
Relative performance of body fitted and fictitious domain

simulations of flow through fixed packed beds of spheres

Justin Finn∗, Sourabh V. Apte

School of Mechanical Industrial and Manufacturing Engineering, 204 Rogers Hall, Oregon State
University, Corvallis, Oregon 97331

Abstract

The relative performance of two numerical approaches involving body conforming and non-

conforming grids for simulating porescale flow in complex configurations of fixed packed

beds of spheres at moderate pore Reynolds numbers (12 ≤ Re ≤ 600) is examined. In the

first approach, an unstructured solver is used with tetrahedral meshes which conform to the

boundaries of the porespace. In the second approach, a fictitious domain formulation (Apte

et al., 2009. J Comput Phys 228 (8), 2712-2738) is used which employs non-body conforming

Cartesian grids and enforces the no-slip conditions on the pore boundaries implicitly through

a rigidity constraint force. Sphere to sphere contact points, where the fluid gap between solid

boundaries becomes infinitesimal, are not resolved by either approach, but this is shown to

have a negligible effect on the local flow field at the Reynolds numbers considered. Detailed

grid convergence studies of both steady and unsteady flow through simple cubic packings

indicate that for a fixed level of uncertainty, significantly lower grid densities may be used

with the fictitious domain approach which also does not require complex grid generation

techniques. This translates into large savings for simulation of flow through realistic packed

beds, which is shown by both analytic estimates and actual CPU timings. The applicability

of the fictitious domain approach is demonstrated by simulating unsteady flow through a

randomly packed bed of 51 spheres at a pore Reynolds number of 600. The results are used

to examine the dominance of helical vortices in the porescale flow field.

Keywords: Packed Beds, Porous Media, Fictitious Domain Approach, Body Fitted

Approach
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1. Introduction

Even at modest flow rates through porous media and packed beds, non-linear porescale

flow features such as jets and vortices can have strong effects on macroscale properties of

broader interest including pressure drop, heat transfer, and mass transfer. Many processes

in porous media occur at lower flow rates where these inertial effects may be modeled or

neglected (ie. many geologic processes). However, higher flow rates are also of importance to

both natural and engineered porous systems. For example, in river and stream beds, recir-

culating regions can result in non-uniform nutrient and temperature distributions (Cardenas

and Wilson, 2007), while higher flow rates are sometimes employed by design to increase

heat transfer and reaction rates in packed bed chemical and nuclear reactors (Andrigo et al.,

1999).

Flow through packed beds of spheres can be broadly classified into four regimes (Dybbs

and Edwards, 1984) based on the characteristics of the porescale flow: (i) Darcy flow, where

viscous forces are dominant and fluid streamlines conform to the porespace boundaries, (ii)

steady, inertial flow, where boundary layers and an “inertial core” develop in the pores-

pace, and non-linear flow features begin to emerge, (iii) unsteady inertial flow where the

flow becomes time dependent but remains laminar, and (iv) turbulent flow, with chaotic

velocity fluctuations and a full energy cascade. The transition from one regime to another

is Reynolds number dependent, but is also very sensitive to the packing configuration and

boundary conditions. This makes developing a unified understanding of porescale flows chal-

lenging, and has motivated theoretical, experimental and numerical investigations. Modern

experimental techniques such as magnetic resonance imaging (MRI) (Suekane et al., 2003,

Robbins et al., 2012), and particle image velocimetry (PIV) (Patil and Liburdy, 2012, Huang

et al., 2008) which allow for non-invasive measurement of the porescale velocity field have

been applied to study these flows. At the same time, rapidly increasing processing power

has enabled highly resolved simulation (DNS/LES) techniques as viable tools to investigate

the porescale flow physics at play (Hill and Koch, 2002, Magnico, 2009). In addition to
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providing physical insight into porescale flow behavior, DNS data sets are valuable in the

process of developing lower order models for practical engineering calculations. Upscaling of

the momentum equations for example, as done by Wood (2007) to predict macroscale dis-

persion properties, requires closures that can be obtained from three dimensional porescale

velocity fields. Moving forward, it is important to continue developing efficient and accurate

predictive simulation techniques capable of resolving the porescale flow field in packed beds.

Packed beds and porous media present unique challenges to resolved simulation tech-

niques, mostly due to the complexity of the solid-fluid interface. Nonetheless, successful

simulations of these flows have been carried out for laboratory scale packings containing

hundreds of spheres, most often using a body fitted grid combined with a finite volume

approach (Guardo et al., 2006, Atmakidis and Kenig, 2009, Dixon et al., 2006). While the

body fitted approach has the ability to directly resolve the solid-fluid interface, generating

and working with body conformal meshes for contacting sphere geometries can be extremely

cumbersome. Most of the difficulty is due to the sphere-to-sphere contact points, which

require careful treatment to avoid skewed, high aspect ratio control volumes. In our expe-

rience, the time required to generate a quality unstructured mesh for a large scale, complex

geometry like a packed bed can often take longer than performing the simulation itself.

Importantly, the significant meshing overhead and unstructured nature of the body fitted

meshes for this problem makes systematic uncertainty quantification more difficult.

These factors leave the door open for alternative simulation approaches. The mesh re-

lated pitfalls encountered in body fitted simulations can be avoided with immersed boundary

or fictitious domain approaches which use regular Cartesian grids over the entire fluid/solid

domain, inclusive of the solid regions. In these types of approaches, a synthetic force is

applied in or around the solid regions to satisfy the desired boundary condition (typically

no-slip). The way in which this force is computed and applied is a field of active research,

and a number of formulations have been proposed. A recent review on general techniques for

resolved simulation of particle laden flow covering body fitted, immersed boundary, and fic-

titious domain approaches is given by Haeri and Shrimpton (2012), and the interested reader

is referred here for a more detailed discussion. In general, immersed boundary techniques

3



add a corrective term to the momentum equation corresponding to a solid-fluid interaction

which satisfies the no-slip condition. In the fictitious domain (or distributed Lagrange mul-

tiplier) approach, the entire domain is treated as a single fluid (inclusive of solid regions),

and the rigid motion of immersed solid objects is projected in one or more steps onto the

flow field using Lagrangian force points located at the solid-fluid interface.

These non body-conformal methods have evolved over the last several decades from

the original works of Peskin (1972, 1977), and have been used extensively in a number

of fields including fluidized beds & suspensions (Glowinski et al., 2001, Uhlmann, 2005,

Simeonov and Calantoni, 2011), fluid structure interaction (Zhu and Peskin, 2002), and

swimming/flying (Dong et al., 2010, Vargas et al., 2008). Not surprisingly, their broadest

application has been in problems where the motion of immersed solid boundaries would re-

quire adaptive re-meshing during simulation using a body fitted approach, and application

to the fixed bed type problems considered in this work has been more limited. Some notable

exceptions are the recent study of transitional flow through arrays of fixed two dimensional

square cylinders by Malico and Ferreira de Sousa (2012), and the study by Smolarkiewicz

and Larrabee Winter (2010) of Darcy flow through reconstructed three dimensional porous

media. Other alternatives to the body fitted approach exist which have been successfully

applied to simulation of flows through fixed beds and porous media, including the Lattice-

Boltzmann method (Hill and Koch, 2002) and methods based on smoothed particle hydro-

dynamics (Ovaysi and Piri, 2010).

In this paper, the performance of fictitious domain simulations of flow through packed

bed geometries based on the formulation of Apte et al. (2009) is examined, relative to

simulations using a well established body fitted unstructured grid approach developed from

the work of Mahesh et al. (2004) with modifications to account for mesh skewness proposed

by Ham and Iaccarino (2004). The main goal is to demonstrate the capability and advantages

of using the former for porous media and packed bed applications, especially at moderate

Reynolds numbers when it is necessary to capture complex steady and unsteady porescale

flow features. In addition, it is important to establish grid density requirements when

simulating large scale, complex flow problems, so that solutions can be reported with a
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high level of confidence (or at least an understanding of their limitations). For example,

in direct or large eddy simulations of turbulent channel flows, placing the grid cells within

Y + <= 1 (where + denotes wall units) , of the wall should produce reasonable confidence

that boundary layers and small scale structures are resolved properly. This estimate takes

advantage of the existence of the log-law in wall bounded flows. Likewise, for simulations

of atmospheric turbulence or mixing layers, the grid spacing may be chosen to resolve the

Kolmogorov scale. For inertial, transitional, and fully turbulent flows through porous media,

it is not completely clear on how to estimate grid resolution requirements apriori so that

all important porescale features may be captured. It is possible to estimate the net average

shear stress on the porous bed by relating the net pressure drop across the bed (through for

example the Ergun (1952) correlation) to the Reynolds number. Knowing the porosity, one

could then compute the average shear stress and in turn estimate a boundary layer thickness.

