the local apparent order of accuracy
is calculated, using the following equation [37]
PðxÞ ¼ 1
lnðr21Þ

ln
�32

�21

���� ����þ ln
rPðxÞ21 � 1 � signð�32=�21Þ
rPðxÞ32 � 1 � signð�32=�21Þ

 !�����
�����: ð35Þ
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Fig. 3. Error norms in axial (solid line) and vertical (dotted line) velocity components for flow over a cylinder at Re ¼ 100.
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In the event that r21 – r32, a straightforward Picard iteration of Eq. (35) can be used to determine PðxÞ. The global order of
convergence, PG, is then computed by averaging PðxÞ at nodes where asymptotic convergence is observed, indicated by
signð�32=�21Þ > 0. Using the global order of convergence, the GCI uncertainty of the fine grid solution is then computed as
Table 1
Uncerta

/

Ux

Ux

Ux

Ux

Ux

Uy

Uy

Uy

Uy

Uy
GCIðxÞ ¼ Fs
/1ðxÞ � /2ðxÞ

1� rPG

���� ����; ð36Þ
where Fs ¼ 1:25 is generally agreed to be a reasonable factor of safety [37,36]. Finally the globally averaged uncertainty,
GCIG, can be computed by averaging GCIðxÞ, again over nodes where signð�32=�21Þ > 0. Fig. 4 illustrates this process for
the axial and vertical velocity components in the cylinder flow for D1 ¼ 0:01;D2 ¼ 0:02;D3 ¼ 0:04. The fine and medium grid
velocity components shown in Fig. 4(a) are interpolated to the coarse grid nodes shown in Fig. 4b. The local order of conver-
gence, PðxÞ is computed on this grid using Eq. 35. This is averaged over the asymptotic nodes to obtain, PG, which is used to
compute the local GCI, plotted as the uncertainty in Fig. 4(c). The largest uncertainties are located near the upstream surface
of the cylinder, where the accelerating flow results in a thin boundary layer that is under-resolved by the current grids.

Key results of the GCI analysis are also summarized in Table 1. Effect of inner iterations on the uncertainty is also eval-
uated. As described in the algorithm, an inner iteration over the entire solution procedure (Steps 4 through 11) improves
robustness and accuracy of the approach by minimizing the splitting error in this fractional-step approach. This, termed
as ‘Solution Iterations’ in Table 1, involves multiple solutions to the pressure equation. Recently, Kempe and Frohlich [21]
have proposed several modifications to the widely used immersed boundary scheme of Uhlmann [9]. With their scheme,
which utilizes forcing points with roughly the same spacing as the background grid, they demonstrated improvement in
the imposition of no-slip particle boundaries by improving inconsistencies in interpolations between the forcing points
(or material points) and the background grid and vice versa. They proposed performing multiple iterations only on the inter-
polation steps, that is looping over steps 9 and 10 which enforce the rigidity constraint force in our scheme. This approach
does not involve iterations over the entire solution and the pressure Poisson equation is solved only once per time-step. This
is referenced as iterations over ‘Forcing Loops’ in Table 1.

In the present approach, subgrid resolution of the material volumes is used and the rigidity constraint force is applied
over the entire rigid body region as opposed to only near the interface region by Uhlmann [9] and Kempe and Frohlich
[21]. It is observed that the subgrid material volumes make multiple forcing loops of lower importance. On a relatively coarse
Fig. 4. Post processing of the velocity field to determine uncertainty in velocity components.

inty quantified using the GCI for the cylinder case with D1 ¼ 0:01; D2 ¼ 0:02; D3 ¼ 0:04.

Solution iterations Forcing loops PG GCIG [m/s] MAX (GCIðxÞ) [m/s]

1 1 1.49 0.0234 0.2776
1 3 1.41 0.0254 0.3041
1 5 1.39 0.0263 0.3152
3 1 1.44 0.0237 0.2804
5 1 1.44 0.0237 0.2804

