
INTERNATIONAL JOURNAL OF c© 2008 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 5, Supp , Pages 17–35

MULTISCALE FEATURE DETECTION IN UNSTEADY
SEPARATED FLOWS

GUONING CHEN, ZHONGZANG LIN, DANIEL MORSE, STEPHEN SNIDER,
SOURABH APTE, JAMES LIBURDY, AND EUGENE ZHANG

Abstract. Very complex flow structures occur during separation that can ap-

pear in a wide variety of applications involving flow over a bluff body. This

study examines the ability to detect the dynamic interactions of vortical struc-

tures generated from a Helmholtz instability caused by separation over bluff

bodies at large Reynolds number of approximately 104 based on a cross stream

characteristic length of the geometry. Accordingly, two configurations, a thin

airfoil with flow at an angle of attack of 200 and a square cylinder with nor-

mally incident flow are examined. A time-resolved, three-component PIV data

set is collected in a symmetry plane for the airfoil, whereas direct numerical

simulations are used to obtain flow over the square cylinder. The experimental

data consists of the velocity field, whereas simulations provide both velocity

and pressure-gradient fields. Two different approaches analyzing vector field

and tensor field topologies are considered to identify vortical structures and

local, swirl regions. The vector field topology uses (1) the Γ function that

maps the degree of rotation rate (or pressure-gradients) to identify local swirl

regions, and (2) Entity Connection Graph (ECG) that combines the Conley

theory and Morse decomposition to identify vector field topology consisting of

fixed points (sources, sinks, saddles) and periodic orbits, together with separa-

trices (links connecting them). The tensor field feature uses (1) the λ2 method

that examines the gradient fields of velocity or pressure-gradient to identify

local regions of pressure minima, and (2) tensor field feature that decomposes

the velocity-gradient or pressure Hessian tensor into isotropic scaling, rotation,

and anisotropic stretching parts to identify regions of high swirl. The vector-

field topology requires spatial integration of the velocity or pressure-gradient

fields and represents a global descriptor of vortical structures. The tensor field

feature, on the other hand, is based on gradients of the velocity of pressure-

gradient vectors and represents a local descriptor. A detailed comparison of

these techniques is performed by applying them to velocity or pressure-based

data and using spatial filtered data sets to identify the multiscale features of

the flow. It is shown that various techniques provide useful information about

the flow field at different scales that can be used for further analysis of many

fluid engineering problems of practical interest.
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1. Introduction

The ability to detect discrete flow structures in fluid flow environments is of
growing interest to a wide variety of applications. For instance, large scale flow
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structures such as swirling, high shear rates regions and vortical structures are
thought to be controlling mechanisms for chaotic mixing, unsteady pressure fields
that influence fluid-surface interactions, transport in multiphase flows, and a host
of other applications. A robust means of developing an understanding of how
these flow structures develop, evolve, decay, and interact is of fundamental impor-
tance. To achieve this goal there needs to be a quantitative measure of the relevant
flow structures. This quantitative measure should also allow for spatial distinction
among structures and a means of tracking such structures in the space and time
domains. Since there may be many different views on what is a flow structure,
there is a wide range of defining conditions for said structures. This results in a
number of possible ways of detecting the desired flow structure. The unifying re-
quirement of the detection schemes is that they provide a quantitative measure in
a complex flow environment that defines the extent of the structure elements with
an acceptable spatial and temporal resolution.

In this study the goal is to identify flow structures that are generated as a result
of flow separation that occurs during flow over a bluff body. Such flow separation is
indicative of a Kelvin-Helmhotz shearing instability [1, 2, 3] which results in a roll-
up along a highly concentrated vortex sheet (or high shear region). Flows of this
nature are extremely important in determining the dynamic loading on structures,
in aerodynamic flight conditions, and drag forces on man-made vehicles or animals
in motion. Presented are results for two such bodies, a thin airfoil at a high angle of
attack (angle between the airfoil chord and flight direction is large causing leading
edge flow separation) and a square cross section object with separation at both
the front and trailing edges. The flow patterns associated with both bodies are
illustrated later in this paper, but the common element of concern for these flows is
that the flow separation generates large swirling flow structures that are convected
downstream as they change in size, shape and intensity.

2. Related Work

Traditionally, flow analysis involving turbulence and unsteady coherent struc-
tures that may be imbedded within the broad spectrum of turbulence has been
based on collecting one-point and two-point statistics. However, there is a large and
growing literature on swirl and vortical flow detection methods [4, 5, 6, 7]. Proper
Orthogonal Decomposition (POD) [6], the λ2 (second eigenvalue) method [4, 8], and
the Γ function [9, 7], among others, have been proposed and typically used for flow
analysis. Specific identification of vortex structures (or pressure minima) [4, 8, 9]
and correlating vortex shedding to leading edge separation [3], have been applied. In
addition to these, novel approaches developed in the scientific visualization commu-
nity based on vector and tensor field visualization and topology extraction provide
an alternative means to extract flow structure features [10, 11].

