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The computation of Lagrangian coherent structures typically involves post-processing of experimentally or
numerically obtained fluid velocity fields to obtain the largest finite-time Lyapunov exponent (FTLE) field.
However, this procedure can be tedious for large-scale complex flows of general interest. In this work, an
alternative approach involving computation of the FTLE on-the-fly during direct numerical simulation of the
full three dimensional Navier-Stokes equations is developed. The implementation relies on Lagrangian particle
tracking to compose forward time flow maps, and an Eulerian treatment of the backward time flow map [S.
Leung, Journal of Computational Physics 230, 2011] coupled with a semi-Lagrangian advection scheme. The
flow maps are accurately constructed from a sequence of smaller sub-steps stored on disk [S. Brunton and C.
Rowley, Chaos 20, 2010], resulting in low CPU and memory requirements to compute evolving FTLE fields.
Several examples are presented to demonstrate the capability and parallel scalability of the approach for a
variety of two and three dimensional flows.
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The notion of Lagrangian coherent structures
(LCS) as invariant transport barriers in steady
and unsteady fluid flows has evolved from dy-
namical systems theory, and has proven its utility
in understanding a number of mixing and trans-
port problems. These structures are most often
defined from ridges in the finite-time Lyapunov
exponent field. However, their practical use has
been limited to this point because computing
the FTLE field typically involves expensive post-
processing of large fluid velocity datasets gener-
ated either from experiments or numerical simu-
lations. Using some recently developed tools1,2,
we have designed and implemented an integrated
approach to compute evolving, transient, three
dimensional FTLE fields during a CFD simula-
tion. By integrating the computations in this
way, tedious post-processing of velocity fields is
no longer needed, and larger, more complex prob-
lems become accessible to the application of LCS
theory.

I. INTRODUCTION

That fluid flows are organized by an underlying struc-
ture is not a new idea; da Vinci described the similarity
of hair-like curls (eddies) generated by a narrow jet is-
suing into a pool as early as the year 1500, and much
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of turbulence theory has evolved from notions of orga-
nized scales of motion. Modern advances in experimen-
tal techniques and the advent of direct numerical simula-
tion (DNS) of the Navier-Stokes equations have provided
databases with incredible microscopic detail for a vari-
ety of natural and engineered flows. However, a struc-
tural description of the coherent motions exhibited by
unsteady flows remains elusive in most cases. As avail-
able databases continue to grow rapidly in size and com-
plexity, a number of tools have been developed to help
extract coherence from chaotic fluid motions. For exam-
ple, variants of the Eulerian velocity gradient tensor have
aided in the detection of instantaneous vortical regions3,
and proper orthogonal decomposition has been helpful in
extracting energetic modes of complex turbulent flows4.
More recently, a class of methods to detect Lagrangian

coherent structures (LCS) has emerged from dynamical
systems theory and the works of Haller5,6.

LCS are the codimension one manifolds7 which form
the skeleton of tracer trajectories8 and separate time de-
pendent flows into regions of dynamically distinct behav-
ior9. When properly defined, they act as the locally most
attracting or repelling material surfaces10,11 and there-
fore have important consequences for mixing and trans-
port. In addition, as boundaries of dynamically distinct
regions they provide an exceptional tool with which to vi-
sualize and understand coherent fluid motion. The iden-
tification of LCS in experimentally measured or numeri-
cally simulated flows has most often relied on the relation
of these special material surfaces to ridges of the finite-
time Lyapunov exponent (FTLE) field. Ridges in the for-
ward time FTLE field can be thought of as candidates for
repelling LCS about which there is large fluid stretching,
while ridges in the backward time FTLE field are candi-
dates for attracting LCS about which folding occurs5. An
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impressively broad range of flows have now been studied
using the FTLE ridges as a proxy for LCS (see Peacock
and Dabiri 12 , Samelson 13 for recent reviews). For ex-
ample, new insight has been provided in areas such as
fundamental vortex dynamics14,15, aerodynamics16, bio-
logical feeding17, ocean and atmospheric transport18, and
granular flows19. Significant work has been undertaken
to explore the link between LCS and ridges of the FTLE
field from a theoretical standpoint6,9–11,20,21. Unfortu-
nately, it appears that there is not necessarily a one to
one mapping between FTLE ridges and LCS, and both
false LCS positives and negatives can be obtained with-
out sufficient additional restrictions10,11 on the ridges.
Haller and Yuan 5 provided the counter example of two-
dimensional shear flow, u = −x, v = y, where the line
x = 0 is a positive time FTLE ridge, but is not an unsta-
ble material surface. Recently, the problem of defining
LCS has been revisited, and a variational theory10,11 and
geodesic theory21 have been developed which more rig-
orously distinguish Lagrangian transport barriers. Prac-
tical implementation of these more general LCS theo-
ries, as done by Farazmand and Haller 22 and Haller
and Beron-Vera 21 , is presently limited to two dimen-
sional flows, but algorithmically the preliminary steps
are similar to a standard FTLE computation (requiring
the computation of the Cauchy-Green deformation ten-
sor). In this sense computation of the FTLE, or similar
field, seems to be an important step to determining LCS

candidates in general time dependent flows.

Typically, FTLE fields are computed in a post-
processing procedure using either experimentally or nu-
merically obtained velocity fields. First a flow map over
the finite-time interval [t0, t1] is computed by numeri-
cal integration of a grid of Lagrangian particles through
snapshots of the time dependent velocity field. The flow
map Jacobian is then obtained by finite differencing on
the initial tracer grid, and used to build the right Cauchy-
Green deformation tensor. Finally, the maximum eigen-
value of this tensor is used to compute the maximum
FTLE field, which corresponds to the rate of Lagrangian
separation of initially adjacent trajectories. As just de-
scribed, this procedure can be resource intensive for a
number of reasons. Most significantly, to obtain sharp,
well defined ridges in the FTLE field, the initial grid of
tracers must be refined relative to the smallest spatial
scales of fluid motion, and the integration time must be
long relative to the dominant time scales of the flow. For
non-trivial flow fields, especially in three dimensions, this
can result in an enormous number of tracer advections.
Additionally, for every time the FTLE is needed, for ex-
ample to visualize its evolution, the tracer advections
must be re-computed in forward and backward time. Fi-
nally, for acceptable accuracy, the spatial and temporal
resolution of the flow field snapshots must be fine enough
for accurate interpolation of the velocity field to the La-
grangian tracers. For large datasets, this implies careful
memory management during post-processing.