However, owing to complex bed geometries, these properties will vary substantially across

the bed, and it is not clear what the grid resolution requirements are for accurate predictive

simulations. Conducting grid refinement studies on very large scale simulations is also

difficult due to the extensive computational cost. For this reason, our goal is to understand

and establish grid resolution requirements for DNS in the steady and unsteady inertial

Reynolds number regimes by performing systematic grid refinement studies of flow through

porous media on smaller domains with representative packings. While random packings

require careful treatment, such estimates could be a valuable starting point for estimating

the computational overhead of larger scale simulations.

The remainder of the paper is structured as follows. First the surface representation,

and numerical solution procedure used by both methods is discussed in Section 2. Next

we examine several test cases, which are designed to test the ability of each approach for

complex flows in packed beds in Section 3. Emphasis is placed on estimating the uncer-

tainty associated with the porescale flow fields produced by each method, and determining

required grid densities for acceptable confidence levels. To this end, we employ the Grid

Convergence Index (GCI), originally proposed by Roache (1994). In Section 4, expressions

for the scalability of both methods for more general, randomly packed bed simulations are
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developed. Finally, in Section 5, the fictitious domain approach is used to simulate flow

through a random arrangement of 51 spheres at a pore Reynolds number of 600. This case

demonstrates the capability of the approach for more realistic packed bed problems of gen-

eral interest and allows us to explore the porescale structure of unsteady inertial flow in a

random arrangement of spheres.

2. Computational methods

Consider the Navier-Stokes equations for constant density and viscosity, incompressible

fluid motion:

∇ · u = 0 (1)

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ µ∇2u + ρg + f (2)

where ρ is the density field, u the velocity vector, p the pressure, µ the fluid viscosity, g the

gravitational acceleration, and f is an additional body force which is zero in the body fitted

approach, and will be used to enforce rigidity within the solid phase in the fictitious domain

approach. The two approaches to the solution of these equations are both implemented in a

similar finite volume framework, and share several of the same basic techniques including a

fractional step method (Moin and Apte, 2006), and an algebraic multigrid (AMG) solver for

the pressure Poisson equation (Falgout and Yang, 2002). The codes are parallelized using

Message Passing Interface (MPI), allowing for larger scale simulations by distributing the

required memory over many processors.

Regardless of the approach used, precise representation of the solid-fluid interface is crit-

ical to obtain an accurate solution. Below, details are provided concerning the numerical

representation of the porespace boundaries during simulation. For additional details regard-

ing the numerical implementation, verification and validation of each method, the reader

is referred to Moin and Apte (2006) and Ham and Iaccarino (2004) for the body fitted

approach, and to Apte et al. (2009) for the fictitious domain approach.
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2.1. Body fitted approach

In the body fitted approach, the pore space is first discretized into unstructured tetra-

hedral control volumes with a triangular surface mesh on the solid boundaries. Although

arbitrarily shaped control volumes can be utilized by the solver, we have found that it is

easiest to generate quality meshes in packed beds with tetrahedral cells, as opposed to other

shapes (hexahedral for instance). Unstructured mesh generation for complex geometries is

a non-trivial procedure in general, and in packed beds the process is complicated by sphere-

to-sphere contact points, near which elements can become unmanageably small, have high

aspect ratio, and be skewed. Several methods have been proposed to mitigate this problem.

Most commonly, the spheres are created at reduced diameter, typically 98 or 99 percent,

eliminating all contact points (Atmakidis and Kenig, 2009, Calis et al., 2001, Nijemeisland

and Dixon, 2004), and creating a small gap between spheres. A related approach first pur-

sued by Guardo et al. (2006) is to create the spheres slightly larger than they actually are,

so that they overlap, creating a continuous edge in the plane perpendicular to the contact

line. Magnico (2003, 2009) has used a structured grid approach where the surface repre-

sentation is stair stepped due to a voxelized treatment of the solid boundaries. While the

meshing overhead is low with this approach, an artificial surface roughness is imposed, even

with significantly refined grids. The approach which is pursued here takes advantage of the

fact that the fluid very close to the solid contact points tends to be more or less stagnant

even at moderate Reynolds numbers. In light of this, Kuroki et al. (2009) have proposed a

bridge method, wherein they do not change the diameter of the sphere, but rather unite two

contacting spheres with a cylinder placed on the contact line as shown in Figure 1. This

technique has the potential to significantly reduce overall mesh size because the regions

where small element sizes are required have been eliminated. Nelson (2009) extended this

technique, and created a smooth fillet between the two contacting surfaces allowing for more

continuity in the surface mesh for the application of prismatic surface layers.

The bulk behavior of flows in porous media and packed beds is strongly affected by

porosity, so it is important that the bridges do not add significant solid volume to the
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porespace. The overall increase in solid volume due to a single bridge can be shown to be

Vb =
π

8
D2
b

(
D −

√
D2 −D2

b

)
− π

12

(
D −

√
D2 −D2

b

)3

(3)

In this work, the bridge diameter is chosen to be Db = 0.25D, so the volume of a single

cylinder bridge is Vb = 0.0015Vsp, where Vsp is the volume of a single sphere. Thus, even

for packings with moderate coordination numbers, we can expect the total solid volume to

increase by less than 1% (and only in the mostly stagnant contact regions). By comparison,

the more common technique of shrinking the spheres to 99% of their original size will decrease

the solid volume (everywhere) by roughly 3%.

Figure 1: Schematic of the cylinder bridge created between two contacting spheres.

It quickly becomes challenging and time consuming to generate this type of geometry

and mesh for more than a few spheres using the GUI of a typical mesh generation package

because of the large number of geometric entities and high surface area to volume ratio.

In light of this, a parameterized and automated approach has been developed that takes

advantage of the commercial meshing package Pointwise’sr full TCL-TK programmability.

All sphere-sphere or sphere-boundary contact points are bridged, then trimmed and joined

into a single watertight model. Once the solid geometry is assembled, a triangular surface

mesh is generated on all solid surfaces. Because of the complex arrangements encountered

in porous media, uniform mesh spacing, ∆ = V1/3
cv , where Vcv is the cell volume is used

everywhere in the porespace. In geometries with entry/exit regions, mesh coarsening is used

to reduce the total mesh size. An example of the cylinder bridge geometry and surface mesh
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is shown in the lower half of Figure 2 for a simple two sphere system. This meshing tool is

robust and can handle arbitrary random or arranged packings of spheres contained in box or

tube geometries. It has been used to generate meshes with over 80 million control volumes

and for geometries containing over 500 spheres. The interested reader is referred to Finn

and Apte (2012) for examples.

Figure 2: Comparison of discrete surface representations used by the body fitted (bottom)

and fictitious domain (top) approaches.

2.2. Fictitious domain approach

The computations carried out with the fictitious domain approach utilize a hybrid

Lagrangian-Eulerian (HLE) formulation for representation of arbitrarily shaped immersed

solid objects and is not limited to the spherical objects used here. Although we consider

only fixed beds, this fictitious domain approach also allows accurate representation of either

forced or freely moving boundaries embedded in the flow and is easily extensible to fluidized

bed simulations. Let Γ be the the entire computational domain which includes both the

9



fluid (ΓF ) and the solid particle (ΓP ) domains shown in upper half of Figure 2. Let the fluid

boundary not shared with the solid be denoted by β and have a Dirichlet condition (gener-

alization of boundary conditions is possible). The basis of a fictitious domain approach is

to extend the Navier-Stokes equations for fluid motion over the entire domain Γ inclusive of

immersed solids (Glowinski et al., 2001). The natural choice for these fixed bed problems

is to assume that the immersed solid region, ΓP , is filled with the same Newtonian fluid

with density (ρ) and viscosity (µ) as ΓF . Both the real and fictitious fluid regions will be

assumed as incompressible and thus equations 1 and 2 apply everywhere in the domain. In

addition, as the immersed solids are assumed rigid, the motion of the material inside ΓP

is constrained to rigid body motion. Several ways of obtaining the rigidity constraint have

been proposed (Glowinski et al., 2001, Patankar and Joseph, 2001, Sharma and Patankar,

2005). We follow the formulation developed by Sharma and Patankar (2005) and described

in detail by Apte et al. (2009). A brief description is given here for completeness. The

solid fluid interface, β, is located on the Cartesian grid with subgrid scale marker points as

shown in the top half of Figure. 2. These marker points carry a color function indicating

the relative location of the interface, and remain fixed during the simulations.

In order to enforce that the material inside the immersed solid remains rigid, a constraint

is required that leads to a non-zero forcing function, f . Inside the solid region, the rigid body

motion, uRBM , implies vanishing deformation rate tensor:

1
2

(
∇u + (∇u)T

)
= D[u] = 0,

⇒ u = uRBM = U + Ω× r

 in ΓP , (4)

where U and Ω are the translation and angular velocities of the object and r is the position

vector of a point inside the object from its centroid. For the fixed bed problems considered

here, uRBM is always zero. The vanishing deformation rate tensor for rigidity constraint

automatically ensures the divergence free, incompressibility constraint inside the solid region.