Recent advances in vector field topology focus on features such as fixed points,
periodic orbits, and separatrices [12, 13, 14, 15, 16] in two-dimensions, which have
been extended to three-dimensional steady state [17, 18, 19], and time-dependent
flows [20, 21, 22, 23], respectively. To address noise in the data sets, various flow
simplification algorithms have been proposed that are either topology-based [14,
24, 16] or purely geometric [25]. Symmetric tensor field analysis has also been
well investigated in two-dimensions [26]. The basic constituents of tensor field
topology, the wedges and trisectors have been identified in 2D, symmetric, second-
order tensors. By tracking their evolution over time, these features can be combined
to form more familiar field singularities (i.e. fixed points) such as saddles, nodes,
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centers, or foci [26]. This work has been extended to three-dimensions [27, 28, 29]
and to time-varying tensor fields [30]. Tensor field simplification techniques have
also been developed [31, 32]. Analysis of asymmetric tensor fields such as the
velocity gradient has been performed [33, 34]. Zhang et al. [34] propose to perform
topological analysis on the eigenvalues and eigenvectors of the velocity gradient
to explore flow features such as regions of compression, dilation, rotation, and
stretching, which leads to tensor field feature extraction. In this work, the vector
field topology and tensor field feature extraction techniques will be applied to flow
data sets and compared with the traditional approaches based on the Γ and λ2

methods. Furthermore, comparison of velocity-based and pressure-gradient based
data and application of various feature extraction methods is performed to illustrate
the potential of each technique when applied to different data sets.

Figure 1. Time-resolved PIV data in the symmetry plane ob-
tained at the OSU wind tunnel. (a) A close up view of the flow sep-
aration near the leading edge at 200 angle of attack, (b-c) time his-
tory of axial and vertical velocity signals, respectively, at x = 17.1
and y = 15 mm, (d-e) the corresponding power density spectra
showing a broadband spectrum and time scales.

In this study two data sets have been selected to explore the capabilities of
flow structure detection during separation, shown in Figures 1–2. Figure 1 shows
experimentally obtained velocity components in a two dimensional plane along the
centerline of a wing in a moderate Reynolds number (Re = 6 × 104 based on the
chord length). This data set was obtained using particle image velocimetry and
represents a snapshot of the velocity field with a vector resolution of 0.684mm in a
total field of field of 54 mm×47 mm. The wing is at a 200 angle of attack (chord line
relative to flow direction) and as such experiences a leading edge separation. The
flow structures developing from this separation are of interest as they are convected
downstream. The energy spectrum associated with the leading edge region shows
a broadband spectrum and is typical of these separated flows.

Figure 2 shows a snapshot of a computational simulation of flow over a square
cylinder at Re ≈ 10, 000 based on the inlet velocity (U∞ = 1.5 m/s), the cube
size (L = 0.1 m and the fluid kinematic viscosity (ν = 15 × 10−6 m2/s). A three-
dimensional simulation is performed with Dirichlet conditions at the inlet, a slip
condition at the top and bottom surfaces, periodic conditions in the spanwise direc-
tion, and a convective boundary condition for the outlet. The direct numerical sim-
ulation is performed based on a colocated grid, fractional step algorithm [35, 36, 37]
to collect the velocity and pressure data in space and time. The flow solver has
been validated with available experimental data for a variety of flow configurations
involving separated turbulent flows and swirling regions [38, 39, 36, 37]. Also shown
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in Figure 2 are the variations of mean axial velocity and turbulent kinetic energy in
the vertical directions at three different sections. The flow separates at the leading
edge corners and forms an oscillatory wake downstream giving rise to large scale
vortical structures containing large levels of turbulent kinetic energy.

Figure 2. Direct numerical simulation of flow over a square cylin-
der at Re = 10, 000. (a) the velocity vector field in the symmetry
plane, (b) mean axial velocity variation in y-direction at midpoint
of the top surface of the cylinder (c), one-length and (d) two-length
downstream from the trailing edge, (e-g) the turbulent kinetic en-
ergy variations in the y-direction at corresponding sections.

These two data sets were selected for a number of reasons. They both represent
leading edge flow separation with significant vortical flow structure development.
Both flows are at a reasonably high Reynolds number to assure a range of scales
of motion and energy. Consequently, the robust nature of the vortex detection
scheme can be evaluated for these multiscale flow fields. In addition, in order
to determine the ability to extract those vortical scales within a specified size or
energy range a high, low or band pass filtering can be applied to the data set.
Here we illustrate this by using a Gaussian filter to generate both a high and low
pass filtered data set which is then analyzed using the various detection schemes.
Also, there is a fundamental difference between experimentally and computationally
obtained data sets. In general the computational simulation will contain both
velocity and pressure field results over the full extent of the field of interest, while the
experimental set will be limited to a velocity vector field (usually in two dimensions,
and rarely more than two components). Consequently, experimental data sets lack
the ability to use the pressure and/or the full dimensional field and its possible
gradients as an indicator variable, or feature descriptor. As discussed below, several
indicator variables are explored in this paper to assess the ability and distinctions
of different variables to detect vortical flow structures.