A number of strategies have been employed to ad-

dress these difficulties. Lipinski and Mohseni 23 noted
that the LCS are themselves Lagrangian objects which
are advected with the flow and devised an efficient ridge
tracking algorithm so that the FTLE field need only be
computed in the vicinity of the LCS. A few authors have
enlisted unstructured meshes and automated mesh re-
finement (AMR) schemes to enhance the resolution of
FTLE field near the LCS24,25 while reducing the number
of tracer advections far from the LCS. In a similar spirit,
Farazmand and Haller 22 used a staggered auxiliary grid
of tracers to increase the accuracy of the flow map gra-
dient while maintaining a relatively coarse tracer back-
ground grid. Recent developments in computer hardware
have also been leveraged to speedup the computation.
Due to their streaming capabilities, graphical processing
units (GPUs) are naturally suited for the problem of par-
ticle advection which is the bottleneck of the FTLE com-
putation and impressive speedups have been obtained rel-
ative to standard CPU computations26,27. From a theo-
retical perspective, a recent observation that the largest
FTLE in forward time is related to the smallest FTLE
in backward time (and vice-versa)28 could allow for the
computation of both attracting and repelling LCS candi-
dates with only a single set of tracer integrations. How-
ever, practical implementation issues arise for long inte-
gration times and three dimensional flows due to the need
to interpolate from a highly deformed grid of particles.
Moving forward, it is important to continue to develop
efficient computational strategies so that LCS theory can
be applied to more complex problems of general interest.

In this paper, we describe an integrated procedure
for computing both forward and backward time FTLE
fields on-the-fly during DNS of the Navier-Stokes equa-
tions. Two recent observations have provided the neces-
sary building blocks for our current implementation. The
first, by Leung 1 , is that the backward time flow map
may be treated as a collection of Eulerian scalar fields
which can be evolved forward in time by solving three
level set equations on a fixed grid. This provides a natu-
ral way to compute the backward time flow map during a
simulation which evolves only in forward time. The sec-
ond important observation, made by Brunton and Row-
ley 2 , exploits the property29 that a time T flow map,
where T = |t1 − t0|, may be constructed from a sequence
of N smaller time h flow maps, where h = T/N . This re-
moves the need to do redundant tracer integrations when
many concurrently evolving FTLE fields must be com-
puted, for example to animate their evolution, meaning
the simulation only needs the resources to evolve one for-
ward and one backward flow map at a time.

Integrating the FTLE computations into a CFD sim-
ulation has several potential advantages over the post-
processing approach. Perhaps the most compelling is
that the full temporal and spatial resolution of the simu-
lation become available when computing the flow maps.
This is not generally true in the post-processing ap-
proach, where the temporal and spatial resolution of the
velocity field, and by consequence the flow map uncer-
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tainty, could be limited by available hard disk or mem-
ory resources. This makes applying LCS theory to study
flows with broad length and timescale separations, such
as multiphase and turbulent flows, as well as flow in com-
plex geometries, such as packed beds and porous media,
much more feasible. Second, by performing the compu-
tations during the simulation, we can harness the paral-
lelism of the simulation code as well as tools already built
into many flow solvers such as accurate gradient calcula-
tions, interpolations, particle tracking schemes, and pas-
sive scalar solvers for the advection-diffusion equation.
Finally, integration of the FTLE computations directly
into a CFD simulation framework makes it possible to
extend LCS theory to study a number of new applica-
tions. For example, new explorations of active feedback
control could be pursued based on characteristics of the
LCS, or measurement of Lagrangian length scales could
be made using the FTLE field in evolving three dimen-
sional turbulent flows. Some of these benefits have been
suggested previously (for example by Leung 1), but to our
knowledge, this work represents the first fully integrated
computation.
Our main objective is to describe a relatively simple

algorithm which can be used to compute evolving for-
ward and backward time FTLE fields during a compu-
tational fluid dynamics (CFD) simulation, with minimal
additional overhead. The remainder of the paper is or-
ganized as follows. We first give a brief mathematical
background for the computation of FTLE fields in Sec-
tion II. Next, we present numerical details related to
the integration of the computations in a direct numerical
simulation framework in Section III C. In Section IV, we
demonstrate the performance of the implementation and
discuss the computational overhead for several two and
three dimensional flows. Finally, in Section V we make
some general conclusions and proposals for future work.

II. THE FINITE TIME LYAPUNOV EXPONENT

We now briefly develop the theory and notation re-
lated to the FTLE calculation. More thorough exposi-
tions describing the FTLE and its relation to LCS are
available9,20. Assume that some velocity field, u(x, t), is
defined on the three dimensional domain, x ⊆ R

3, over
the time interval, t ∈ (t0, t1). The flow map, Φt1

t0(x0, t0)
integrates passive tracers from their initial position, x0,
at time t0 along pathlines to their “advected” position,
x, at time t1,

Φt1
t0(x0, t0) = x0 +

∫ t1

t0

u(x(τ), τ)dτ. (1)

The flow map may be computed in forward time (t1 >
t0), or backward time (t1 < t0). Two tracers initially dis-
placed by a small perturbation, δx0, will find themselves
separated by distance δx at time t1. To a leading order,
this separation can be written in terms of the flow map

as29

δx(t1) = Φt1
t0(x0 + δx0, t0)−Φt1

t0(x0, t0) (2)

= DΦt1
t0(x0, t0)δx0 +H.O.T.. (3)

Where DΦt1
t0(x0, t0) is the Jacobian of the flow map eval-

uated at the initial tracer coordinate, x0. The magnitude
of the separation, ||δx(t1)||, is found from the L2 matrix
norm,

||δx(t1)|| =

√

〈

δx0,
[

DΦt1
t0(x0, t0)

]

∗
[

DΦt1
t0(x0, t0)

]

δx0

〉

,

(4)
where, 〈·, ·〉 denotes the Euclidean inner product, and ∗

denotes transposition. We introduce the right Cauchy-
Green deformation tensor,

Ct1
t0(x0, t0) =

[

DΦt1
t0(x0, t0)

]

∗
[

DΦt1
t0(x0, t0)

]

. (5)

From equation 4, the maximum stretching over the in-
terval (t0, t1) occurs when δx0 aligns with the eigenvec-
tor associated with the maximum eigenvalue, λmax, of
Ct1

t0(x0, t0). This leads to the definition of the finite-
time Lyapunov exponent, which characterizes the maxi-
mal rate of stretching over the finite-time interval (t0, t1).