1 1 1.54 0.0130 0.1200
1 3 1.51 0.0138 0.1322
1 5 1.54 0.0136 0.1322
3 1 1.54 0.0130 0.1200
5 1 1.54 0.0130 0.1200
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grid with d=D ¼ 25 the maximum velocity interpolated to our cylinder boundary is 3% of U1 at t ¼ 0:2 s. Table 1 summarizes
the GCI results for the cylinder case performed with multiple forcing loops, as well as multiple inner iterations, where the
Poisson equation is solved. The extra interpolations and iterations were found to have no measurable effect on the conver-
gence behavior of the solution in the present approach. As noted earlier, the inner solution iterations only improve the split-
ting error and since a small time-step is used in the present work, multiple inner iterations do not show effect on
convergence. Multiple iterations on the forcing loop (interpolation steps) also do not alter the convergence, indicating that
the grid to material volume interpolation and vice versa is done consistently in the present scheme. The global order of con-
vergence remains fixed at roughly 1.5 for all cases. This is slightly lower than the sharp interface approach by Mittal et al.
[11] and is attributed to the fact that in the present approach, the rigidity constraint force is regularized around the interface.
With refined grids, however, it was found to be closer to 2 similar to Fig. 3 as the interface gets represented more accurately
with refined grids. The global and max uncertainties are nearly identical in all cases.
4.2. Flow over a sphere

To evaluate the accuracy of the algorithm for three-dimensional configurations, flow over a fixed sphere at different Rey-
nolds numbers is evaluated and compared with published data. A sphere of diameter d ¼ 1:1 mm is placed in a domain of
15d� 15d� 15d. The sphere is located at x ¼ 5d and y ¼ z ¼ 7:5d. The grid used is 128� 128� 128. The grid is uniform and
refined around the sphere forming a patch of 1:5d� 1:5d� 1:5d. There are approximately 26 grid points along the diameter
of the sphere. For comparison Mittal et al. [11] used a domain of 16d� 15d� 15d and a grid of 192� 120� 120 for their
highest Reynolds number of 350 and Marella et al. [38] employed a 130� 110� 110 mesh on a 16d� 15d� 15d domain.
The fluid properties are q ¼ 1 kg=m3 and the viscosity l ¼ 10�5 kg=ms. The x direction is slightly moved towards the inlet
in order to increase the size of the domain in the wake. Also the density of grid-points is increased in the wake of the sphere
in order to properly resolve the flow. Table 2 compares the predicted drag coefficients with other published data showing
very good agreement.

Fig. 5 shows the vortical structure in the xz plane, for ReP ¼ 350, represented by the imaginary part of the complex eigen-
values of the velocity gradient tensor, k. Qualitatively the plots show very similar structures as shown by Mittal [39]. This
snapshot shows the vortex ring in the near wake of the sphere. Another important feature is the symmetry axis shown in
the xz plane which has been observed experimentally.
4.3. Rising/falling particle with small density ratio

First, the numerical algorithm is tested on simple cases of freely falling (heavier-than fluid) and rising (lighter-than-fluid)
particle under gravity. The particle density is on the order of the fluid density (density ratio 0:97–1:2). The computational
results are compared with available experimental data. In addition, a systematic grid refinement study is also conducted
to study the convergence of the predicted solutions.
Table 2
Drag coefficient Cd for flow over a sphere at different Reynolds number. Current results are indicated in bold.

Study Rep

20 50 100 150 300 350

Current 2.633 1.550 1.101 0.907 0.686 0.649
Mittal [39] – 1.57 1.09 – – 0.62
Mittal et al. [11] – - 1.08 0.88 0.68 0.63
Clift et al. [40] 2.61 1.57 1.09 0.89 0.684 0.644
Johnson and Patel [41] – 1.57 1.08 0.9 0.629 –
Marella et al. [38] – 1.56 1.06 0.85 0.621 –
Kim et al. [19] – – 1.087 – 0.657 –

Fig. 5. Iso-surface of k ¼ 0:008 for flow over a stationary sphere at ReP ¼ 350 in the xz plane. The dash-dotted line shows the symmetry axis of the structure
in this plane.
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4.3.1. Freely falling particle with low particle-to-fluid density ratio

The problem of a single sphere falling under gravity in a closed container is considered. The particle density is
(qP ¼ 1120 kg=m3) and the diameter is (15 mm). The sphere is settling in a box of dimensions 10� 10� 16 cm3. The particle
is released at a height of h ¼ 12 cm from the bottom of the box. The boundaries of the box are treated as no-slip walls. The
fluid properties are varied to obtain different Reynolds numbers based on the terminal velocity of the particle. The simula-
tion conditions correspond to the experimental study by ten Cate et al. [42]. Table 3 provides detailed information about the
parameters used in this test problem. The above cases are simulated on a uniform grid of 100� 100� 160 points with a grid
resolution of D ¼ 1 mm. This provides around 15 grid points inside the particle domain. The material volumes are cubical
with D=DM ¼ 2, where DM is the size of the material volume. A uniform time-step (Dt ¼ 0:5 ms) is used for all cases.