The paper is arranged as follows. In the following section, the various flow
analysis techniques are described in detail. These include both the vector field
(velocity or pressure gradient) and tensor field (velocity gradient or Hessian of
pressure) analyses. These techniques are then applied to the airfoil and square
cylinder data sets and compared to assess the similarities and differences of all
detection schemes in identifying vortical flow features. In addition, flow structures
associated with scale separation are investigated by applying high and low-pass
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filters to the original data sets. The computational data set is used to compare
velocity-based and pressure-gradient based data.

3. Flow Analysis Techniques

In this section, we describe a number of existing flow descriptors and compare
their effectiveness in multi-scale analysis of flows with separation and vortices.

These descriptors can be roughly divided into two categories: global and local,
based on the techniques used to compute them. The global descriptors include the
Γ-function and Entity Connection Graph (ECG) [16], both of which are derived
from a vector field (velocity or pressure gradient) and requires integration over a
region surrounding the point of interest. In contrast, the local descriptors, such
as the λ2 method and eigenvalue and eigenvector topology [34], are based on the
gradient of a vector field.

3.1. Global Descriptors. In the following subsections, global descriptors based
on a vector field such as the velocity or pressure-gradient are described.

3.1.1. The Γ-Function. A Γ function [9] has been proposed as a swirl strength
parameter and used by one of the co-authors [7] to study pulsed jet in crossbow.
This method is based on a direct measure of the local swirl tendency of the flow
field by calculating the vector orientation of the feature descriptor relative to a
local radius vector at a given point within the flow field. Using the velocity vector
UM in the x−y plane as the feature descriptor the swirl strength, Γ, is determined
within a local grid area AM by:

(1) Γ(x, y) =
1

AM

∫

AM

(
PM × UM

) · ẐdA(‖PM‖‖UM‖
)

where Ẑ is a unit vector pointing out of the (x, y)-plane, and PM is the position
vector of point M within the integration stencil and the point P . This is equivalent
to the summation of the sine of the angle between the velocity vector at points
within the area AM and the position vector from these points to the position (x, y).
Consequently, it is a measure of the local swirl strength filtered by the selection of
the area AM . Because of the local normalization, the swirl can be detected within
regions of large dynamic range of velocity, which is advantageous in a separated
flow region.

Note that the traditional definition of Γ function is based on the velocity vector.
In order to define a similar feature detector based on the pressure-gradient vector,
a new function denoted as Γp is defined as:

(2) Γp(x, y) =
1

AM

∫

AM

(
PM × P

′
M

)
· ẐdA

(
‖PM‖‖P ′M‖

)

where P
′
M = −(∇p)⊥ is the pressure gradient field rotated by 900 in the anti-

clockwise direction. The pressure gradient normal to the radial vector centered at
a given point within the flow is used, and is integrated about area Am in a similar
manner as shown above for the velocity vector. In this case the swirl indication is
based on a local low pressure region which is scaled by the area averaged pressure
gradient aligned toward a specific location within the flow. The area of integration
is selected based on the spatial scale of interest.
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3.1.2. Entity Connection Graph (ECG). Vector field topology in two-dimensions
consists of fixed points (sources, sinks, saddles) and periodic orbits, Figure 3), to-
gether with separatrices (links connecting them). The fixed points identify specific
flow features and the separatrices provide possible paths and correlations between
spatially varying structures. These entities and their interconnection can be repre-
sented by a graph called Entity Connection Graph (ECG) [16]. Note that the fixed
points and periodic orbits are the nodes in the ECG and separatrices are the edges.
In addition, a periodic orbit can be connected directly to a source, sink, or another
periodic orbit. The ECGs of vector fields (for example, velocity and pressure gra-
dient) can be used to identify specific flow features (such as vortex centers etc.).

Figure 3. Schematic of vector field topology: (a) source, (b) sink,
(c) saddle, (d) attracting and (e) repelling periodic orbits.

Mathematically, a vector field can be expressed in terms of a differential equation
ẋ = V (x). The set of solutions to it gives rise to a flow on the underlying domain
M ; that is a continuous function ϕ : R × M → M satisfying ϕ(0, x) = x, for all
x ∈ M , and

(3) ϕ(t, ϕ(s, x)) = ϕ(t + s, x)

for all x ∈ M and t, s ∈ R. Given x ∈ M , its trajectory is

(4) ϕ(R, x) := ∪t∈Rϕ(t, x).

S ⊂ M is an invariant set if ϕ(t, S) = S for all t ∈ R. Observe that for every
x ∈ M , its trajectory is an invariant set. Other simple examples of invariant sets
include the following. A point x ∈ M is a fixed point if ϕ(t, x) = x for all t ∈ R.
More generally, x is a periodic point if there exists T > 0 such that ϕ(T, x) = x.
The trajectory of a periodic point is called a periodic orbit.