σt1
t0 (x0, t0) =

1

|t1 − t0|
log

√

λmax(C
t1
t0(x0, t0)) (6)

For simplicity, the standard convention is to notation-
ally drop the dependence of the flow map, deformation
tensor, and FTLE fields on x0 and t0, and to introduce
the integration time, T = |t1 − t0|. This way for exam-
ple, the forward and backward time T flow maps can be
written in shorthand as Φt0+T

t0 , and Φt0−T
t0 respectively.

Under sufficient restrictions10,11, ridges in the FTLE
field can mark attracting (t1 < t0) or repelling (t1 >
t0) LCS. However, as mentioned earlier, it is possible to
identify false positive and negative LCS using primitive
ridge definitions alone. At the present, we choose to use
FTLE ridges as indicators of LCS candidates, knowing
that more rigorous analysis is needed to truly confirm
them as having all the properties of LCS.

III. NUMERICAL IMPLEMENTATION

In this section, we discuss the tools needed to inte-
grate the FTLE computations within the framework of a
CFD solver. We will discuss the details relevant to our
present implementation, however, it is intended that the
general algorithm which is presented could be followed by
anyone wishing to add a similar capability to their own
CFD code. The present solver was originally developed
to perform large-eddy and direct numerical simulations
of flows in complex geometries on potentially very large
grids30. The code solves the Navier-Stokes equations on
arbitrary shaped, unstructured grids using a co-located
finite volume discretization, a fractional step method for
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time advancement, and an algebraic multigrid (AMG)
solver for the pressure Poisson equation31. The code is
parallelized using Message Passing Interface (MPI), al-
lowing for larger scale simulations by distributing the re-
quired memory over many processors. The flow solver has
a number of extended capabilities particularly relevant
to multiphase flow simulations including Euler-Lagrange
models for a subgrid scale dispersed phase32, and a fic-
titious domain approach for fully resolved simulation of
immersed rigid bodies33.

A. Lagrangian and Eulerian flow map computations

In the post-processing approach to computing the
FTLE fields, the forward and backward time flow maps
are typically composed by seeding the flow with La-
grangian tracers at time t = t0 and advecting them in
positive and negative time over the intervals [t0 + T ] or
[t0 − T ] respectively. This is the methodology which we
employ for the calculation of the forward time flow maps.
The three important steps of this process are illustrated
schematically in Figure 1a. First, at time t0, we launch

a Lagrangian tracer from each cell, by setting the initial
tracer coordinates, x0 = xcv, where the subscript cv de-
notes the cell center coordinates of each control volume.
The tracers are then advected passively with the flow by
integrating the equation,

dx

dt
= u(x, t) (7)

To do this, the position of the Lagrangian tracers is up-
dated after each time step of the flow solver using a sim-
ple, explicit, trapezoidal approximation of equation 7.

xn+1 = xn + u(xn, tn+1/2)∆t (8)

Where the time step, ∆t, is the time step used by the flow
solver. The fluid velocity used for the tracer position up-
date, un+1/2, is staggered in time with respect to the fluid
velocity known on the fixed grid. Since we perform the
tracer update after the fluid solve, this is approximated as
simply, un+1/2 = 0.5

(

un + un+1
)

. Higher order tracer
integrations such as RK4 are possible. However, since
our time step is small to assure good accuracy of the flow
solver, we have found that time advancement according
to equation 8 performs well and is computationally effi-
cient. During the integration, the tracers will cross over
cell and processor boundaries. To handle this in our un-
structured solver we use a particle in cell approach and
known vicinity search algorithms32 to efficiently locate
the tracers as they evolve with the flow field. At time
t0 + T , all processors gather the Lagrangian tracers cur-
rently located on their own grid partition. Each tracer
carries two integer tags corresponding to the processor
and cv index that it was launched from. Each processor
sorts the tracers currently belonging to it by these tags
and communicates their current position, equal to the

forward time flow map Φt0+T
t0 , back to its launch proces-

sor and cv.
During the simulation, if a tracer crosses over a solid

boundary at any point during the integration, it is relo-
cated to the cell center of the last control volume which
contained it. In practice, this is a rare occurrence because
the no-slip condition at solid boundaries and low simu-
lation timesteps prevent these types of erroneous tracer
trajectories. If a tracer crosses over an outlet boundary,
its position is fixed at the boundary for the remainder
of the simulation. This condition is somewhat unphysi-
cal, but is not an issue if the simulation outlet is placed
significantly downstream of the region of FTLE interest.

Unfortunately, there is not a natural way to compose
the backward time flow map during the CFD simulation
with the Lagrangian approach as just described. Doing
so would involve saving several snapshots of the velocity
field between t0 and t0 + T , either in memory or hard
disk, then subsequently using them to integrate tracers
backward in time once the simulation reached t0 + T .
This is both cumbersome and resource intensive. A clever
alternative, proposed by Leung 1 , which integrates almost
seamlessly with a forward evolving CFD simulation is to
treat each component (x, y, and z) of the backward time
flow map as a scalar field. These scalar fields represent
the “takeoff coordinates” of tracers located on the fixed
Eulerian grid, and are evolved forward in time by solving
three level set equations at each timestep:

∂Φt0−T
t0,i

∂t
+ (u · ∇)Φt0−T

t0,i
= 0 (9)

This equation states that the ith component of Φt0−T
t0 re-

mains constant along tracer trajectories, just as it would
in the Lagrangian approach if we integrated backward in
time. To embed the takeoff coordinates at time t0 − T
in the Eulerian representation, we simply initialize the
backward flow map at the cell centers to the grid coor-
dinates, Φt0−T

t0 (x0, t0 − T ) = xcv. The three scalars are
then evolved according to equation 9 up to time t0, at
which point their value on the fixed grid is equivalent to
the ith component of the backward flow map for integra-
tion time T . This process is shown for the y component
of the backward flow map being evolved by a simple flow
field in Figure 1b.
Equation 9 can be solved in a number of ways, and Le-

ung 1 chose a higher order weighted essentially non-
oscillatory (WENO) scheme. In our present implementa-
tion, we have chosen a semi-Lagrangian approach. Com-
pared to many Eulerian solvers, these schemes are simple,
have relatively low overhead, and are easy to implement.
They have gained popularity in atmospheric and multi-
phase flow simulations for their efficiency and stability
with large timesteps34. The idea of semi-Lagrangian ad-
vection is to approximately integrate equation 9 along
tracer trajectories:

Φt0−T
t0,i

(x, tn+1)− Φt0−T
t0,i

(x− 2m, tn)

∆t
= 0 (10)
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(1) Launch tracers
from cell centers,
x(t = t0) = xcv

(2) Tracer advection
to time t = t0 + T

(3) Communicate
Φt0+T

t0 = x(t = t0 + T )
to launch cell

(a)Forward time

At time t = t0 − T , set
Φt0−T

t0 = xcv everywhere

Evolve each
scalar up to
t = t0 by solv-
ing level set
equation.

At time t = t0, Φ
t0−T
t0 is the

backward, time T flow map.

(b)Backward time

FIG. 1. Lagrangian and Eulerian computations of the flow maps for time t = t0. (a) The Lagrangian computation of the

forward time flow map, Φt0+T
t0

. (b) The Eulerian computation of the backward time flow map, Φt0−T
t0

. The scalar field shows
the evolution of the y component of the backward time flow map in a simple velocity field.

Here, the vector m is the distance traveled by a tracer in
the time ∆t/2, ie. the midpoint of the trajectory between
its takeoff point at tn and the fixed grid point x. In order
to solve this equation, we use the second order, two time
level scheme described by Staniforth and Côté 35 .

1. The vector m may be approximated to the second
order through the implicit relation, m = u(x −
m, tn+1/2)∆t

2 , which can be solved iteratively, pro-
vided some initial guess, m0

mk+1 = u(x−mk, t
n+1/2)

∆t

2
, (11)

where subscript k denotes the iteration index. On
the first time step, we initialize m0 to zero every-
where. On subsequent timesteps, we simply use
the m from the previous time step. Because major
temporal changes to the flow field occur on much
longer timescales than the simulation time step, we
observe that typically very few iterations are re-
quired after the initial time step.

2. Evaluate Φt0−T
t0,i

(x − 2m, tn). This value is then
projected forward in time along the trajectory ac-
cording to equation 10.

At the boundaries of the simulation domain, we enforce
the boundary conditions for Φt0−T

t0 suggested by Le-

ung 1 . At inflow, and no-slip boundaries, we enforce
Φt0−T

t0 = x|boundary. At all other boundaries, we enforce

n · ∇Φt0−T
t0,i

= 0, where n is the outward normal vector
associated with the boundary.
Our use of a semi-Lagrangian scheme to solve the level

set equation is somewhat different from most multiphase
flow problems where tracking of an interface is required.
In such applications, particle level set methods36 which
employ tracer particles that carry a marker function, can
be used to accurately capture the evolution of a deform-
ing interface. As the interface deforms, so does the distri-
bution of its marker particles, and in practice the tracer
grid must be re-meshed or reinitialized to obtain a high

quality representation of the evolving interface. Similar
issues arise in our problem, where the goal is to track all
values of the scalar fields (backward flow map), every-
where on our grid. As the scalar fields evolve from their
initial states (eg. Figure 1b), stretching and folding over
long times will result in large gradients that could lead
to loss of accuracy or instability. One way to handle this
would be to employ the forward time Lagrangian tracers
in a way similar to the particle level set approach; Every
few timesteps, the tracer takeoff coordinates could be in-
terpolated fixed grid to correct the backward flow map
representation. However, in many of our cases the initial
tracers distribution is non-uniform (because it is associ-
ated with the fixed grid, see for example section IVB),
meaning such an interpolation could be of dubious qual-
ity. The approach we pursue instead, is to only compute
the flow maps for short integration times over which the
scalar field does not distort significantly. The long inte-
gration time flow maps are then composed approximately
using the method of Brunton and Rowley 2 , explained in
more detail in section III B.
The discrete equations for evolving both the forward

and backward time flow maps involve variables which
may be located at non-mesh locations in space. In gen-
eral, this requires an interpolation of some variable, φ,
known at the cell centers of the fixed grid to these points.
In an orthogonal, structured computational grid, some
form of trilinear interpolation37,38 can be applied to in-
terpolate the values to the non-mesh points. Since our
flow solver is more general and designed to handle com-
plex geometries and unstructured grids, we use an inter-
polation, based on a two term Taylor series about the
cell center which contains the non-mesh point. Let the
non-mesh point, xp be contained in the control volume
with cell center coordinate, xcv of p, where φ|cv of p and
∇φ|cv of p are known. The interpolant, Iφ provides an
estimate for φ|xp

.

φ|xp
= Iφ = φ|xcv of p

+∇φ|xcv of p
(xp − xcv of p) (12)

To compute ∇φ|xcv of p
, a least squares gradient estima-
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tion for unstructured meshes39,40 is used which is robust
in the presence of skewed mesh elements, and reduces
to second order central differencing for regular Cartesian
grids.

B. Efficient composition of flow maps

In practice, the desired temporal resolution of the
FTLE fields is typically much finer than the integration
time, T , over which the flow maps are computed. If this
is the case, then several sets of tracer particles and scalar
fields need to be evolved concurrently in the simulation in
order to compute the exact forward and backward time
flow maps. This problem has been addressed by Brunton
and Rowley 2 , who used the property29 that a time T
flow map can be decomposed into a sequence of N sub-
steps of length, h = T/N . Adopting their notation, we
can write

Φt0+T
t0 = Φt0+Nh

t0+(N−1)h ◦ · · · ◦Φt0+2h
t0+h ◦Φt0+h

t0 (13)

Because the flow maps are obtained discretely, the flow
map from one sub-step will not necessarily point to the
fixed grid points of the next sub-step, and implementing
this reconstruction involves interpolation between sub-
steps. Using the interpolation operator, I, we have

Φt0+T
t0 = IΦt0+Nh

t0+(N−1)h ◦ · · · ◦ IΦt0+2h
t0+h ◦Φt0+h

t0 (14)