Figs. 6(a) and (b) show the comparison of the time evolution of particle settling velocity and position at different times
obtained from the numerical simulations with the experimental data by [42]. The simulation predictions for both the particle
velocity and the particle position show good agreement with the experimental data. The slowing of the particle towards the
end of the simulation is to due to the presence of the bottom wall.

In order to understand the convergence rate and uncertainty in numerical prediction, a systematic grid refinement study
was conducted for the Re ¼ 31:9 case. Three grids with uniform resolution of 100� 100� 160;150� 150� 240, and
200� 200� 320 were used for this analysis. The time-step for the coarse grid was same as above, whereas for refined grids,
it was lowered in order to keep the CFL the same for all simulations. The GCI uncertainty of the fine grid solution is computed
as described in Section 4.1, and is plotted as error bars in Fig. 7. The error bars show a relative uncertainty of 5.8% in the fine
grid solution at t ¼ 1, when the particle is close to its terminal velocity. Overall the uncertainty in prediction is found to be
small, and indicates convergence to the experimental data.

4.3.2. Lighter than fluid sphere rising in an inclined channel
A lighter-than-fluid particle rising in an inclined channel is considered. This is an important test case corresponding to the

experiment by Lomholt et al. [43]. The particle rises in this inclined channel owing to gravity. However, it slows down as it
approaches a wall, it forms a lubrication layer between the particle and the wall. It does not touch or collide with the wall.
Instead it glides along the wall without touching it. This is a critical test to see if the numerical approach can capture the
hydrodynamics of the lubrication layer properly.

The simulation is conducted with a fluid density of qF ¼ 1115 kg=m3, a particle density of qP ¼ 1081 kg=m3, and a fluid
viscosity of m ¼ 3:125 mm2=s. The Reynolds number ReStokes

P based on the Stokes settling velocity W is defined as:
Table 3
Parame

#1
#2
#3
#4
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where g ¼ 9:82 m=s2 is the gravitational acceleration, and d ¼ 2 mm is the diameter of the particle. The channel is inclined at
an angle of 8:23	 with the vertical. This is simulated by adding components of gravitational forces in the horizontal and ver-
tical directions.

The computational domain consists of a rectangular box with dimensions 10 mm in the x direction, 80 mm in the y direc-
tion and 40 mm in the z direction. The grid is Cartesian and uniform over the domain with 40� 320� 160 grid points,
respectively in the x, y and z directions so that D ¼ 0:25 mm. The particle is injected at x ¼ �1:4 mm; y ¼ �1:0 mm and
z ¼ 20:0 mm. Simulation results for a Reynolds number of ReStokes

P ¼ 13:6 are compared with experimental and numerical
data from Lomholt et al. [43]. As illustrated in Fig. 8, the numerical simulation exhibits excellent agreement with both exper-
imental and numerical results. Buoyancy forces cause the particle to rise and travel alongside the right wall of the domain.
Ultimately, the particle follows the right wall without touching it, keeping a very thin lubrication layer between the particle
and the wall.
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Fig. 8. Comparison of predicted results by the present scheme — with the experimental 
 
 
 and numerical results - - - by Lomholt et al. [43]. Fig. 8(a)
shows the particle trajectory inside the domain (the -�- line shows the initial trajectory due only to the effect of gravity), (b) the velocity of the particle in the
lateral direction and (c) the velocity on the vertical direction. The particle position is expressed in m½ � and the velocities are expressed in m=s½ �. A solid
vertical line at X ¼ 0:004 represents the wall.
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4.4. Sphere subjected to uniform acceleration