Consideration of the important qualitative structures associated with vector
fields on a surface requires familiarity with hyperbolic fixed points, period orbits and
separatrices. Let x0 be a fixed point of a vector field ẋ = V (x); that is V (x0) = 0.
The linearization of V about x0, results in a 2 × 2 matrix Df(x0) which has two
(potentially complex) eigenvalues σ1 + iµ1 and σ2 + iµ2. If σ1 6= 0 6= σ2, then x0

is called a hyperbolic fixed point. Observe that on a surface there are three types
of hyperbolic fixed points: sinks σ1, σ2 < 0, saddles σ1 < 0 < σ2, and sources
0 < σ1, σ2. Systems with invariant sets such as periodic orbits are considered and
the definition of the limit of a solution with respect to time is non-trivial. The
alpha and omega limit sets of x ∈ M are

α(x) := ∩t<0cl(ϕ((−∞, t), x)), ω(x) := ∩t>0cl(ϕ((t,∞), x))
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respectively. A periodic orbit O is attracting if there exists ε > 0 such that for
every x which lies within a distance ε of O, ω(x) = O. A repelling periodic orbit
can be similarly defined (α(x) = O)). Finally, given a point x0 ∈ M , its trajectory
is a separatrix if the pair of limit sets (α(x), ω(x)) consist of a saddle fixed point
and another object that can be a source, a sink, or a periodic orbit.

Figure 4 provides an example vector field (left). Fixed points are highlighted by
colored dots (sources: green; sinks: red; saddles: blue). Periodic orbits are colored
in green if repelling and in red if attracting. Separatrices that terminate in a source
or a repelling periodic orbit are shown in green and those terminate in a sink or an
attracting periodic orbit are colored in red.

Figure 4. An example vector field (left) and its ECG [16] (right).
The vector field contains a source (green), three sinks (red), three
saddles (blue), a repelling periodic orbit (green), and two attract-
ing periodic orbits (red). Separatrices that connect a saddle to a
repeller (a source or a periodic orbit) are colored in green, and to
an attractor (a sink or a periodic orbit) are colored in red. The
fixed points and periodic orbits are the nodes in the ECG and
separatrices are the edges.

3.2. Local Descriptors. The gradient of a vector field is an asymmetric tensor
field, and the topological and geometric analysis of the vector gradient can provide
additional insights to the understanding of the vector field itself. Here a well-
known technique, the λ2 method, as well as a newly developed descriptor based on
the eigenvalue topology [34] are applied to the experimental and numerical data
sets.

3.2.1. The λ2 Method. The local swirl within a flow can be determined based
on a local pressure minimum by assessing the gradient fields of either velocity or
pressure, this is designated as the λ2 method. Jeong and Hussain [4] provide a
thorough discussion of the various criteria and argue that the Hessian of pressure
be used to identify local pressure minima, and hence the vortex core.

The equations of motion for an incompressible, Newtonian fluid with constant
viscosity are given by the Navier-Stokes equations:

∂ui

∂t
+

∂

∂xj
(uiuj) = −1

ρ

∂P

∂xi
+ ν

∂2ui

∂xj∂xj
(5)
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where ui represents the components of the velocity vector, P the pressure field,
and ν the kinematic viscosity. In addition, the velocity field must satisfy the di-
vergence free constraint uj,j = 0 for an incompressible fluid. Taking the gradient
of the Navier-Stokes equation results in the relationship shown below between the
pressure Hessian and the velocity gradient tensor separated into its symmetric and
antisymmetric parts, Sij and Ωij , respectively,

(6)
[
DSij

Dt
+ SikSkj + ΩikΩkj

]

︸ ︷︷ ︸
symmetric

+
[
DΩij

Dt
+ ΩikSkj + SikΩkj

]

︸ ︷︷ ︸
antisymmetric

= −1
ρ
P,ij +νui,jkk,

where Sij = (ui,j + uj,i)/2 and Ωij = (ui,j − uj,i)/2.
A direct measure of the local pressure minimum can be obtained by evaluation

of the eigenvalues of the pressure Hessian (P,ij). Upon ordering the eigenvalues, a
positive second eigenvalue, denoted here as λ2,p expresses a local minimum. Alter-
natively, if the advective (DSij

Dt ) and viscous terms (νui,jkk) of the above gradient
equation are assumed small, the strain and rotation tensors, Sij and Ωij , can be
used to relate the effects of the local pressure minimum. Noting that the second
bracket of the equation is identically zero (it is the well-known vorticity transport
equation [4]), this method examines the eigenvalues of the remaining terms on the
left hand side by using the velocity gradient fields and represents an estimation of
the pressure Hessian (P,ij). This is denoted as λ2.

The majority of the works in turbulent, separated flow use the λ2 method mainly
because the velocity field can be directly measured in laboratories and hence its
gradients can be obtained. However, detailed measurement of the pressure field
in a region is usually not performed. In numerical simulations, both the velocity
and pressure fields are computed and allows computation of different measures of
swirl strengths. By examining the results using both the λ2 and λ2,p it is possible
to assess the detection sensitivities based on the velocity-based versus pressure-
gradient based fields. In this case the exclusion of the convective and viscous terms
can be evaluated.