If the sub-step, h, corresponds to the frequency that
FTLE fields are to be computed, then redundant tracer
integrations and scalar evolutions can be eliminated.
This means only one set of Lagrangian tracers and one
set of Eulerian scalars, corresponding to the forward and
backward time h flow maps, need to be evolved at any
time during the simulation to compute the time T flow
maps at all times of interest. The integer N was referred
to as the “speedup factor” by Brunton and Rowley 2 be-
cause it represented the potential speedup of their post-
processing approach relative to computing the “exact”
time T flow map every time the FTLE field is needed.
A schematic of this flow map composition scheme,

which corresponds to the “single-tiered unidirectional”
approach of Brunton and Rowley 2 , and the way that
it fits into the CFD simulation is shown in Figure 2.
The simulation begins at t = t0 and always advances
in forward time. To compute the first time T flow maps,
Φt0+T

t0 and Φt0
t0+T , exactly we could evolve a single set of

Lagrangian tracers and Eulerian scalars over the entire
interval [t0, t0+T ], but this becomes computationally in-
efficient if we need to compute the FTLE field at intervals
smaller than T . Instead the total integration time, T is
broken up into the N equal sub-steps of length h = T/N
shown in Figure 2. As the simulation proceeds, time h
flow maps are recorded at these regular intervals and then
re-initialized. Rather than storing all time h flow maps
in memory, we write them to structured binary files on
the hard disk. If sufficient memory is available to the

Simulation Time (t)

t0 t0+h t0+2h . . . . . . t0+T-h t0+T t0+h+T t0+2h+T

Exact Φt0
t0+T (t0 + T )

Approximate construction of Φt0
t0+T (t0 + T )

Approximate construction of Φt0+h
t0+h+T (t0 + h + T )

Approximate construction of Φt0+2h
t0+2h+T (t0 + 2h + T )

Exact Φt0+T
t0 (t0)

Approximate construction of Φt0+T
t0 (t0)

Approximate construction of Φt0+h+T
t0+h (t0 + h)

Approximate construction of Φt0+2h+T
t0+2h (t0 + 2h)

Fwd. time
constructions

Bkwd. time
constructions

FIG. 2. Integration of the flow map composition scheme with
the flow solver forward time advancement. At any simulation
time t which is a multiple of h, the forward time flow map,
Φ

t
t−T (t− T ), and the backward time flow map, Φt−T

t (t), are
constructed from the N time h sub-steps.

computation, it is possible to avoid this step. However,
we have found that performing parallel binary read/write
operations accounts for a very small amount of the total
simulation time (see section IVF), and hard disk space
is more readily available than memory on most comput-
ing platforms. Once the simulation reaches time t0 + T ,
the time T flow maps, Φt0+T

t0 (t0) and Φt0
t0+T (t0 +T ), are

constructed using equation 14 and the time h flow maps
which have been stored on disk. Because the flow solver
uses unstructured grids and distributed memory, efficient
interpolation of one flow map to the next requires careful
memory and parallel task management. Details on the
parallelization of this step are given in the Appendix. At
subsequent simulation times, t, which are multiples of
the flow map sub-step, h, the approximate reconstruc-
tion procedure is repeated to construct the forward time
flow map, Φt

t−T (t−T ), and the backward time flow map,

Φt−T
t (t). For example, when the simulation time reaches

t = t0+2h+T , the time h flow maps, Φt0+2h+T
t0+h+T (t0+h+T )

andΦt0+h+T
t0+2h+T (t0+2h+T ) are first written to disk. Then,

the forward time T flow map, Φt0+2h+T
t0+2h (t0+2h), and the

backward time T flow map,Φt0+2h
t0+2h+T (t0 + 2h + T ), are

constructed as shown in Figure 2.

C. Integrated Algorithm

Before discussing how the complete algorithm has been
integrated into the flow solver, it is beneficial to re-
view the relevant temporal scales, summarized in ta-
ble I, and how they are chosen in our integrated ap-
proach. In each problem considered in section IV, we
can identify a reference time, tref , which characterizes
the dominant hydrodynamic timescale of the flow. This
could be an eddy turnover time, oscillation period, or
any other meaningful reference time. To retain good ac-
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curacy of our flow solver, the simulation time, t, is ad-
vanced using the timestep, ∆t. The latter is set so that
the maximum Courant-Friedrich-Lewy number is roughly
CFL = ucv∆t/∆x = 0.3, where ucv is the velocity in a
control volume with characteristic dimension ∆x. In gen-
eral, this results in a simulation timestep several orders
of magnitude smaller than tref . The FTLE integration
time, T , should be chosen to be long enough that all
LCS candidates are detected. In practice, T is typically
chosen to be larger than the longest hydrodynamic time
scale of the flow. The final timescale, h, is the flow map
sub-step. This is chosen to match the desired temporal
resolution of FTLE fields. Typically, to create an anima-
tion of an FTLE field’s evolution, one would desire h to
be significantly smaller than tref , and therefore signifi-
cantly smaller than T . Our experience with the several
different flows presented in section IV suggests that high
quality animations with sharp FTLE features, and good
temporal resolution between frames can be obtained with
h between T/20 and T/10.

TABLE I. Timescales involved in the integrated computations

Timescale Meaning
tref Hydrodynamic reference time
t Current simulation time
∆t Simulation timestep
T FTLE integration time
h Flow map sub-step

Figure 3 is a block diagram which shows how the com-
bined simulation and FTLE computation proceeds. After
the flow solver advances the velocity field per the usual
procedure from tn to tn+1, the intermediate velocity field,
un+1/2 = 0.5

(

un + un+1
)

is used to update the forward
and backward time h flow maps. The explicit trapezoidal
scheme (equation 8) is used to update the Lagrangian
tracer positions, and the two time level semi-Lagrangian
scheme is used to update the value of the current time h
backward flow maps on the fixed grid (according to equa-
tion 10). If Lagrangian tracers cross boundaries during
the integration step, they are relocated back into the in-
bounds cell, except in the case of an outflow, to which
they remain fixed for the duration of their integration.
The backward time flow map boundary conditions sug-
gested by Leung 1 and described earlier are imposed at
the boundary cells of the fixed grid.
At this point, if the current simulation time is not a

multiple of the flow map sub-step ( mod (tn+1, h) 6=
0), we return to the main flow solver loop. If
mod (tn+1, h) = 0 is satisfied, then the following steps
are initiated to compose the time T flow maps and com-
pute the FTLE fields. First, the current position of all
Lagrangian tracers is communicated back to the proces-
sor and cell which launched them time h ago, giving the
time forward time h flow map, Φt

t−h(t− h), on the fixed

grid. The backward time h flow map, Φt−h
t (t), is known

Main Flow Solver

• tn+1 = tn + dt

• Advance un to un+1

Update time h flow maps

• Advance time h Lagrangian tracers (fwd)

• Advance time h Eulerian fields (bkwd)

• Handle flow map B.C.