To test the stability and robustness of the numerical algorithm for high density ratio between the particle and the fluid
and at high Reynolds numbers, we consider motion of a spherical particle subjected to uniform acceleration (a) in a closed
box. If the particle is in vacuum (i.e. viscous effects and fluid density are negligible), this case has a simple analytical solution
of u ¼ u0 þ at; where u and u0 are the instantaneous and initial velocity fields respectively and t is time. Initially, a particle of
diameter 5 mm is placed at the center of a cubic box of 3 cm. Uniform cubic grids of 100� 100� 100 grid points is used. The
fluid density is set to 1 kg=m3 and the viscosity is set to zero. Gravitational acceleration is also neglected. Although the fluid
has finite density (as opposed to perfect vacuum), the predicted solution is comparable to the analytical solution at early
times. The particle starts from rest and is subjected to uniform acceleration of ð�40;�40;�40Þm=s2. The particle density
is varied over several orders of magnitude, 103;104 and 106, and the distance traveled by the particle is compared to the ana-
lytical solution of S ¼ ju0jt þ 1=2jajt2. Fig. 9 shows the temporal evolution of relative error in the distance traveled by the
particle compared to the exact solution (j Snum�Sexact

Sexact;t¼0:01
j) over 1000 timesteps with fixed time step of 10ls. It is observed that

the error remains small for high density ratios. The numerical algorithm was found to be very stable for wide range of den-
sity ratios and even in the limit of zero viscosity.

4.5. Freely falling/rising sphere for a broad range of density ratios

To test the accuracy of the numerical algorithm for high density ratio between the particle and the fluid, the same prob-
lem of freely falling/rising sphere is considered, except the density of the particle is varied and the fluid density is kept fixed
at qF ¼ 1 kg=m3. The particle density (qP) is varied over a wide range 0:002;0:001;0:1;10;100, and 500. To keep the terminal
velocity of the particle small the viscosity of the fluid is set at 0:06kg=ms. The diameter of the particle, the domain size, com-
putational grid and release point are same as that of the falling sphere calculation at low-density ratio presented earlier. For
lighter than fluid particles, the particle is placed near the bottom wall instead of the top wall and it rises up owing to
buoyancy.

Mordant and Pinton [44] performed experiments on freely falling spherical particles in a large water tank for various den-
sity ratios (maximum density ratio considered was qP=qF ¼ 14:6). They showed that for small particles falling in a large tank
(that is, for small values of the ratio of particle diameter to tank width d=L � 0:005), the temporal evolution of the particle
velocity can be well predicted by the curve:
Fig. 9.
U� ¼ U=UT ¼ 1� exp � 3t
s95

� �
; ð38Þ
where U� is the velocity of the particle (U) normalized by its terminal velocity (UT ), s95 is the time it takes for the sphere to
reach 95% of its terminal velocity, and t is time. The temporal evolution of the rising/falling spherical particle is compared to
this curve in Fig. 10 showing that the particle velocity is qualitatively similar to the exponential curve. The domain size in the
simulations is small (d=L ¼ 0:15) and thus wall effects become important. This test case confirms the stability and accuracy
of the numerical solver when applied to wide range of density ratios in particle–fluid systems. All cases showed relatively
close match to the experimental correlation. The heavier than fluid particle trajectories were much closer to the correlation
as compared to the lighter-than-fluid cases. For the lighter than fluid particles, the initial acceleration was found to be larger,
which is probably because of their small Stokes number. It should be noted that the correlation was developed from exper-
imental data on heavier than fluid particles falling under gravity in a large tank filled with water. The density ratios consid-
ered in the experiments by Mordant and Pinton [44] were 2:56 (glass), 7:67� 7:85 (steel), and 14:8 (tungsten). The
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correlation developed was based on data for steel particles. They also showed variations in the correlation for different den-
sity particles. Differences in the predicted particle velocities and the experimental data may be attributed to the fact that the
density ratios consider in the numerical test cases were varied over a much larger range and by orders of magnitude.

A systematic grid refinement and convergence study was conducted for the case of qP=qF ¼ 500. Three grids with uniform
resolution of 100� 100� 160;150� 150� 240, and 200� 200� 320 were used for this analysis. Using these three results,
the GCI uncertainty is computed for the particle velocity, and is plotted as error bars on the fine grid data points in Fig. 11.
Near its terminal velocity at t ¼ 0:2 s, the GCI indicates a relative uncertainty of 5:3% in the fine grid solution. Similar uncer-
tainties were obtained for lighter-than-fluid particles.