3.2.2. Tensor Field Feature: The Eigenvalue Manifold (EM). The feature
of an asymmetric tensor field consists of the features of its eigenvalues and eigenvec-
tors. In two-dimensional cases, Zhang et al. [34] define the concepts of Eigenvalue
Manifold and Eigenvector Manifold, which allow the topological characterization
of an arbitrary tensor field T . In the present work, we only focus on the eigen-
value feature of the velocity gradient tensor and the Hessian of the pressure. This
characterization is based on the following reparameterization of the set of all 2× 2
tensors,

(7)
(

a b
c d

)
= γd

(
1 0
0 1

)
+ γr

(
0 −1
1 0

)
+ γs

(
cos θ sin θ
sin θ − cos θ

)

where

(8) γd =
a + d

2
, γr =

c− b

2
γs =

√
(a− d)2 + (b + c)2

2
are the strengths of isotropic scaling, rotation, and anisotropic stretching, respec-
tively. For unit tensors, i.e., γ2

d + γ2
r + γ2

s = 1, the eigenvalue manifold is defined
as
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(9) {(γd, γr, γs)|γ2
d + γ2

r + γ2
s = 1 and γs ≥ 0}

Notice that if the tensor T is the velocity gradient ui,j , then the strengths of the
tensor fields become:

γd =
1
2

(
∂u

∂x
+

∂v

∂y

)
; γr =

1
2

(
∂v

∂x
− ∂u

∂y

)

γs =
1
2

√(
∂u

∂x
− ∂v

∂y

)2

+
(

∂u

∂y
+

∂v

∂x

)2

,

where u and v are the velocity components in the x and y directions, respectively. In
a two-dimensional flow, γd is identically zero for an incompressible fluid due to the
divergence-free constraint on the velocity field, whereas for a three-dimensional flow
γd = −1/2 (∂w/∂z) and represents the mass flux in the z direction. The positive
and negative values of the isotropic scaling thus represent expansion and contraction
of fluid elements in the other direction. Similarly, γr represents the vorticity in the
z-direction. The anisotropic stretching strength γs represents the rate of angular
deformation and is related to regions of high shear. By decomposing the tensor
into isotropic scaling, rotation, and anisotropic stretching parts, it is possible to
identify regions of high swirl.

Figure 5. Representative flows corresponding to special scenarios
on the eigenvalue manifold.

Figure 6. Schematic of the five extremal situations in the Eigen-
value manifold of a tensor.

In general, there are five special points in the Eigenvalue manifold that represent
the extremal situations: (1) positive scaling (γd = 1, γr = γs = 0), (2) negative
scaling (γd = −1, γr = γs = 0), (3) counterclockwise rotation (γr = 1, γd = γs = 0),
(4) clockwise rotation (γr = −1, γd = γs = 0), and (5) anisotropic stretching
(γs = 1, γd = γr = 0). These are shown in the Figure 5.
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Figure 6a illustrates the eigenvalue manifold along with the aforementioned spe-
cial configurations. These configurations lead to a partition of the Eigenvalue man-
ifold based on the spherical geodesic distance. Given two unit vectors v1 and v2,
the spherical geodesic distance between them is the dot product 1 − v1 · v2. The
partition of the Eigenvalue manifold in turn leads to segmentation of the domain
into five types of regions:

(1) Counter-clockwise rotation dominated region: CCWR = {(x, y)|γr > max(γs, |γd|)}
(2) Clockwise rotation dominated region: CWR = {(x, y)|−γr > max(γs, |γd|)}
(3) Positive isotropic scaling dominated region: PISR = {(x, y)|γd > max(γs, |γr|)}
(4) Negative isotropic scaling dominated region: NISR = {(x, y)| − γd >

max(γs, |γr|)}
(5) Anisotropic stretching dominated region: ASR = {(x, y)|γs > max(|γd|, |γr|)}

The resulting diagram is illustrated in Figure 6b, in which the boundaries of
these regions are highlighted in magenta. The feature of a tensor field with respect
to eigenvalues consists of points in the domain whose tensor values map to the
boundaries between the Voronoi cells in the eigenvalue manifold.

4. Computation of Local and Global Descriptors

Computation of the global descriptors such as Γ & Γp and local descriptors such
as λ2 and λ2,p is fairly straightforward for both experimental and computational
data sets. Once the velocity and pressure gradient fields are obtained these de-
scriptors are extracted at each data-points and can be applied to multiple frames
to evaluate the temporal evolution. In this study, data analysis is shown for only
one particular time instant.

Evaluation of the vector field topology (ECG) and the tensor field feature needs
description. The data sets provided by the experiments or simulation at particular
grid nodes are first triangulated. The feature extraction domain is a triangular
mesh in either a planar domain or a curved surface. The vector or tensor field is
defined at the vertices only. To obtain values at a point on the edge or inside a
triangle, a piecewise interpolation scheme is used. For planar domains, this is the
well known piecewise linear interpolation scheme [30]. On surfaces, the scheme of
Zhang et al. [24, 32] that ensures vector and tensor field continuity in spite of the
discontinuity in the surface normal is used.

4.1. Extracting ECG (or vector field topology). Vector field topology for
two-dimensional flows consists of fixed points, periodic orbits, and separatrices. An
ECG is used to represent vector field topology [16]. To construct an ECG for a
vector field represented on a triangular mesh, fixed points such as sources, sink, and
saddles are first located and classified based on linearization inside each triangle.
Next, periodic orbits are extracted by identifying regions of recurrence in the flow.
In the third step, separatrices are computed by tracing streamlines from the saddles
in their respective incoming and outgoing directions. This provides edges in the
ECG that connect saddles to sources, sinks, and periodic orbits. Finally, edges
in the ECG that directly connect between sources, sinks, and periodic orbits are
determined by following the forward and reverse directions near periodic orbits that
have not been reached by any separatrices. See Chen et al. [16] for details.