FTLE Computation

•Map current tracer positions to launch
cells to obtain time h forward flow map

•Write time h flow maps to disk

• Construct time T flow maps from se-
quence of N time h flow maps

• Compute FTLE fields

• Re-initialize time h flow maps.

RETURN

un+1/2
mod (tn+1, h) 6= 0

mod (tn+1, h) = 0

FIG. 3. Block diagram showing the flow of the CFD simula-
tion with integrated FTLE computations.

because it has been evolved up to time t in forward time
on the fixed grid. Next, these time h forward and back-
ward flow maps are written to binary files on the hard
disk. Then, the time T flow maps are constructed ac-
cording to equation 14 from the sequence of time h flow
maps stored on the hard disk. The Jacobian of each time
T flow map is computed at the cell centers of the fixed
grid using the least squares gradient operator, and the
right Cauchy-Green deformation tensors are computed
according to equation 5. Finally, the largest eigenvalue
of the forward and backward time tensors are determined,
and the corresponding FTLE fields are computed using
equation 6. As a last step before returning to the flow
solver, the time h flow maps are re-initialized on the fixed
grid. This amounts to positioning a Lagrangian tracer at
each cell center, and setting value of the backward time
flow map to the cell center coordinates.

IV. NUMERICAL TEST CASES

We now present several examples designed to show the
performance and capability of the integrated computa-
tions.

A. Time Dependent Double Gyre

As the first test, we examine the analytic model of
time periodic Raleigh-Bénard convection of Solomon and
Gollub 41 . This two dimensional stream-function model,
sometimes referred to as “double gyre flow,” consists of
two counter rotating vortices which expand and contract
in tandem. The time dependent velocity in the xy plane
is described by

ux = −πA sin(πf(x, t)) cos(πy)

uy = πA cos(πf(x, t)) sin(πy)
∂f

∂y
. (15)
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where,

f(x, t) = a(t)x2 + b(t)x (16)

a(t) = ǫ sin(ωt) (17)

b(t) = 1− 2ǫ sin(ωt) (18)

To facilitate comparison with other previous studies of
the FTLE field in this system1,23, we choose parameter
values of A = 0.1, ǫ = 0.1, ω = 2π/10. The domain is
discretized with a uniform, 512× 256 Cartesian mesh in
the region [0, 2] × [0, 1]. The “simulation” is started at
at time t = 0, and at advanced to t = 1.5tref , where
the reference time is tref = 2π/ω. A constant time step
of ∆t = 2.5 × 10−4 is used. The computational pipeline
shown in Figure 3 is followed exactly, with the exception
that in the main flow solver we force the velocity field to
obey system (15) at every time step.

(a) t/tref = 0 (b) t/tref = 0.125 (c) t/tref = 0.25

(d) t/tref = 0.5 (e) t/tref = 1.0 (f) t/tref = 1.5

FIG. 4. Evolution of the Eulerian representation of the back-
ward time flow map on the fixed grid during simulation of
the double gyre flow. The scalar field, Φ0

t,y, represents the y
coordinate of the Lagrangian particle at time, t = 0, which
arrives at the fixed grid points at each later time.

To illustrate the Eulerian treatment of the backward
time flow map, we plot the evolution of its y component,
Φ0

t,y, at several times in Figure 4. The Eulerian field is

initialized to Φ0
t,y = ycv at t = 0. These takeoff coordi-

nates are evolved in with flow in forward time using the
semi-Lagrangian scheme. The flow maps are reinitialized
at regular intervals, h = 1.25tref , and the longer time
flow maps are constructed using the composition scheme
described in section III B. For short times (t/tref . 0.5),
it is evident that the flow transports the low Φ0

t,y values
in the positive y direction in the center of the cell, and
transports the high Φ0

t,y in the negative y directions along
the left and right edges. At later times, the x direction
oscillation results in stretching and folding of fluid trans-
ported between the two gyres, and a significantly more
complex flow map. Despite the Eulerian treatment of
Φ0

t,y, its sharp gradients are well preserved by the semi-
Lagrangian advection scheme.
We can also use this flow to show that the Lagrangian

treatment of the forward time flow map is equivalent to
the Eulerian treatment of the backward time flow map.

(a) σ0
T Lagrangian (b) σT

0 Lagrangian

(c) σ0
T Eulerian (d) σT

0 Eulerian

(e) σ0
T relative error (f) σT

0 relative error

FIG. 5. Comparison of the Lagrangian and Eulerian ap-
proaches to calculating the FTLE field. (a) through (d) show
the FTLE fields computed in (a) backward time with the
Lagrangian approach, (b) forward time with the Lagrangian
approach, (c) backward time with the Eulerian approach (d)
forward time with the Eulerian approach. (e) and (f) show
the relative error between the Lagrangian and Eulerian ap-
proaches for backward and forward time respectively.

Because the system is symmetric in time about t = 0, for-
ward trajectories in system (15) are equivalent to back-
ward trajectories in the negative of system (15). This
allows us to make direct comparisons of FTLE fields
computed using the Lagrangian and Eulerian represen-
tations. To do this, we first apply the flow field of sys-
tem (15) and simulate the flow for an integration time
of T = 1.5tref . We then simulate the negative of sys-
tem (15) up to the same time. In Figure 5a-d the for-
ward and backward time FTLE fields are shown. It is
nearly impossible to distinguish any differences by eye in
the FTLE obtained by the Lagrangian and Eulerian rep-
resentations of the flow map. To obtain a quantitative
measure of the difference, we also plot the normalized rel-
ative error between the Lagrangian and Eulerian results,
Relative Error = |FTLEL−FTLEE |/max(FTLEL) for
forward and backward time in Figure 5e-f. Because this
metric is very sensitive to slight shifts in ridges of the
FTLE field, we are generally satisfied that for most of
the domain, the difference between the Lagrangian and
Eulerian FTLE field is less than 10% of the max FTLE.
Qualitatively, the FTLE fields for the model parameters
chosen are in good agreement with prior studies1,23 with
the same parameters. This gives us confidence that our
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forward and backward time computations are consistent
and accurate.