The incompressibility constraint gives rise to the scalar field (the pressure, p) in a fluid.

Similarly, the tensor constraint D[u] = 0 for rigid motion gives rise to a tensor field inside

the solid region. Distributed Lagrange multipliers based approaches have been proposed
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to solve for the rigid body motion and impose the rigidity constraint which requires an

iterative solution strategy. Sharma and Patankar (2005) proposed an approach that provides

the rigidity constraint explicitly, thus reducing the computational cost significantly. Noting

that the tensorial rigidity constraint can be reformulated to give:

∇ · (D [u]) = 0 in ΓP (5)

D [u] = 0 on solid/fluid interface, β (6)

A fractional-step algorithm can be devised to solve the fictitious domain problem (Patankar

and Joseph, 2001, Sharma and Patankar, 2005, Apte et al., 2009). Knowing the solution at

time level tn the goal is to find u at time tn+1.

1. In the first step, the rigidity constraint force f in equation 1 is set to zero and the

equation together with the incompressibility constraint (equation 4) is solved by stan-

dard fractional-step schemes over the entire domain. Accordingly, a pressure Poisson

equation is derived and used to project the velocity field onto an incompressible so-

lution. The obtained velocity field is denoted as un+1 inside the fluid domain and û

inside the solid object.

2. To solve for un+1 inside the solid region we require f . The constraint on the deformation

rate tensor given by equation 4, along with the no-slip specification at the solid-fluid

interface can be reformulated to obtain:

∇ ·
(
D[un+1]

)
= ∇ ·

(
D

[
û +

f∆t

ρ

])
= 0; (7)

D[un+1] · n = D

[
û +

f∆t

ρ

]
· n = 0. (8)

The velocity field in the solid is zero for fixed beds. Thus û is split into a rigid body

motion (uRBM = U + Ω × r = 0) and residual non-rigid motion (u′). The above

formulation can be easily generalized to solid bodies with specified motion by directly

setting uRBM to the specified velocity.

3. The rigidity constraint force is then simply obtained as f = ρ(uRBM − û)/∆t. This

sets un+1 = uRBM in the solid domain. Note that the rigidity constraint is non-zero
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only inside the solid domain and zero everywhere else. This constraint is then imposed

in a third fractional step.

The utility of the Lagrangian marker points (see Figure 2) is in locating the solid/fluid

interface and enforcing the boundary condition on β with subgrid scale resolution in the

above steps. A quantity can be defined and calculated at the marker points (for example

f) and then be projected onto the Eulerian grid, or vice-versa, using accurate interpolation

kernels (Roma et al., 1999). In practice, because the no-slip condition at the boundary of

the porespace is enforced indirectly, the precision of the boundary location is directly linked

to the grid resolution. This is especially true near regions of sharp boundary curvature such

as sphere to sphere contact points. This is illustrated in the top half of Figure 2 where

the solid line denotes the fictitious domain solid-fluid interface. Even with subgrid marker

points, the high curvature contact region appears as a bridge similar to the one obtained

(intentionally) in the body fitted meshing procedure.

2.3. Uncertainty Estimation

In the absence of an analytic solution, it is important to be able to estimate and report

the uncertainty associated with a CFD calculation. Furthermore, uncertainty should be

computed in a consistent manner, which can be compared by future workers using new

or different simulation approaches. For this reason, we choose the grid convergence index

(GCI), originally proposed by Roache (1994), to quantify the uncertainty associated with

some of our simulation results. The GCI is based on the ideas of Richardson extrapolation

and does not rely on the existence of an exact solution or the assumption that a very

fine grid solution may be taken as such. It is robust as a general post-processing tool for

error estimation, and has proven its utility for numerical solutions of a variety of different

flows (Cadafalch et al., 2002).

To compute an uncertainty band for the flow variable, φ, the solution is first obtained

on at least three grids with (not necessarily equal) refinement ratios r21 = ∆2/∆1 and

r32 = ∆3/∆2. For the purposes of comparing results which utilize control volumes with

various shapes, we define the grid spacing in this paper as ∆ = V1/3
cv , where Vcv is the average
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cell volume. For nominally two dimensional cases (such as Section 3.1), the analog to this

definition is ∆ = A
1/2
cv , where Acv is the cell area. The fine and medium grid solutions, φ1

and φ2, are then interpolated to the coarse grid, where the variations, ε32(x) = φ3(x)−φ2(x),

and ε21(x) = φ2(x)−φ1(x), are computed. From ε32(x) and ε21(x), the local apparent order

of accuracy, mathcalP (x), may be calculated, using the following equation (Celik et al.,

2008).

P(x) =
1

ln(r21)

∣∣∣∣∣ln |ε32(x)/ε21(x)|+ ln

(
r
P(x)
21 − sign(ε32/ε21)

r
P(x)
32 − sign(ε32/ε21)

)∣∣∣∣∣ (9)

In the event that r21 6= r32, a straightforward iteration of equation 9 can be used to determine

P(x). The global order of convergence, PG, is then computed by averaging P(x) at nodes

where monotone convergence is observed, indicated by sign(ε32/ε21) > 0. The percentage of

nodes exhibiting monotone convergence is denoted %Mn and indicates the degree to which

the results are in the asymptotic regime. Non-monotone grid convergence of CFD solutions

is an unfortunate reality, and is not necessarily cause for excessive concern (Eça et al., 2005).

Using the global order of convergence, the GCI of the fine grid solution is then computed

as

GCI(x) = Fs

∣∣∣∣φ1(x)− φ2(x)

1− rPG21

∣∣∣∣ (10)

where Fs = 1.25 is a reasonably conservative factor of safety for a three grid refinement

study (Roache, 2003). In this form, the GCI has the same units as φ, and may be taken

as a local uncertainty band. Alternatively, it may be multiplied by 100/φref , where φref

is some meaningful reference value, to obtain a dimensionless percent relative uncertainty.

In this work we will report the global uncertainty, GCIG, as the node averaged percent

relative uncertainty with φref equal to the spatial average of RMS(φ(x)). Boundary nodes,

or nodes where φ is fixed (such as within rigid bodies in fictitious domain computations),

are excluded from the global averages. Finally, the grid resolution required to obtain some

target level of uncertainty, denoted GCI∗, may be estimated as (Roache, 1997)

∆∗ = ∆1 ·
(
GCI∗

GCIG

)1/PG
(11)

This is useful for determining simulation size requirements as is done in Section 4.
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3. Performance assessment

The test cases examined here are designed to provide a basis for quantifying the perfor-

mance of our two methods for fixed bed flow simulations. First, the influence of grid type

and quality on solution error in the absence of solid boundaries is demonstrated using the

case of decaying Taylor vortices. Second, as a basic hydrodynamic validation for packed bed

and porous media flows, we examine Stokes flow through a dilute periodic array. Third,

to test the effect of sphere to sphere contact points on both the body fitted and fictitious

domain approaches, flow past a contacting pair of spheres is simulated. Finally flow through

a simple cubic lattice is considered at both steady and unsteady Reynolds numbers. This

serves two purposes. First, the predicted porescale velocity profiles can be compared to those

measured experimentally by Suekane et al. (2003). Second, the geometry is simple enough

to allow a detailed grid refinement study from which we can generate error estimates, and

determine the scalability of each approach for larger packed bed simulations over a broad

range of pore Reynolds numbers.

3.1. Baseline accuracy and mesh quality: Decaying Taylor vortices

Based on the numerical implementations, in the absence of immersed solids the fictitious

domain and body fitted approaches are identical. An important first step in understanding

the solution behavior in complex packed bed flows is to assess the influence of grid type

and quality on solution accuracy in the absence of solid boundaries. To accomplish this, we

examine the case of decaying Taylor vortices (Taylor, 1923). This time dependent solution

to the Navier-Stokes equations can be written as:

ux = − cos(πx) sin(πy) exp−
2π2t
Re (12)

uy = sin(πx) cos(πy) exp−
2π2t
Re (13)

p = −1

4
(cos(2πx) cos(2πy)) exp−

4π2t
Re (14)

We assign the initial condition at time t = 0 for Re = 10 in a periodic domain with

−1 < x < 1, −1 < y < 1 on the three families of grids shown in Figure 3: (a) uniform,
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(a) Uniform Cartesian (b) Uniform prism (c) Non-uniform prism

Figure 3: Three families of grids used in the Taylor vortex case.

Cartesian grids with cubic control volumes, (b) prism grids with nearly uniform element

size and aspect ratio near 1, (c) prism grids with non-uniform element size and aspect ratio.