4.2. Extracting tensor field feature (Eigenvalue Manifold (EM)). Tensor
field feature is computed according to the algorithm of Zhang et al. [34].

Given a tensor field T , the following computation is first performed for every
vertex.
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(1) Repamaterization, in which γd, γr, γs, and θ are computed.
(2) Normalization, in which γd, γr, and γs are scaled to ensure γ2

d +γ2
r +γs

d = 1.
(3) Eigen-analysis, in which the eigenvalues and eigenvectors are computed.

Next, the feature of the tensor field with respect to the eigenvalues is extracted.
This is done by visiting every edge in the mesh to locate possible intersection points
with the boundary curves of the Voronoi cells shown in Figure 6. The intersection
points are then connected whenever appropriate.

The current implementation of the tensor field feature extraction is on a single
processor and is memory and computation intensive. However, parallelization of
the approach is possible and straightforward.

5. Results

The results of the flow detection schemes described previously were evaluated
for the two data sets: (i) experimentally obtained two dimensional velocity field
around a thin wing at a fixed angle of attack, and (ii) data in the symmetry plane
from direct numerical simulation of the velocity and pressure fields for flow around
a square cylinder. Both vector and tensor field topologies are extracted from the
data set. The experimental data is limited to velocity field, and comparison of the
vector (Γ and ECG) and tensor field topologies (λ2 and eigenvalue manifold) are
performed. In addition, the original data set is analyzed using low-pass and high-
pass filtering to extract features at different scales. Accordingly, any flow variable
f can be written as f = f̃ + f ′, where f̃ and f ′ represent the low-pass and high-
pass filtered data, respectively. A Gaussian filtering operation is used to obtain the
low-pass data:

(10) f̃(x, y) =
∫

A

(f ·G) dA; G(x, y) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)

where σ represents the filter width. In this work, the filtered width used is four
times the local grid resolution. The DNS data set for flow over a square cylinder
was evaluated using velocity-based and pressure-gradient based feature extraction
techniques. The original data was filtered using the same filtering operation and
only the low-pass filtered data is analyzed and presented here. This data set is
used to compare the vector and tensor-field topologies based on the velocity and
pressure-gradient fields.

5.1. Airfoil Data. The wing flow field analysis is shown in Figure 7, where each
row shows the flow features obtained from Γ, ECG, λ2, and tensor-field eigenvalue
topology, respectively. Each column represents the same feature extraction tech-
niques applied to the original, low-pass and high-pass filtered data sets.

Γ Function: The Γ function results (Figure 7a-c) illustrate the detection of well
defined swirl that are separated into two main regions, the upper region is a clock-
wise (negative values) rotating stream that begins at the leading edge of the wing.
This represents a flow instability that is generated by this localized separation
which is then convected downstream. Below this region, very near the wing surface
is a companion region of counterclockwise (positive values) rotating flow. Taken
together these regions form a stream of clearly identified counter rotating vortices.
The low pass filtered data (Figure 7b) shows apparent smoothing and the stream
boundaries are well defined. The high pass filtered data (Figure 7c), on the other
hand, shows discrete swirling flow regions of small spatial extent with a much more
irregular pattern. Also, remnants of the two main counter rotating streams can be
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determined amongst the more randomly positioned swirling vortical flow elements.
This shows that the filtered data analysis is capable of detecting smaller scale swirl
contained within the larger flow structures.

Note that the Γ-function is obtained by performing spatial integration of the
flow quantities (equation 1) at each grid location and represents a global detector.
However, by separating the length scales over which the velocity field changes (high
and low-pass filter), the small scale and large-scale vortical features can be captured.
By varying the filter width, a correlation between the flow feature and the filter-
width can be obtained to identify the multiscale nature of the turbulent fluid flow.
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Figure 7. A comparison of various techniques for feature extrac-
tion applied to the experimental data set of flow over an airfoil
with 200 angle of attack.
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ECG: Figures 7d–f show the vector field topology (ECG) for the original and
filtered data sets. The ECGs are shown on top of the flow textures [40] derived
from the data sets. For the ECGs shown, sources are represented as green dots,
sinks red dots, and saddles blue dots. The separatrices are the colored curves
connecting the fixed points (green line connects a saddle to a source, and red line
connects the saddle to a sink). For the time-instant shown, no periodic orbits are
visible. The connectivity between the fixed points indicate the spatial extent of
the various flow events and their interactions. For example, in Figure 7d the two
saddles (blue) near the leading edge show connection with the sources (green) on
the downstream surface of the wing. This indicates how the flow patterns stretch
and evolve through the flow and how surface effects are correlated to flow events
far from the surface.

For this flow data, the low-pass filtered ECG does not show any sources, saddles
or periodic orbits. One sink is detected in the downstream region. On the other
hand, the high-pass filtered data shows a number of fixed points inside and outside
the separated flow region. The separatrices show the link between the fixed points.
It is observed that inside the separated flow region, the extent of the separatrices
is large, indicating that the fixed points detected are correlated with distant flow
events. However, outside the separated region (in the free-stream), the flow features
are closely correlated by more local events.