B. Flow Over a Fixed Cylinder at Re = 300

We now turn to flow over a fixed cylinder, a typical
test case for an unsteady flow solver. A body fitted C-
grid containing a total of 1.3 million hexahedral control
volumes is used to discretize the computational domain,
shown in Figure 6. At the no-slip cylinder boundary,
the grid spacing is D/100, where D is the cylinder di-
ameter. In the wake region the grid spacing is coarsened
to D/40. A slip condition is imposed on the top and
bottom boundaries in the y direction, and a convective
outlet condition (∂u/∂n = 0) is set 25D downstream of
the cylinder. The grid is two cells thick in the z direction,
where periodicity is imposed. At the C boundary 20D
upstream of the cylinder, a uniform inflow velocity, U , is
specified so that the Reynolds number, Re = UD/ν, is
equal to 300 where ν is the kinematic viscosity.

X/D

Y
/D

-20 -10 0 10 20

-20

-15

-10

-5

0

5

10

15

20

Uniform Inflow
Re = U D/ν = 300

Near Cylinder Mesh

Slip Walls Top & Bottom: du/dy = 0

Convective 
     Outflow:
     du/dn =0

FIG. 6. Domain and mesh used for simulating flow over a
fixed cylinder.

The flow is started from rest and simulated for t =
200tref , where tref = D/U , using a constant timestep
∆t = 1.7× 10−3tref . The FTLE fields are computed for
an integration time of T = 7.8tref , and with a flow map
sub-step, h = T/13 = 0.6tref . When updating the back-
ward time flow map, the boundary conditions discussed
earlier are used. That is, on the solid cylinder boundary
and at the inflow we impose Φt−T

t,i = xi , while at the

slip boundaries and outflow, we impose n · ∇Φt−T
t,i = 0.

The influence of the non-physical fixing of Lagrangian
particles which encounter the outflow does not travel up-
stream far enough to affect the forward time FTLE fields
in the near wake. At this Reynolds number, the cylinder
wake becomes unsteady, and develops into an unsteady
Kármán vortex street. This phenomena is nicely cap-
tured by the FTLE fields shown for several instants in
time in Figure 7. For t . 50D/U , the boundaries of
the symmetric recirculation bubble are clearly marked as
LCS candidates by the FTLE ridges. The bubble be-
comes unstable and the FTLE ridges begin to wander

from the line of symmetry at t = 60D/U . By t = 75D/U ,
alternating vortex shedding has set in, and the FTLE
ridges show the skeleton of the periodic vortex chain in
the wake of the cylinder.

(a) t = 40.2D/U

(b) t = 60.6D/U

(c) t = 69.0D/U

(d) t = 75.6D/U

(e) t = 168.0D/U

FIG. 7. Snapshot of FTLE fields for flow over a cylinder at
Re = 300 for T = 7.8D/U . Left column shows backward time
FTLE, right column shows forward time FTLE.

C. In-Line Oscillation of a Circular Cylinder

In this example, we show that our integrated approach
to computing FTLE fields can be easily applied to sim-
ulations of flows with moving boundaries, which are en-
countered in multiphase flows, and fluid-structure inter-
action problems. Our flow solver has the extended capa-
bility to simulate resolved rigid particle-flow interactions
on non-body conformal Cartesian grids using a fictitious
domain approach33, and we demonstrate the simultane-
ous FTLE computations here with a simple test case. For
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our example, we consider the flow generated by a circular
cylinder performing linear oscillations. This problem can
be described in terms of the maximum cylinder Reynolds
number and the Keulegan-Carpenter number which char-
acterizes the oscillation frequency of the cylinder:

Re =
UmD

ν
(19)

KC =
Um

fD
=

2πA

D
(20)

where, Um is the maximum cylinder velocity, D is the
cylinder diameter, ν is the kinematic viscosity of the
fluid, f is the frequency of cylinder oscillations, and A
is the oscillation amplitude. The cylinder and fluid both
start at rest. At t > 0, the cylinder position and velocity
are described by the sinusoidal functions:

xc(t) = −A sin(2πft) (21)

Uc(t) = −2πAf cos(2πft) (22)

The cylinder diameter, viscosity, maximum velocity,
and oscillation amplitude and are chosen so that Re =
100, and KC = 5, corresponding with the experimental
study of Dütsch et al. 42 . A block-type Cartesian grid is
used, with a uniform patch in the region of cylinder mo-
tion, and periodicity assumed in the spanwise direction.
The domain size is 50D× 50D in the x and y directions.
Near the cylinder, a uniform grid spacing of D/100 is
used. The grid uses 750× 600× 2 (9× 105 total) cells in
the x, y, and z directions.
The flow is allowed to develop for 9 complete oscilla-

tions before computing any FTLE fields. The integra-
tion time, T = 1.5tref , where tref = 1/f is the oscilla-
tion period. The FTLE fields are constructed at a flow
map sub-step, h = T/30. Figure 8 shows the forward
and backward FTLE field at four different phase angles,
θ = 2πft, of the oscillation. At this Reynolds number
and KC number, the flow is characterized by a pair of
counter rotating vortices being shed from the top and
bottom of the cylinder every half cycle. Upon reversing
direction at θ = 90o and 180o, the cylinder destroys the
previously formed pair while creating a new pair in its
wake. The attracting LCS candidates compare very well
with experimental dye visualizations of the same flow (see
FIG 5 of Dütsch et al. 42). For this relatively long inte-
gration time the LCS candidates, which can be visually
identified as ridges of the FTLE field, show how the cylin-
der entrains fluid into its wake, then stretches and folds
the fluid as it oscillates.
During this simulation, the fluid inside the cylinder,

and as a result the flow map, are constrained to the
rigid body motion specified by equations 21 and 22 at
all times. This results in a sharp FTLE ridge along the
solid-fluid interface as would be expected. Despite the
immersed representation of the moving rigid body on the
fixed grid, the FTLE fields obtained contain sharp well
defined features, which provides confidence that the in-
tegrated computations are easily extensible to problems
with moving boundaries.