The vortex decay is simulated up to a time t = 0.2 on grids with average cell edge lengths

of le = 0.1, 0.05, 0.025. This results in grid spacing, ∆ = A
1/2
cv = le for the Cartesian

grids, and ∆ ≈ 0.66le for the prism grids. At the end of the simulation, the error in the

ux velocity component is computed at each cell center using equation 12. A constant time

step, ∆t = 2.5 × 10−3, is used to isolate the spatial discretization errors, resulting in a

maximum CFL number of CFL = ||u||∆t/∆ = 0.15 for the initial condition on the finest

prism grid. Figure 4 shows the L1 and Lmax error norms as a function of grid spacing

for the three families of grids. As expected, the Cartesian grids show perfect second order

spatial accuracy. Second order accuracy in the L1 norm is retained by the uniform prism

grids, but the Lmax norm shows a significant increase in local error, which underscores the

sensitivity of the methods to local grid quality. The convergence of error on the non-uniform

prism grids is only slightly better than first order in both the L1 and Lmax norms, and the

magnitude of solution error is nearly 1 order of magnitude greater than the Cartesian grids.

This demonstrates that unstructured meshes with lower quality cells compared to Cartesian

grids can introduce significant local solution errors. This is important to consider for packed

beds, where irregular geometries make generating uniform triangular/tetrahedral cells very

difficult
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Figure 4: L1 and Lmax error norms for the ux velocity component. Cartesian �, uniform

prism •, non-uniform prism H.

3.2. Basic hydrodynamic verification: Stokes flow drag on a single sphere in a dilute array

To begin testing these approaches in packed bed type applications, we examine the case

of Stokes flow through a dilute periodic array of spheres. The geometry we consider is a

periodic box, with all sides of length L which contains a single sphere with diameter, D,

centered at x = L/2. The periodicity in all directions allows us to represent an infinite

simple cubic arrangement with a single sphere. The ratio L/D is chosen to be 2.015 to

allow for comparison with the integral equation solutions of Zick and Homsy (1982) for the

relatively dilute solid volume fraction of (1− ε) = 0.064, where ε is the fluid void fraction .

Three Cartesian and tetrahedral grids are created with D/∆ = 12, 24, 48, where ∆ = V1/3
cv .

The flow is started from rest, and accelerated by applying a small, uniform pressure

gradient everywhere. When the flow reaches equilibrium, we confirm that the pore Reynolds

number is small enough that inertial effects are negligible, and the total force exerted on

the sphere is then computed. For this case, Rep = UpD

ν
≈ 1× 10−3 where Up is the average

velocity in the fluid region of the porespace, or pore velocity. In the fictitious domain

approach, the drag force, fd, is taken to be the component of the rigid body force aligned

with the applied pressure gradient. In the body fitted approach, the drag force is obtained
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by integrating the surface stress over the sphere boundary faces. This is then normalized by

the Stokes drag on a single sphere in unbounded flow to obtain the drag coefficient, CD.

CD =
fd

Nsp3πµDUpε
(15)

Here, Nsp is the number of spheres and is equal to 1 for this case. The computed values

are summarized in Table 1 for both approaches. The solutions converge to within about 2%

of the analytic value, CD = 2.810 obtained by Zick & Homsy. We have also computed the

apparent convergence rate, P and the relative percent uncertainty using the GCI method.

For this low Reynolds number the body fitted approach, wherein the no-slip condition is

directly enforced at the sphere surface, has a very rapid apparent rate of convergence, P =

3.19, leading to very low uncertainty in CD for the fine grid solution. The fictitious domain

approach, which less precisely defines the surface via the sub-grid marker points, converges

at a more modest rate of P = 1.65, and achieves a relative uncertainty of 0.59% for D/∆ =

48. The roughly 4% discrepancy between the converged body fitted and fictitious domain

solutions may be due to differences in grid quality ( body fitted) and interface representation

(fictitious domain)

Table 1: Comparison of Stokes flow drag coefficient to analytic solution of Zick and Homsy

(1982) for a simple cubic array with solid concentration, (1− ε) = 0.064

D/∆ Analytic Body Fitted Fictitious Domain

CD CD P GCI (%) CD P GCI (%)

12 2.810 2.784 - - 3.086 - -

24 2.810 2.857 - - 2.831 - -

48 2.810 2.865 3.19 0.016% 2.750 1.65 0.59%

3.3. Effect of the contact point: The contacting pair

Inertial flow past a contacting pair of spheres in a confined channel is considered to study

the effects of sphere to sphere contact regions on the flow and to compare the hydrodynamic
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force measured by the two interface representations. The configuration of the connected body

is shown in Figure 5a. The spheres are located such that their contact point always lies at

the origin, (X, Y, Z) = 0. Uniform flow enters from a square cross section, 3.5D × 3.5D,

at Z = −5D. A convective outflow boundary is located downstream of the contact at

Z = +5D. A no-slip condition is enforced on the channel walls. The spheres are rotated

around the Y axis by the angle of incidence, θ, so that the leading and trailing sphere centers

have the coordinates

(Xl, Yl, Zl) =

(
0, − D

2
sin(θ), − D

2
cos(θ)

)
(16)

(Xt, Yt, Zt) =

(
0,

D

2
sin(θ),

D

2
cos(θ)

)
(17)

The value of θ is varied from 0o to 90o in increments of 15o in order to fully sample the range

of orientations found in randomly packed beds. The uniform inflow velocity is assigned so

the Reynolds number, defined Re = UinD/ν, ranges from 50 to 175, in increments of 25.

(a) Connected solid (b) θ = 0o (c) θ = 30o (d) θ = 60o (e) θ = 90o

Figure 5: Configuration and flow visualization for the contacting pair case. (a) Shows the

configuration of the connected body. (b-e) are stream ribbon visualization of flow around

the pair of spheres at Re = 175 and select angles of incidence. Pressure contours are shown

in the X = 0 plane; red indicates high pressure, blue indicates low pressure.
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The flow is allowed to develop for tUin/D = 30 non-dimensional time units. To accelerate

the development of the flow, solutions from consecutive Reynolds numbers are used as initial

conditions (ie. the Re = 100 solution is used as an I.C. for the Re = 125 simulation). Mean

grid spacing on the surface and in the vicinity of the pair is close to D/∆ = 40 for both

approaches. The main purpose of this test case is to study the effect of the contact point on

the near-sphere flow field, thus the grids are allowed to coarsen far away from the body. At

a distance of 1.5D away from the contact line, the grid spacing is never greater than twice

the surface spacing. To systematically compare the two methods, a grid sensitivity study of

the Re = 175 flow conditions is also discussed later on.

We confirm that the flow has reached a steady state by monitoring the total drag force

on the surface of the connected body. This is plotted in Figure 6 for (θ, Re) = (0o, 50)

and (0o, 175) along with similar results from Section 3.4, and demonstrates that 30 non

dimensional time units is sufficient to achieve a steady, developed flow condition. Although

the flow is steady, the fluid trajectories near the two spheres are quite complex at these

Reynolds numbers. Figure 5b-e shows select stream-ribbons for θ = 0o, 30o, 60o,and θ = 90o

along with pressure contours in the X = 0 plane. At θ = 0o, the flow stagnates evenly on

both spheres and the contact point, generating a large symmetric recirculation bubble. As

the angle of incidence is increased to 30o and 60o, the recirculation bubble bends away from

the leading sphere and towards the trailing sphere and the flow is no longer symmetric about

the contact line. At θ = 60o there is a noticeable decrease in stagnation pressure on the

trailing sphere, suggesting a drafting effect is present. At θ = 900, symmetry is regained

as the body becomes streamlined, and the contact point is completely obstructed from the

oncoming flow by the leading sphere.

Using the body fitted approach, it is possible to isolate the streamwise drag force on the

leading sphere, f lz, the trailing sphere, f tz, and the bridge, f bz , by directly computing the

surface integral of viscous and pressure forces on each of these solid boundary zones. These

measurements can be used to determine the relative contribution of the bridge region to the

total drag of the connected body. In Figure 7 the ratio of drag force on the trailing and

leading spheres (f tz/f
l
z), as well as the ratio of drag force on the bridge to the leading sphere
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Figure 6: Semi-logarithmic plot of the time history of hydrodynamic force exerted on the

spherical bodies for steady flow conditions in the contacting pair and simple cubic lattice

test cases. The force in each case is normalized by the force at tU/D = 30. N contacting

pair at θ = 0o, Re = 50, � contacting pair at θ = 0o, Re = 175, • simple cubic lattice at

Re = 12 , � simple cubic lattice at Re = 204 .
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(f bz/f
l
z), is plotted as a function of Re for each value of θ. The first ratio demonstrates

the increased drafting ability of the trailing sphere at increased θ or increased Re as would

be expected. The second ratio demonstrates that for all combinations of Re and θ, the

contribution of the bridge to the total drag of the pair is less than 1% of the leading sphere’s

contribution. This ratio is maximized at all Re for θ = 0o, and decreases as the bridge

surface is rotated out of the stagnation region. Extrapolating the trend, the cylinder bridge

drag will be 1% of the leading sphere drag at θ = 0o for Re ≈ 600, the largest Reynolds

number considered in this study.
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Figure 7: Drag force on portions of the connected body relative to the leading sphere drag as

a function of Re for all values of θ tested. (a) The trailing sphere drag, f tz/f
l
z. (b) The bridge

drag, f bz/f
l
z. � θ = 0o, N θ = 15o, H θ = 30o,I θ = 45o, � θ = 60o,• θ = 75o,J θ = 90o.