This vector-field based feature extraction technique shows similar vortical fea-
tures as the Γ function. This connectivity information is crucial for multiscale
energy cascade mechanisms observed in many turbulent flows. By investigating the
statistical nature of fixed points and their correlations, the path associated with
energy transfer from large-scale to small scale flow structures can be identified.

λ2 Method: Figures 7g–i show the tensor field feature as detected by the λ2

method. As described in the previous section, the λ2 method is associated with
gradient of the vector-field (velocity in this case) and identifies local effects. Conse-
quently, the original data set indicates clockwise rotating flow away from the airfoil
surface, similar to the Γ-function. However, it is clear that the Γ-function is able
to display well defined swirl flow pattern. While the λ2 method does detect the
strong clockwise rotating flow stream, it only weakly detects the counterclockwise
rotation near the surface. Furthermore, the high pass filtered data set does indi-
cate the clockwise stream as a series of small vortical flow elements, in contrast
to the high pass data analysis using the Γ function which shows this stream as
a nearly continuous region (blue streak) in Figure 7c. These small vortical flow
elements seem to be similar to the fixed points identified by the high-pass filtered
ECG technique.

Eigenvalue Manifold (EM):. Figures 7j–` show the eigenvalue feature for the
original, low-pass and high-pass filtered data sets. Results show strong clockwise
rotation (green) along the same region as that detected in the Γ and λ2 methods.
In addition, the near surface region shows a strong counterclockwise rotation (red)
coupled with positive isotropic scaling (yellow). This is consistent with the previous
methods with essentially the same spatial distribution. It is apparent that the flow
over the airfoil is dominated by rotation. Note that the flow is three-dimensional,
although the data analyzed is 2D in the x − y plane. Accordingly, as shown ear-
lier, the positive and negative scaling represent mass-flux through the x− y plane.
The blue and yellow regions of the tensor field feature thus indicate that strong
flux in the z-direction. It can be seen that the clockwise and counterclockwise
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rotation regions are separated by positive or negative scaling, representing local
three-dimensional effects.

The low pass data sets show that the main swirling streams are well detected
providing information on the larger flow structures. The high pass filtered data, as
in the case of the λ2 method, now indicate the small scale flow features with only
a slight trace of the larger events. In general, the high pass filtering process allows
the detection of the smaller and usually weaker flow events and provides, in this
case, a means of examining the extent of low energy background flow events.

5.2. Square Cylinder Data. Figures 8a–h indicate the vector and tensor field
feature techniques applied to the planar data for flow over a square cylinder obtained
from the direct numerical simulations. Note that the actual computations are full
three-dimensional, however, only the two-dimensional data in the symmetry plane
is analyzed.

For the square cylinder, only the low-pass filtered data is shown. The goal of this
analysis is to compare the various techniques when applied to the velocity-based
and pressure-gradient based data sets.

Γ and Γp: Figures 8a–b compare the Γ and Γp contours for the square cylinder.
Both techniques identify the flow separation and swirling regions clearly. The flow
separates at the corners of the leading edge. The top corner creates clockwise
rotation whereas the bottom-one shows counter-clockwise rotation. The separated
flow evolves over the cube surface and a strong wake region is visible downstream
of the cylinder. Both techniques identify a strong, clockwise rotation in the wake
of the cylinder. It is apparent that the pressure-gradient based Γp identifies more
features than the velocity based Γ contours. This may be attributed to the fact
that Γp is based on (−∇P ), and thus can capture the variations in flow velocity on
a smaller scale (local grid size) compared to the velocity vector-based topology.

ECG: Figure 8c–d compares the vector field topology as obtained from the ve-
locity and pressure-gradient fields, respectively. Again, similar swirling patterns as
observed by the Γ and Γp contours are visible. In this data set sources (green), sinks
(red), saddles (blue) and periodic orbits (attracting are red circles) are clearly visi-
ble. In addition, the separatrices connecting the fixed points are also shown. Again,
the pressure-gradient based topology identifies more fixed points than the velocity
field. However, the main vortical structures are identified by both. For example,
the large circulation in the wake region (just behind the cylinder) is identified by
green dots (source). For the velocity-based ECG, the separatrices show circular
paths spiraling around the source. The pressure-gradient based ECG, however,
shows lines emanating from the source.

This can be explained by considering a simple case of Rankine vortex (a combi-
nation of forced and free vortices):

vθ =
{

ωr, r ≤ ac;
ωa2

c

r
, r > ac

}
,

where ac is the radius of the core of the vortex, ω is the angular rotation associated
with the vortex, r is the radial direction, and vθ is the tangential velocity. The
pressure gradient field inside the vortex core is simply given as ∂p/∂r = ρω2r. The
pressure thus increases with increase in r and the gradient is truly radial. Thus, in
a pure vortical flow, the pressure gradient lines are perpendicular to the velocity
vector. The separatrices obtained from the pressure-gradient based ECG are seen
to be approximately perpendicular to those obtained from the velocity-based ECG
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Figure 8. Comparison of the velocity-based and pressure-
gradient based flow descriptors for flow over a square cylinder sim-
ulated using direct numerical simulation. Shown is the symmetry
plane with a close-up view of the flow field near the square.