4.6. Buoyant sphere in a Gaussian vortex

The entrainment of a single buoyant sphere in a stationary Gaussian vortex as shown in Fig. 12(a) is considered as a final
test case. The buoyant sphere is released in the vicinity of the vortex with core radius, rc , and initial circulation, C0. With
sufficient vortex strength, the sphere gets entrained into the vortex after circling around several times and reaching a settling
location with relative coordinates (rs; hs) measured from the vortex center. For the Gaussian vortex, there is no radial velocity
component, and the tangential velocity is expressed as



Fig. 12. Entrainment of a buoyant sphere by a Gaussian vortex of core radius rc: (a) Problem schematic, showing the definition of the settling coordinates
(rs ; hs), (b) Entrainment trajectories for the three cases simulated, (c) The motion of the sphere at the settling location. qP=qF ¼ 0:01, qP=qF ¼ 0:002,
qP=qF ¼ 0:001.

Table 4
Parameters for the Gaussian vortex case.

rc ½mm� 11.45
g1 1.27
g2 0.715
Lx ; LyLz½mm� 80, 80, 5
Dcore½mm� 0.1
Ngrid 425� 425� 50

C0½m2=s� 0.04
d½mm� 1.1
qF ½kg=m3� 1000

qP ½kg=m3� 1, 2, 10
lF ½kg=ms� 0.001
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uhðrÞ ¼
C0

2pr
1� e�g1ðr=rcÞ2
� �

: ð39Þ
The vorticity and maximum tangential velocity (occurs at r ¼ rc) are given by
xðrÞ ¼ C0g1

pr2
c

e�g1ðr=rc Þ2 ; uc ¼ g2
C0

2prc
; ð40Þ
where g1 and g2 are constants. This flow has been used previously by Oweis et al. [45], as a model for wingtip vortices in
their study of bubble capture and cavitation inception. Variables relevant for the setup of this test case are summarized
in Table 4. The domain size is 7 rc � 7 rc � 0.4 rc . A slip condition is imposed at boundaries in the X and Y directions, and
the domain is periodic in the Z direction. The Cartesian grid is refined in the area of the vortex core with a cubic spacing
of Dcore ¼ 0:1 mm and has 450 � 450 � 50 grid points in the X, Y and Z directions. The velocity field of Eq. 39 is applied
as an initial condition everywhere in the domain, creating a clockwise vortex with initial strength C0 ¼ 0:04m2s�1, which
gives the vortex Reynolds number of Revx ¼ qFC0=lF ¼ 40000. During the first timestep, a single, 1:1 mm diameter spherical
particle is released at r ¼ rc; h ¼ 0. We assume typical properties of water for the fluid phase and simulate three different
particle densities corresponding to qP=qF = 0.01, 0.002, and 0.001. In each case, the simulation is advanced using a timestep
of Dt ¼ 50 ls up to a time of 1 s. Fig. 12(b) shows the entrainment trajectories of the spheres for each density ratio consid-
ered. Because of the low density ratios (qP=qF � 1), the spheres do not follow the fluid streamlines and instead are attracted
toward the right hand side of the inner core, near h ¼ 0. This is due to the lift and added mass effects effects similarly ob-
served by Mazzitelli et al. [46] and Climent et al. [47] for gas bubbles entrained in liquid vortices. The settling coordinates,
where the entrained particles are on average in equilibrium, are tabulated in Table 5 for each case. With decreased density
ratio, the spheres reach equilibrium at a larger radius and more negative angle from the horizontal. For qP=qF equal to 0.01
and 0.002, there is little relative motion of the sphere once it becomes entrained. At qP=qF = 0.001, a much different dynamic
exists because the sphere does not stay in one location. Rather it circles a point centered at (rs=rc; hs) = (0.57, �0.106). This
motion causes a strong and highly unsteady wake to develop behind the sphere as is shown in Fig. 13. Strong vortical struc-
tures are periodically shed from the sphere, and advected clockwise around the vortex core back to the sphere.