The hydrodynamic drag in the fictitious domain results is accessed through the net rigid-

ity constraint force, and used to make direct comparisons with the body fitted solutions.

For the Re = 175 cases, a grid convergence analysis has been performed using three grid

spacings for each method. In figure 8 the drag coefficient computed according to Equa-

tion 151 is plotted as a function of θ. Results are shown for body fitted grid resolutions

of D/∆ = 22, 39, 72 and fictitious domain grid resolutions of D/∆ = 15, 25, 40. In

1For this case, Nsp = 2 and Upε = Uin when computing CD
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addition, the CD values, apparent convergence rates, and the GCI uncertainty levels are

reported in Table 2 for each value of θ. The fictitious domain approach shows near second

order convergence for all cases and roughly 2% uncertainty for the D/∆ = 40 grids. The

body fitted approach shows a much slower convergence rate, less than first order, but still

achieves roughly 8% uncertainty with a grid resolution of D/∆ = 72. For each value of

θ, the two approaches appear to be converging to a very similar grid independent value of

CD. To show this, the 8% uncertainty band has been plotted as error bars on the fine grid

body fitted solution (the 2% error bars for the fictitious domain solution have been omitted

for clarity). By extrapolating the convergence trends in this way it can be seen that the

body fitted and fictitious domain solutions should converge to similar values in the limit of

infinite grid resolution. The relatively slow convergence rate of the body fitted solution is

most likely due to the local grid quality around the body, especially near the contact region

where non-uniform, skewed elements are difficult to eliminate. This case is not intended

to establish grid resolution requirements for realistic packed beds, but rather to provide

confidence that the interface representation of both methods is consistent.

As a final demonstration of the consistency between the two methods, the velocity profile

in the near wake behind the cylinder bridge is plotted in Figure 9 for Re = 175, θ = 0o.

Despite the close proximity of the probes to the solid boundaries, the wake profiles predicted

by each approach are in very good agreement. These results demonstrate that the inability

of both methods to completely resolve the contact point between two spheres should not

significantly affect global or local flow properties in packed beds.

3.4. Performance in porous geometries: Flow through a simple cubic lattice

In this test case, pore scale flow through square channels filled with a simple cubic lat-

tice of spheres is examined. The configurations are chosen to be similar to the experiments

of Suekane et al. (2003) who used MRI techniques to make detailed three dimensional mea-

surements of the porescale velocity field. To our knowledge, it is one of the only experimental

measurements of its kind, and has served as a validation for several other numerical studies

including Gunjal et al. (2005) and Ovaysi and Piri (2010). We consider two slightly different
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Figure 9: Velocity profiles in the near wake behind the contacting pair at Re = 175, θ = 0o.

(a) Probe locations. (b) Streamwise velocity profile (—)body fitted, (- - -)fictitious domain.
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Table 2: Grid convergence of CD for the contacting pair at Re = 175, and all angles of

incidence

Body Fitted Fictitious Domain

θ D/∆ CD P GCI(%) D/∆ CD P GCI (%)

0o

22 11.6 - - 15 14.5 - -

39 12.2 - - 25 13.8 - -

72 12.6 0.84 7.55% 40 13.5 1.90 1.89%

15o

22 11.1 - - 15 13.8 - -

39 11.6 - - 25 13.1 - -

72 12.0 0.39 8.46% 40 12.8 1.81 1.99%

30o

22 9.91 - - 15 12.5 - -

39 10.4 - - 25 11.8 - -

72 10.9 0.55 8.67% 40 11.6 1.77 2.08%

45o

22 8.46 - - 15 10.9 - -

39 8.95 - - 25 10.3 - -

72 9.27 0.88 7.75% 40 10.0 1.75 2.17%

60o

22 7.01 - - 15 9.22 - -

39 7.49 - - 25 8.66 - -

72 7.77 0.97 8.46% 40 8.46 1.85 2.18%

75o

22 5.90 - - 15 7.61 - -

39 6.26 - - 25 7.16 - -

72 6.50 0.79 8.53% 40 7.02 2.07 1.86%

90o

22 5.34 - - 15 6.69 - -

39 5.62 - - 25 6.33 - -

72 5.86 0.32 9.57% 40 6.20 1.97 1.80%
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computational domains shown in Figure 10a. The first configuration, intended to match the

experiments of Suekane et al. (2003) as closely as possible, consists of six layers of diameter

D = 28mm quarter spheres located in the corners of the channel, with no-slip boundaries

enforced on the exterior channel walls. This domain is used to simulate Reynolds numbers

based on the pore velocity, Up, of Re = UpD/ν = 12.17, 105.57, and 204.74, allowing for

direct comparison with the experiments. Flow in this configuration is driven by a constant

inflow boundary, located 5D upstream of the first sphere (not shown in the Figure), where

Uin = εUp, and the fluid fraction is ε = 0.476 for this arrangement. A convective outlet is

located 5D downstream of the last sphere. The flow is started from rest and simulated for

tUp/D = 10 non dimensional time units for each Reynolds number, which is sufficient to

obtain a fully developed steady flow field as confirmed in Figure 6.

In order to test the performance of the solvers for unsteady flows with vortex shedding, a

second configuration is considered to simulate Re = 450 and 600 as there is no experimental

data in this flow regime. This configuration consists of six layers of complete spheres stacked

in the center of the channel. It has periodic boundaries on all exterior channel walls which

allows for faster symmetry breaking and transition to unsteady flow. The flow is initialized

with large wavelength sinusoidal fluctuations and the flow is simulated for at least tUp/D =

60 time units to allow the unsteady dynamics to reach a stationary state. During the

simulation, a body force is continuously adjusted so that the target Reynolds numbers are

achieved. At the end of all simulations, the flow is probed along the line Y = 0, Z = 0, as

shown in Figure 10a, which traverses the center of the fifth pore in both configurations.

For the body fitted approach, the domains are discretized using unstructured, tetrahedral

meshes as described earlier. Each full or quarter sphere was created at its exact diameter

inside the channel. Then a small cylindrical region of fluid, with diameter Db = 0.25D, is

removed from the near the contact points. The entire connected solid is subtracted from the

channel resulting in a watertight solid boundary. Uniform size tetrahedral elements with

∆ ≈ V1/3
cv are created throughout the channel. A closeup view of the surface of the body

fitted mesh with D/∆ = 64 is shown in Figure 10b. The tetrahedral grids are high quality;

the maximum cell aspect ratio is 4 or less for all meshes. Regular Cartesian grids are used for
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(a) Computational Domains

(b) Surface Mesh

Figure 10: Setup of flow through a simple cubic lattice. (a) shows the two computational

domains used. The orientation of the line probe used is indicated by the vector velocity

profiles. (b) shows the D/∆ = 64 surface mesh used in the body fitted simulations.
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Table 3: Grids used to simulate flow through the simple cubic lattice.

D/∆ = 128 D/∆ = 64 D/∆ = 32 D/∆ = 16

Tet. Cart. Tet. Cart. Tet. Cart. Tet. Cart.

Ncv Inflow/Outflow 7.62M 17.9M 1.13M 2.245M 190k 281k 54k 35k

Ncv Periodic 6.33M 12.6M 867k 1.57M 119k 196k n/a n/a

the fictitious domain approach which include both the fluid and solid portions of the channel.

Four meshes were generated for each method with mean spacing, D/∆ = 16, 32, 64, 128.

The total cell count for each mesh is summarized in table 3.

Fine, medium, and coarse grid results are used to estimate the uncertainty in the fine grid

solution obtained with each approach by applying the GCI method outlined in Section 2.3.

For Re = 12, grids with D/∆ = 64, 32, and 16 are used, while the Re = 105, 204, 450,

and 600 simulations use grids with D/∆ = 128, 64, and 32. Since grid independence of one

flow property does not necessarily imply grid independence of another, it is important to

use multiple measures to fully understand the convergence behavior. For the steady flow

rates, the grid convergence properties are computed for the streamwise velocity component,

φ = uz, as well as the non-dimensional macroscale pressure gradient, φ = Ψ = ∆P
L

D
ρU2

p

ε
1−ε .