(see for example in the wake region). This is indicative of a strong vortical region.
The extent of the separatrices roughly scales with the size of the vortical structure.
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λ2 and λ2,p: Figures 8e–f show the λ2 contours obtained based on the velocity-
gradient and pressure-Hessian tensors. As mentioned earlier, these tensor field
topologies identify locally, strong regions of swirl. Accordingly, strong swirl regions
are obtained near the leading edge corners and also in the wake regions. The
pressure Hessian based λ2,p shows similar regions of swirl. The contours are more
spotty owing to the fact that the topology obtained is based on second derivatives
of the pressure.

As discussed in the previous sections, the λ2 contours try to find pressure minima
based on the velocity-gradient based tensor. The temporal, convective, and viscous
effects are assumed small to approximately locate the pressure minima. In the λ2,p

approach, all effects are retained and consequently can locate the vortical regions
more accurately.

Eigenvalue Manifold (EM):. Finally, Figures 8g–h show the tensor field topolo-
gies obtained from the velocity gradient and pressure Hessian tensors, respectively.
The velocity-gradient eigenvalue manifold shows clockwise rotation (green) and
counterclockwise rotation (red) regions on the top and bottom surfaces of the cylin-
der. The wake of the cylinder is dominated by rotation. At the center of the leading
edge of the cylinder is a stagnation point representing strong deceleration of the
flow, represented by anisotropic stretching. Similarly, outside region of the sepa-
rated flow is also dominated by anisotropic stretching. The tensor feature shows
small regions of positive and negative scaling (blue and yellow regions) and indicate
that the flow is mostly two-dimensional.

The eigenvalue manifold of pressure Hessian is shown in Figure 8h. Note that
pressure Hessian (P,ij) is analyzed, whereas, (−P,ij) appears in the equation 6.
Accordingly, regions of positive scalings (yellow) in the pressure Hessian correspond
to low-pressure regions. This is because in the vicinity of a local minimum of the
pressure, the pressure gradient is pointing away from the minimum thus making the
minimum a source in the pressure gradient. The flow field, however, is driven by
−∇P and is towards the vortex center. Similarly, a local maximum in the pressure
corresponds to a sink in the pressure gradient (the stagnation point on the leading
edge), which resides inside regions of negative scalings (blue).

6. Conclusion

In this work, various techniques, based on vector and tensor fields, to identify
multiscale features in turbulent, separated flows were analyzed in detail. These
techniques are classified into global and local flow descriptors. The global descrip-
tors are based on spatial integration of flow parameters and thus extract large-scale
features. The local techniques are based on the spatial derivatives of flow parame-
ters and identify flow features on the scale of the grid size used to define the flow
field. These flow feature extraction techniques were applied to two data sets: (i)
experimental velocity field data of flow over a thin airfoil at 200 angle of attack, and
(ii) direct numerical simulation based data of velocity and pressure-gradient fields
for flow over a square cylinder. Both data sets were obtained at flow Reynolds num-
ber on the order of 104 based on the characteristic size of the bluff body. At these
Reynolds numbers, the flow separates and large vortical structures are obtained
that convect downstream. The goal of this work was to detect these structures at
different scales and compare various techniques.

Two different flow parameters were analyzed. The velocity and pressure-gradient
fields were used to obtain the vector field topologies. Two techniques called the
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Γ function and the Entity Connection Graph (ECG) were used to deduce the vec-
tor field topology. The Γ function maps the degree of rotation rate (or pressure-
gradients) to identify local swirl regions, and the ECG combines the Conley the-
ory and Morse decomposition to identify vector field topology consisting of fixed
points, periodic orbits, and separatrices connecting them. For both data sets the
two techniques detected similar flow features. The Γ function was able to provide
the strength associated with the vortical structure. The ECG identified recurrent
flow features (i.e. fixed points and periodic orbits) in the flow and the separatrices
showed the links between these features. The extent of a separatrix connecting two
features was found to be roughly proportional to the scale of the vortex. From the
numerical simulations, the pressure-gradient based topology was obtained and indi-
cated more flow features compared to the velocity-based analysis. The connectivity
information between fixed points or vortex centers as provided by the separatrices
is an important feature that can be further used to analyze the multiscale energy
cascade mechanisms observed in many turbulent flows.

For tensor-field feature the velocity-gradient and pressure Hessian were ana-
lyzed. The λ2 and eigenvalue manifold based techniques were applied to identify
the swirling regions. It was observed that the tensor-field feature was captur-
ing vortical structures on the small scale, whereas the extent of the vortices and
large-scale features were observed in the vector field topology (Γ and ECG). The
eigenvalue manifold decomposed the tensor field into rotation, isotropic scaling,
and anisotropic stretching regions indicative of the local flow characteristics. By
identifying these regions, it is possible to better understand the dynamics of the
separated flows.

Future work will investigate the temporal evolution of the flow features in detail.
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