Table 5
Average settling coordinates of the sphere in the vortex core as shown in Fig. 12(a).

qP=qF rs=rc hs ½rad�

0.01 0.30 0.005
0.002 0.45 �0.065
0.001 0.57 �0.106

Fig. 13. Snapshots of fluid vorticity magnitude in the vortex core for the high density ratio case (qP=qF ¼ 0:001). Contours are from 20 to 250 m2=s.
Isosurface of 350 m2=s is also shown.
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By decreasing the particle density, qP , from 2kg=m3 to just 1kg=m3 and holding all other parameters constant, the system
transitions from a vortex which is mostly undisturbed by the presence of the entrained particle to one for which the vortex
core is significantly distorted by the particle’s presence and motion. In density stratified flows the Atwood number, qF�qP

qFþqP
, is

the typical predictor of hydrodynamic instability. However, by decreasing qP from 2 to 1, the corresponding change to the
Atwood number is just 0.2% in this system. To understand why such a small change in particle density may result in tran-
sition to unsteady flow, a simple analytic model for the settling coordinates of a small passive (no influence on the flow),
buoyant particle as a function of qP=qF ; d;uhðrsÞ;xðrsÞ, and the lift, drag, and added mass coefficients of the particle CL;CD,
and CAM was derived for this same flow by Finn et al. [48].
cos hsð Þ ¼
3CDuhðrsÞ2

4dg qP
qF
� 1

h i ð41Þ

rs ¼
ð1þ CAMÞu2

h

qP
qF
� 1

h i
g sin hsð Þ þ CLuhxðrsÞ

; ð42Þ
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where g is the gravitational acceleration. While this model uses estimated drag, lift, and added mass coefficients, it serves to
show the general dependence of rs on qP=qF . For the cases studied, hs is small. With a decreasing qP=qF , the particle settles fur-
ther away from the vortex center. A direct consequence of a small increase in rs is a corresponding increase in the particle Rey-
nolds number. From Eq. (39), and the settling coordinates in Table 4, the particle Reynolds number (assuming a fixed particle) is
estimated to increase from roughly 300 to 360. This leads to stronger, more influential vortex shedding and unsteady wake be-
hind the sphere not seen at higher density ratios. The problem of lighter-than-fluid particle interacting with a vortex is of crit-
ical significance to several practical applications including drag reduction by microbubbles, and will be part of future studies.
The numerical approach developed here facilitates such fundamental studies for a wide range of density ratios.

5. Conclusion

A numerical formulation for fully resolved simulations of freely moving rigid particles for a wide range of particle–fluid den-
sity ratios is developed based on a fictitious domain method. In this approach, the entire computational domain is first treated
as a fluid of varying density corresponding to the fluid or particle densities in their respective regions. The incompressibility and
rigidity constraints are applied to the fluid and particle regions, respectively, by using a fractional step algorithm. The momen-
tum equations are recast to avoid computations of density variations across the particle–fluid interface. The resultant equations
are discretized using symmetric central differences in space and time. A density and area weighted reconstruction of pressure
gradients is developed to obtain stable and accurate results for wide range of particle–fluid density ratios. Use of consistent
interpolations between the particle material volumes and the background grid and parallel implementation of the algorithm
facilitates accurate and efficient simulations of large number of particles. Implementation of this approach in finite-volume, co-
located grid based numerical solver is presented. The numerical approach is applied to simulate flow over fixed immersed ob-
jects (cylinder and sphere) at different Reynolds numbers. The case of flow over a cylinder is used to perform a detailed con-
vergence analysis to show good accuracy of the solver. The numerical approach is also applied to freely falling/rising
spheres for a wide range of density ratios and compared with published experimental or numerical results to show good agree-
ment. Finally, the approach was applied to simulate freely moving buoyant spheres in a stationary Gaussian vortex for a range of
density ratios to investigate the ability of the solver to capture lift and added-mass effects on lighter-than fluid particles in vor-
tical flows. For large vortex strengths, the lighter than fluid particles are attracted towards the core of the vortex. Lower density
ratio particles settle further from the vortex center in the presence of gravity as expected.
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Appendix A

The details of particle position update and interpolations between the material volume centroids and the cv centers are
provided below.

A.1. Particle position update

The rigid body motion (RBM) of a particle can be decomposed into translational (UT ) and rotational (UR) components The
total velocity field at each point within the particle is given as
URBM ¼ UT þX� r ð43Þ
where UT is the translational velocity, X the angular velocity, and r the position vector of the material volume centroid with
respect to the particle centroid. All the material volumes have the same translational velocity as the particle centroid
(UT ¼ UP).