For φ = uz we are directly assessing the convergence of the porescale velocity field, while

for φ = Ψ, we are assessing the convergence of a macroscale integrated property. For the

unsteady flow rates, the analysis is done for the time averaged streamwise velocity, φ = uz,

as well as the time averaged turbulent kinetic energy, TKE =
∑
u′2i . These two measures

capture the mean and fluctuating character of the porescale flow respectively. Key results

of the analysis are reported in table 4. For all porescale properties the max and RMS value

of φ predicted by the two approaches are in reasonably good agreement, with the exceptions

discussed further below. The monotone convergence rate is significantly higher for the

fictitious domain approach in all cases, indicating that the solutions on the three Cartesian

grids are more fully in the asymptotic regime relative to the body fitted tetrahedral grid

results. The global apparent rate of convergence, PG, is bound by the formal second order
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Table 4: Grid convergence results for flow through the simple cubic lattice. In all cases

D/∆1, D/∆2, D/∆3 = 128, 64, 32 except Re = 12.12 where D/∆1, D/∆2, D/∆3 =

64, 32, 16. Values are reported in mm/s for velocity, and mm2/s2 for TKE.

MAX(φ) RMS(φ) Mn[%] PG GCIG[%] D/∆5%

Re φ BF FD BF FD BF FD BF FD BF FD BF FD

12 uz 1.98 1.71 0.53 0.50 62 95 1.73 1.35 3.61 1.60 53 28

12 Ψ n/a n/a 13.9 13.4 n/a n/a 1.43 1.67 2.94 3.69 44 53

105 uz 16.0 15.9 4.61 4.53 65 82 1.76 1.65 1.89 0.54 74 33

105 Ψ n/a n/a 2.17 2.18 n/a n/a 2.72 1.30 0.10 1.98 30 62

204 uz 30.7 30.9 8.99 8.85 66 88 1.82 1.62 1.99 0.90 77 44

204 Ψ n/a n/a 1.29 1.33 n/a n/a 3.34 1.41 0.03 2.91 28 87

450 uz 61.4 56.2 24.2 24.2 41 84 1.84 1.56 4.77 2.20 125 76

450 TKE 230 284 64.8 82.8 52 66 1.76 1.71 16.1 3.93 249 111

600 uz 75.5 72.3 32.1 32.1 47 80 2.08 1.29 2.75 3.79 96 103

600 TKE 436 458 143 153 47 67 1.84 1.45 10.4 5.42 191 135

accuracy of the spatial discretization schemes (with a few exceptions discussed below), and

is observed to be between roughly 1.3 and 2. In general, it is slightly higher for the body

fitted results. Even though the convergence rate is higher, the difference between the fine

and medium grid solutions (φ1−φ2) is in general much more significant with the body fitted

approach, leading to a much higher global uncertainty, GCIG, of the porescale quantities in

most cases. The convergence of the integral pressure drop at the steady flow rates behaves

differently and is discussed in more detail below. From the uncertainty estimates associated

with the fine grid solutions, the grid density required to achieve a 5% uncertainty level,

D/∆5% is estimated from equation 11. In many cases, the grid requirements based on the

porescale quantities are significantly stricter for the the body fitted approach.

It is helpful to take stock of the results in the table in more detail while at the same time

examining the grid convergence behavior graphically. The fine, medium, and coarse grid
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predictions of streamwise velocity along the Y = 0, Z = 0 line are plotted in Figure 11a-

c for the steady flow rates. In this Figure as well as Figures 13 and 15, the body fitted

solutions are shown in the left hand column and the fictitious domain solutions are shown in

the right hand column. In the main portion of the sub-figures, only the fine grid result with

error bars corresponding to GCI(x) is plotted for clarity alongside the experimental data

of Suekane et al. (2003). In the insets, the medium and coarse grid solutions are shown as

well, for the region near |X/D| . 0.15, to illustrate the convergence with grid refinement.

In both methods, refinement results in convergence of the solution towards the experimental

data. The maximum and RMS values of uz are similar for all cases on the fine grids. In

all cases there is good agreement between the experimental data points, and the medium

to fine grid solutions. It is evident that as Reynolds number is increased, the significant

flow inertia gives rise to a strong jet through the center of the pore (|X/D| . 0.15), and

symmetric backflow regions close to the walls (|X/D| ≈ 0.35) for Re = 105 and 204. For

these steady results, the global apparent rate of convergence, PG, is roughly 1.75 for the

body fitted results and varies from 1.35 to 1.65 for the fictitious domain results. This overall

lower rate of convergence may be due to the higher percentage of monotone nodes, %Mn,

obtained with the fictitious domain approach, 82% or more. Despite enjoying a slightly

better convergence rate, the global relative uncertainty of the fine grid body fitted solution,

GCIG, is roughly two to three times more than the fictitious domain solution in each case.

This indicates that local errors are introduced by the unstructured meshes, similar to the

observations made in the Taylor vortex case. Using equation 11, the grid density required to

obtain a (relatively arbitrary) target global uncertainty level of 5% was computed and found

to be about twice as much for the body fitted approach. For this fixed level of uncertainty,

these steady Reynolds numbers will require between 53 and 77 cv/D with the body fitted

tetrahedral grids, but only 28 to 44 cv/D with a Cartesian grid and the fictitious domain

approach.

The non dimensional pressure drop for the steady flow rates predicted by both methods

using the fine grid is plotted in a Figure 12 alongside the correlation of Ergun (1952) for

random packed beds. To produce the data points, the pressure is spatially averaged in two
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Figure 11: Comparison of interstitial velocity profiles with the data of Suekane et al. (2003)

Along the Y = 0, Z = 0 line probe shown in Figure 10a. (—) Fine Grid ∆1 shown with

error bars, (- - -) Medium Grid ∆2, (- · -) Coarse Grid ∆3, • Experiment. Left column

shows body fitted solution. Right column shows fictitious domain solution.
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planes located L = 2D apart in the streamwise direction once the flow is fully developed.

The figure and the results in table 4 show that the results from both types of simulations

are in agreement in the fine grid solutions. However, the GCI analysis indicates that there

is significantly less uncertainty in the body fitted result (especially for Re = 105 and 204),

which is surprising given the observations of the interstitial velocity profiles. Inspection

of the convergence trends shows that the body fitted pressure drop converges at a rate

higher than the formal second order of accuracy of the code. This raises questions about

the reliability of using such a result, and shows the danger of using integral measurements

alone to assess grid convergence of the pore scale flow field. Deviation of the results from

the Ergun correlation at increased Reynolds numbers is most likely a result of the simple

cubic arrangement, and has also been reported by Gunjal et al. (2005). This particular

configuration allows a high inertia jet to develop in the center of the channel which is not

typically seen in the large random configurations the correlation was developed from.
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Figure 12: Non-dimensional pressure drop as a function of Reynolds number for steady flow

through the simple cubic lattice.

We now consider results from the two unsteady Reynolds numbers in the periodic do-

main. In Figure 13, the interstitial profiles of the time averaged streamwise velocity uz are

shown along the Y = 0, Z = 0 line probe. The global relative uncertainty for the fine grid

solution is good for both methods, less than 5% in each case. At Re = 600 the fine grid

mean velocity profiles (Figure 13b) are in good agreement. Examination of the interstitial
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Figure 13: Time averaged streamwise velocity component along the line Y/D = 0, Z/D = 0

for unsteady flows in the periodic simple cubic lattice. Left column shows body fitted

solution. Right column shows fictitious domain solution. (—) Fine Grid ∆1 shown with

error bars, (- - -) Medium Grid ∆2, (- · -) Coarse Grid ∆3.
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velocity profiles at Re = 450 (Figure 13a), however, reveals a noticeable discrepancy be-

tween the body fitted and fictitious domain predictions. In the fictitious domain solution,

the average velocity profile is flattened out somewhat in the pore center, while the body

fitted profile retains a larger maximum velocity and the parabolic character observed at

Re=105 and 204. This suggests that the porescale unsteady dynamics predicted by the two

approaches may be different. This suspicion is confirmed by Figure 14, which is shows the

time history and frequency spectra of the transverse (X) velocity component at the point

X/D = −0.36, Y/D = 0, Z/D = 0 computed on the fine grid using both approaches. At

Re = 450, a single dominant frequency with a Strouhal number of St = fD/Up ≈ 0.75

is evident in the body fitted solution, while the fictitious domain solution shows energetic

fluctuations over a broader range of frequencies. Interestingly, the fluctuations observed by

both methods at Re = 600 seem to be in better agreement. The transition to unsteadiness

and turbulence in packed beds is a very sensitive process, and it is possible that the dynamics

of weakly unsteady flows could be altered by the type of grid being used. Tetrahedral grids

cells will, in general, be more susceptible to numerical diffusion than uniform hexahedral

cells. We believe that especially for flows in this transitional (sub turbulent) regime, modest

amounts of dissipation due to the grid type could lead to noticeable changes in the dynamics

of the mean flow.

A more appropriate level of confidence for these Reynolds numbers can be obtained by

examining the uncertainty in the TKE distribution, shown in Figure 15. The fictitious

domain approach has relatively low global uncertainty of around 4-5% on the fine grid and

the main features seem to be captured along the interstitial profiles, even on coarse grids.

The body fitted approach on the other hand has much larger global uncertainty, 16% and

10% for Re = 450 and 600 respectively, and the peaks in the interstitial profile change

significantly on the coarse, medium and fine grids. At Re = 450, both the mean and RMS

values of TKE are significantly lower in the body fitted solution relative to the fictitious

domain solution, indicating more dissipation may be occurring due to the unstructured

meshes.

These unsteady flow results underscore a troubling aspect of uncertainty assessment
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Figure 14: Time history of the transverse velocity component, ux, and it’s non-dimensional

frequency spectra at a point in the main recirculation zone (X/D = −0.36, Y/D =

0, Z/D = 0) for the two unsteady Reynolds numbers simulated. (- - -) Body fitted ap-

proach, (—) fictitious domain approach.
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Figure 15: Time averaged turbulent kinetic energy along the line Y/D = 0, Z/D = 0 for

unsteady flows through the simple cubic lattice. Left column shows body fitted solution.

Right column shows fictitious domain solution. (—) Fine Grid ∆1 shown with error bars,

(- - -) Medium Grid ∆2, (- · -) Coarse Grid ∆3.
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for CFD results in general. Quantities of interest in numerical solutions to complex flow

problems need not converge in the same way, and false positives may indicate convergence

in one variable when another is unresolved. In our case we may very reasonably judge that

when using the body fitted approach the medium grid should provide a high quality solution

for Re = 450 if we only consider convergence of the mean flow, when in fact the unsteady

velocity fluctuations are unresolved and appear to degrade the accuracy of the time averaged

solution. This emphasizes the need for thorough and quantitative grid convergence studies

in CFD, especially for the complex configurations presented by packed bed and porous media

flows.

4. Scale up to realistic packed bed simulations

With the results presented up to this point in mind, it is possible to estimate the com-

putational expense required for simulation of more general packed bed problems. Consider

a rigid container which contains a matrix of randomly arranged spheres. The volume of the

computational domain which must be meshed can be written in terms of the sphere diam-

eter, D, as Vc = εmNcD
3, where Nc relates the container volume to the sphere diameter (

ie. a 3D × 3D × 6D container has Nc = 54), and εm is the effective meshing porosity. It is

equal to 1 in the fictitious domain approach, where the entire fluid/solid region is meshed,

and equal to ε in the body fitted approach where only the fluid domain must be discretized.

For ∆ = V1/3
cv , the total number of control volumes, Ncv, required to mesh the volume, Vc,

will be:

Ncv = εmNc

(
D

∆

)3

(18)

For the time accurate solutions obtained in this work, the time step, ∆t, is restricted for

temporal accuracy by the CFL number, which we define following Kim and Choi (2000) for

an arbitrary cell as,

CFL =
1

2

1

Vcv

∑
faces

|UfAf |∆t (19)
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Where Af is the area of a single cell’s face. If we assume that the length Af/Vcv is constant

for all faces of a given cell (true for all regular polyhedra), and we assume the face velocity

to be proportional to the pore velocity, we can re-write the CFL number as,

CFL =
Cs|Up|∆t

∆
(20)

Where cell shape factor, Cs =
Afa

V2/3
cv

, has been introduced. This ratio of areas is equal to 1

for cubic cells, and 1.81 for perfect (regular) tetrahedral cells. In practice, it is difficult to

mesh a complex three dimensional domain with perfect tetrahedral cells everywhere and Cs
can be much higher. On average for our tetrahedral meshes, we see that the time step must

be 5 times lower when compared to the Cartesian mesh of the same resolution to obtain the

same CFL, implying that Cs ≈ 5. With this in mind, we can express the total number of

timesteps, Nt, required to simulate one non-dimensional time unit, t = D
Up

, as

Nt =
t

∆t

=
Cs

CFL
· D

∆
(21)

For perfect parallel scalability the computational expense (CPU-Hrs), of a time accurate,

finite volume simulation is proportional to Ncv times Nt, implying that,

CPU ∝ (εmNc) ·
(
Cs

CFL

)
·
(
D

∆

)4

(22)

The present finite volume solver shows good (nearly perfect) scalability for up to 500

processors (Ham et al., 2003). The constant of proportionality in equation 22 could in general

be dependent on Re, CFL, D/∆, as well as the hardware being used to run the simulation,

and is difficult to measure. Nonetheless, it is important to note that the computational

expense should scale like
(
D
∆

)4
. The speedup which is obtainable by moving from a body

fitted to fictitious domain simulation of flow through a packed bed can be estimated from

the GCI analysis presented in Section 3.4. If we require a fixed level of uncertainty in

our solution variable, φ, say 5%, we can set the grid resolution, D/∆, in equation 22 to

the required grid resolutions from table 4. We find that the theoretical speedup factor,

S = CPUBF/CPUFD, listed in table 5 for each case is between 1.9 and 65.

These estimates may seem unreasonably large until investigating actual CPU timings

in as close of a 1:1 comparison as possible, for example, flow through the periodic simple
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Table 5: Estimated simulation speedup for obtaining a solution with 5% uncertainty. S =

CPUBF/CPUFD computed using equation 22.

Re φ D/∆5% S

BF FD

12 uz 53 28 36

105 uz 74 33 63

204 uz 77 44 24

450 uz 125 76 19

450 TKE 249 111 65

600 uz 96 103 1.9

600 TKE 191 135 10

cubic lattice. For this case, the CPU times required to simulate one non-dimensional time

unit are summarized in table 6. This case was run with both methods at Re = 450 and

600 using CFL ≈ 0.5. Simulations using the D/∆ = 64 and 128 grids were performed on

the Lonestar supercomputer at the Texas advanced supercomputing center. For the same

Re and D/∆, the fictitious domain simulation requires significantly less CPU time, between

63% and 84% as much as the body fitted simulation. The GCI analysis of the results has

shown that if less than 5% uncertainty is required in the solution, the body fitted simulation

could require double the grid density of the fictitious domain simulation. Combining these

two observations suggests that an actual speedup of about 5 times is likely for solutions

of equivalent uncertainty. In practice the desired uncertainty level may be more or less

strict than the 5% level used for the estimates here, leading to higher or lower grid density

requirements. However, these scalability and speedup estimates should retain about the

same character.

5. Flow through a randomly packed bed
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Table 6: Observed computational expense using both approaches for simulating the Suekane

case in a periodic domain with CFL ≈ 0.5

CPU-Hr/(D/U)

D/∆ Re Body Fitted Fictitious Domain

64 450 111 80

128 450 340 284

64 600 118 87

128 600 470 298

We now examine the case of flow through a random sphere pack using the fictitious

domain approach. This is intended to demonstrate the capability of the fictitious domain

approach for the random sphere arrangements typical of engineering applications. The

packing we consider is a relatively loose arrangement of 51 spheres in a box with sides

Lx = Ly = Lz = 4D, resulting in the void fraction ε = 0.58. It was generated using a ballistic

deposition algorithm, similar to the method employed by Atmakidis and Kenig (2009). The

flow is driven in the positive Z direction by a constant inflow velocity boundary located 3D

upstream of the packing so that the Reynolds number for the flow is Re = Up∗D
ν

= 600,

where Uin = Upε is the assigned inflow velocity. A convective outlet condition is located

3D downstream of the packing. The flow is started from rest and allowed to develop to a

non-dimensional time tUp/D = 130.

The fictitious domain approach was chosen for this case because of the superior scalability

demonstrated in the previous section as well as the guarantee of good mesh quality, even for

random packings. Three Cartesian grids with uniform spacing ∆ = D/80, D/56, D/40 in

the porespace are used to quantify the grid convergence. The grids are stretched toward the

inlet and outlet faces so that the grids contain a total of 47 million, 16 million and 5 million

control volumes, respectively. These grids provide a roughly constant refinement ratio of

r21 ≈ r32 = 1.4.
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(a) (b) (c)

(d)

Figure 16: Visualization of the instantaneous porescale flow through the randomly packed

bed of Nsp = 51 spheres. (a) shows the simulation domain and sphere surfaces (transparent)

along with instantaneous vortical structures corresponding to isosurfaces of λci/λ
max
ci = 0.25.