Given a velocity field and the positions (X0
M) of the material volume centroids and the particle centroid (XP) at t ¼ t0, the

new positions (Xt
M) at t ¼ t0 þ Dt are obtained by linear superposition of the rotational and translational components of the

velocity. The axis of rotation passing through the rigid body centroid XP is given as r̂ ¼ X= Xj j. The new coordinates due to
rotation around r̂ are given as
X0 ¼ RðX0
M � XPÞ þ XP ð44Þ
where the rotation matrix is
R ¼
tr̂xr̂x þ c tr̂xr̂y � sr̂z tr̂xr̂z þ sr̂y

tr̂xr̂y þ sr̂z tr̂yr̂y þ c tr̂yr̂z � sr̂x

tr̂xr̂z � sr̂y tr̂yr̂z þ sr̂x tr̂zr̂z þ c

264
375: ð45Þ
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Here c ¼ cosðaÞ; s ¼ sinðaÞ; t ¼ 1� cosðaÞ, and a ¼ jXjDt. The material volume centroids are all uniformly translated to give
the final positions,
Xt
M ¼ X0 þ UTDt: ð46Þ
A.2. Interpolation between the two phases

Any property defined at the material volumes within the particle can be projected onto the background grid by using
interpolation functions. Use of simple linear interpolations may give rise to unphysical values within the particle domain
(e.g. volume fractions greater than unity) [1] and may give rise to numerical oscillations in the particle velocity. In order
to overcome this, a smooth approximation of the quantity can be constructed from the material volumes using better inter-
polation kernels:
UDðxÞ ¼
Z

UðyÞnDðx� yÞdy ð47Þ
where D denotes grid resolution. The interpolation operator can be discretized using the material volume centroids as the
quadrature points to give
UDðxÞ ¼
XN

M¼1

VMUðXMÞnDðx� XMÞ ð48Þ
where XM and VM denote the coordinates and volume of the material volumes respectively and the summation is over all
material volumes for a particle. For example, in order to compute particle volume fraction, UðXMÞwill be unity at all material
points. This gives unity volume fraction within the particle domain and zero outside the particle. In order to conserve the
total volume of the particle as well as the total force/torque exerted by the particle on the fluid, the interpolation kernel
should at least satisfy
XN

M¼1

VMnDðx� XMÞ ¼ 1 ð49Þ

XN

M¼1

VMðx� XMÞnDðx� XMÞ ¼ 0 ð50Þ
Several kernels with second-order accuracy include Gaussian, quartic splines etc. A kernel with compact support requiring
only the immediate neighbors of a control volume has been designed and used in immersed boundary methods [15]. For
uniform meshes with resolution D it utilizes only three points in one dimension and gives the sharpest representation of
the particle onto the background mesh:
nDðx� XMÞ ¼
1
D3 d

x� XM

D

� �
d

y� YM

D

� �
d

z� ZM

D

� �
; ð51Þ
where
dðrÞ ¼
1
6 ð5� 3jrj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3ð1� jrjÞ2 þ 1

q
; 0:5 6 jrj 6 1:5; r ¼ ðx�x0Þ

D

1
3 ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3r2 þ 1
p

; jrj 6 0:5
0; otherwise:

8>><>>: ð52Þ
Accordingly, in Section 3 the velocity field at the cv centers is interpolated to the material volume centers and is given by,
bUi;MðXMÞ ¼
X

nbr cvs of M

Vcv bui;cvðxcvÞnDðxcv � XMÞ; ð53Þ
where M stands for the material volume, the summation is over all cvs in the neighborhood of the control volume that con-
tains the material volume centroid (that is total of 27 cvs in three-dimensions), V cv is the volume of the cv, and nD is the
interpolation kernel given by Eq. (51). Likewise, the same interpolation kernel can be used to interpolate an Eulerian quantity
defined at the grid centroids to the material volume centroids. The force on the grid control volumes (fi;cv) is obtained from
Fi;M through a consistent interpolation scheme with the same kernel as used for interpolating the cv-center values to the
material volume centroids and is given as,
fi;cvðxcvÞ ¼
X
allM

VMFi;MðXMÞnDðxcv � XMÞ; ð54Þ
where the summation is over all material volumes within a rigid body that are in the neighborhood of xcv and VM is the vol-
ume of each material point.
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