The isosurfaces are colored by cos(φ), indicating relative helicity. (b) shows contours of

cos(φ) on the Z/D = 2.5 cross stream slice and the location of two pores, P1 and P2 used

in convergence analysis. (c) and (d) show the instantaneous, cross stream velocity vectors

in the pores labeled P1 and P2.
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A qualitative visualization of the simulation domain and instantaneous flow field is pro-

vided in Figure 16. For this Reynolds number and packing geometry, the porescale flow is

unsteady, but not turbulent, and is dominated by helical vortices, elongated in the mean

flow direction. In their simulations of transitional flows in close packed ordered arrays, Hill

and Koch (2002) observed that regions of strong helicity became more pronounced with

increasing Reynolds number, up to the limit of unsteadiness. Following their definition, we

compute the cosine of the angle between the vorticity and the velocity vectors,

cos(φ) =
ω · u
‖ω‖‖u‖

. (23)

Regions with ‖cos(φ)‖ ≈ 1 indicate strong helical or corkscrew like trajectories. Instanta-

neous vortex cores are detected using the swirling strength criteria, λci (Zhou et al., 1999),

and are visualized as isosurfaces of λci/λ
max
ci = 0.25 in Figure 16a, where λmaxci is the maxi-

mum value of swirling strength in the domain. The surfaces are colored by cos(φ), indicating

the relative orientation and magnitude of helical vortex motion. In Figure 16b, the contours

of the cos(φ) field are shown in the cross-stream, Z/D = 2.5 plane. Near the surface of the

spheres, and at the exterior wall boundaries, the flow is nearly two dimensional, and cos(φ)

is small. In the pores however, regions of cos(φ) ≈ ±1 are dominant. Assuming the velocity

and vorticity are directed nominally in the +Z direction (out of the page), blue regions indi-

cate clockwise helical trajectories (cos(φ) < 0) and counter-clockwise helical trajectories are

indicated by red regions (cos(φ) > 0). Instantaneous snapshots of the cross-stream vector

field in two pores, labeled P1 and P2 are shown in Figures 16c and 16d. The length scale

of these vortical structures appears to be roughly D/10 to D/20, and the magnitude of the

cross-stream velocity is on the order of 1Up. In these vector plots, we also show the location

of the line probes used to assess grid convergence of the pore velocity.

The grid convergence of the solution is demonstrated in Figure 17. First, the total

hydrodynamic force on the spheres is non-dimensionalized according to equation 15, and

plotted as a function of time in Figure 17a for the three different grid resolutions. Both

the time average, CD, as well as the fluctuations in CD are sensitive to the grid spacing.

Performing a convergence analysis on CD, using equations 9 and 10, we estimate the order
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of convergence to be P = 1.30, and determine the uncertainty in the fine grid solution to be

GCI = 8.24% or CD = 245.1± 20.2.

The convergence of the time averaged streamwise velocity, uz, in the Z/D = 2.5 slice

is also examined. Averaging over all nodes with monotone convergence (44%of all nodes in

the post processing grid), the globally averaged observed convergence rate for this quantity

is PG = 3.3. This is above the formal order of accuracy of the code, and could be due to the

∆ = D/40 solution being out of the asymptotic convergence range in some regions. Using

this convergence rate results in a globally averaged uncertainty of GCIG = 5% of RMS(uz).

Because of the randomness of the bed, certain regions of the porespace are more grid

converged than others. This is demonstrated by the velocity profiles extracted from pores

P1 and P2 which are plotted in Figure 17b and Figure 17c. The line probe through pore P1,

along the line X/D = 0.16, Z/D = 2.5 demonstrates good convergence and low uncertainty

for ∆ = D/80. In fact, the only slight differences in the solution on all three grids seems to

be near the counter-rotating helical features between Y/D = 2 and Y/D = 2.5. The probe

in the P2 pore along the line Y/D = 1.85, Z/D = 2.5 indicates larger uncertainties and

worse overall convergence. We believe that the randomness of the bed could be the cause of

this behavior. Slight shifts in mean flow upstream of this plane for example could propagate

non-linearly downstream. This was not an issue when examining the results for structured

packings (Section 3.4), but should certainly be a consideration when performing resolved

simulations of random arrangements. Nonetheless, the major features of the velocity profile

along the line, including a maximum near X/D = 2.1 and minima near X/D = 1.7 and

X/D = 2.6, are consistent across the three grids.

The statistical nature of the porescale flow has been examined by plotting the PDFs of the

instantaneous velocity components as well as cos(φ) for one instant in time in the porespace

(0.5 < Z/D < 3.5). In Figure 18 the PDF of each of the velocity components is shown. The

PDFs have been normalized to have a standard deviation of one, for comparison with the

Gaussian distribution, plotted as a solid line, and with the lattice Boltzmann simulations

of Hill and Koch (2002) for structured close-packings. Similar to their study, there is a peak

in the PDF of each velocity component for ui = 0, corresponding to the large amount of fluid
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Figure 17: Grid convergence analysis for the randomly packed bed. (a) Time history of

the drag coefficient. (b) Time averaged streamwise velocity, uz non-dimensionalized by UP

in pore P1, along the line X/D = 0.16, Z/D = 2.5. (c) Same as (b) but along the line

Y/D = 1.85, Z/D = 2.5 in pore P2.
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influenced by the solid boundaries. The cross stream components have a nearly Gaussian

spread, but with wider tails at high velocity. In comparison, Hill and Koch observed tails

with less spread than the normal distribution. This difference is likely due the high void

fraction of the present sphere packing which can accommodate larger cross-stream fluid

motion relative to the structured close packing. The PDF of the streamwise component, uz

indicates that a significant portion of fluid, about 7%, is directed upstream, also similar Hill

and Koch’s observations. The PDF of cos(φ), shown in Figure 19, corresponds well with

their results. The peak at 0 is due to the strong influence of the walls, near which the flow

is two dimensional, even at this relatively high Reynolds number. The symmetric tails of

the PDF, with peaks at ±1 show the high degree of strong helical motion in the porespace.
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Figure 18: Normalized probability distribution function of the velocity components in the

porespace for flow through the random packing. ♦ ux, � uy, ◦ uz, — Gaussian distribution

with zero mean and standard deviation of one.

6. Conclusions

The performance of a fictitious domain approach relative to a body fitted approach has

been assessed for simulation of flow through packed beds of spheres. The body-fitted ap-

proach utilizes a cylinder bridge model during mesh generation to avoid troublesome sphere
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Figure 19: Probability distribution function of the cosine of the angle between the velocity

and vorticity vectors in the porespace for flow through the random packing.

to sphere contact points. This strategy avoids major modification of the solid geometry and

removes areas where small elements are required. The main advantage of the fictitious do-

main approach for fixed bed and porous media problems is that it can use regular Cartesian

grids, and avoids unstructured mesh generation all together. In this case, the solid-fluid

interface is accurately represented using Lagrangian marker points with subgrid resolution,

and a rigidity constraint within the solid bodies is imposed to enforce the no-slip boundary

condition.

Several test cases have been examined to address particular concerns associated with

simulating flow in packed beds. It was first shown using decaying Taylor vortices that local

grid quality issues can result in a significant increase in solution error, even for only mildly

skewed cells. This is an important point to consider for packed bed simulations because

in large scale random packings, some skewed elements are inevitable when creating a body

fitted mesh. Next, the case of Stokes flow in a dilute periodic array was used as a basic

hydrodynamic validation case relevant to packed beds, without having to consider sphere

to sphere contact points. Using the case of two contacting spheres, it was shown that for

moderate Reynolds numbers the region of fluid very close to the contact point has little

effect on the bulk flow, and may be safely removed as is deliberately done in the bridge
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meshing technique. This is also reassuring for the fictitious domain technique, which can

only resolve sphere to sphere contact points at the scale of the Cartesian mesh. By observing

the grid convergence of the total drag coefficient in this case, it was confirmed that the body

fitted and fictitious domain surface representations are very nearly equivalent for contacting

sphere geometries. The final test case considered, flow through a section of a simple cubic

lattice, allowed us to perform a detailed comparison of both methods in a prototypical

sphere packing. In this case, a systematic grid refinement study has been performed, with

the grid convergence index (GCI) used to assess uncertainty of the fine grid solutions. Both

methods perform well at steady flow rates (Re = 12, 105, 204) in the sense that they

predict interstitial velocity profiles in agreement with the experimental data of Suekane

et al. (2003). The difference is that fictitious domain approach is able to obtain a solution

with low uncertainty using a much lower grid density than the body fitted approach. Similar

trends are observed for the unsteady flow rates (Re = 450, 600). In these cases, the body

fitted approach is observed to have large uncertainty associated with the TKE distribution,

making it undesirable for use at higher Reynolds numbers.

The scalability of both approaches for general, random packed bed flow simulations

has been estimated. For a predetermined target level of uncertainty the computational

expense, estimated to be proportional to the number of control volumes times the number

of timesteps, is found to be between 1.9 and 65 times more for the body fitted approach

compared to the fictitious domain approach for the cases considered. Actual CPU timings

for the periodic SCP channel indicate that speedup may be more modest, perhaps 5 times.

Finally, the fictitious domain approach has been applied to a more practical case of unsteady

flow at Re = 600 through a random packing of 51 spheres. The results show grid convergence

in global and local time averaged quantities, although the randomness of the packing results

in significant variation in the local uncertainties. Nonetheless, results capture complex

instantaneous porescale flow features and are used to further explore helical motions in

random arrangements. Good statistical agreement is obtained with prior Lattice Boltzmann

results of Hill and Koch (2002).
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