(a)θ = 0o

(b)θ = 54o

(c)θ = 108o

(d)θ = 162o

FIG. 8. FTLE fields for selected phase angles in one half
cycle of the oscillating cylinder flow. The arrow denotes the
direction of cylinder motion. Left column shows backward
time FTLE, right column shows forward time FTLE.

D. Three Dimensional Turbulent Vortex Ring

To show the capability of the proposed approach for
three dimensional flows, we now examine the case of a
traveling vortex ring. LCS theory has previously been ap-
plied to vortex ring flows as a way to to understand the
lobe dynamics of entrainment, detrainment, and trans-
port within the ring15, as well as the identification of
vortex pinch-off during formation of the flow structure14.
This vortex ring is generated by a quick pulse of fluid
from a circular inlet located at the x = 0 wall of an
initially stagnant rectangular domain. The domain ge-
ometry, shown in Figure 9a, is 30cm×30cm in the y and
z directions, and extends 80cm in the x direction. The
velocity of the inflow jet as a function of time is similar to
the studies of bubble vortex interaction by Sridhar and
Katz 43 and Finn, Shams, and Apte 44 , but is scaled so
that the initial circulation is equal to 79.5cm2/s. The
shear layer of the jet rolls up into a vortex ring and
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travels downstream at a speed of roughly 14% of the
maximum jet velocity. Also in Figure 9a, we visual-
ize the three dimensional ring structure by showing an
isosurface of swirling strength, λci. This Eulerian vor-
tex detection criteria corresponds to the imaginary part
of the complex eigenvalue of the instantaneous velocity
gradient tensor45. The isosurface shows the turbulent
nature of the ring structure, particularly in its wake as
it travels downstream. The domain is meshed with a
640 × 241 × 241 (37 × 106 total points) Cartesian grid.
The cells are coarsened in the corners of the tank, away
from the evolution of the vortex ring.

(a) Eulerian swirling strength

(b) Backward time FLTE

(c) Forward time FTLE

FIG. 9. Snapshots of the three dimensional vortex ring at
t = 2s 7s, 12s. (a) Isosurface of swirling strength, λci/λ

max
ci =

0.12. (b-c) FTLE fields for the z = 0 cross sectional slice
through the center of the 3D vortex ring

The forward and backward time FTLE fields are com-
puted during the simulation for T = 1.5s, about the time
it takes the ring to travel 10cm downstream. A flow map
sub-step of h = T/15 = 0.1s is used to compose the time
T flow maps. Two dimensional slices in the z = 0 plane
of the three dimensional FTLE fields are shown in Fig-
ure 9b and c for t = 2s, t = 7s, and t = 12s. Despite
the three dimensionality of the flow, FTLE ridges can be
clearly seen in the xy plane, particularly at t = 2s when
the candidate LCS surfaces lie perpendicular to the z = 0
plane. At later times, as the ring travels downstream and
begins to break down, the strong FTLE ridges are less ev-

ident in this plane, implying the LCS candidate surfaces
are no longer perpendicular to this slice. Three dimen-
sional ridge extraction for cases such as this is an impor-
tant but difficult task (see Garth et al. 26 and Mathur
et al. 8 for some unique approaches relevant to LCS) and
is reserved for a future work.

E. Flow through a random sphere pack

The final case studied, unsteady flow through a ran-
dom sphere pack, is designed to showcase the benefits of
integrating the FTLE computations with the CFD sim-
ulation. At moderate Reynolds numbers, flow through
packed beds of spheres can develop a variety of coherent
porescale flow features including jets and helical vortices,
which operate over a wide range of characteristic space
and times scales. For packed bed reactors and other
complex flow configurations, LCS theory could provide
crucial new understanding of how geometric and hydro-
dynamic features affect transport and mixing, and how
slight geometric changes can produce desirable or unde-
sirable to be valuable design tools. However, the geomet-
ric scale and complexity of these types of configurations
precludes computing the FTLE using the typical post-
processing approach.
The geometry which we consider is a channel packed

with 51 spheres with constant diameter D, shown in Fig-
ure 10a. A ballistic deposition algorithm, similar to the
method employed by Atmakidis and Kenig 46 , was used
to pack the spheres into a 4D × 4D × 4D box resulting
in a mean void fraction, ǫ = 0.58. The channel was then
formed by extending the box boundaries 3D upstream
and downstream of the spheres. The flow is driven in the
positive z direction by a constant inflow velocity at the
upstream boundary so that the pore Reynolds number
for the flow is Re = UD

ǫν = 600, where U is the assigned
inflow velocity and ν is the viscosity. A convective outlet
condition is located 3D downstream of the packing.
The same fictitious domain approach used for the os-

cillating cylinder case is used to represent both the fixed
solid and fluid region on a non body conformal Cartesian
grid. This grid has a uniform spacing ofD/80 everywhere
in the porespace, and is stretched toward the inflow and
outflow boundaries. In total, it contains 47× 106 control
volumes. Validation of the fictitious domain approach for
flow through packed beds of spheres , including justifica-
tion for the chosen grid spacing in this case may be found
elsewhere47. The flow was started from rest and allowed
to develop to for t = 60tref where tref = D/U . The flow
becomes unsteady right away, and contains a number of
interesting porescale features. The most notable of which
is helical vortices, elongated in the mean flow direction.
These are shown in Figure 10a by plotting isosurfaces of
the Eulerian swirling strength field, λci/λ

max
ci = 0.25.

The FTLE fields are computed for an integration time
of T = tref using a flow map sub-step of h = T/7. Be-
cause of the complex geometry, the flow is multiscale
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(a) 3D domain and
vortex isosurfaces

(b) Backward time FTLE

(c) Forward time FTLE

FIG. 10. Flow through the random sphere pack. (a)
Shows the simulation domain and instantaneous isosurfaces
of λci/λ

max
ci = 0.25, and the z/D = 2.5 plane used for visu-

alization of the FTLE fields. (b) and (c) show a snapshot of
the FTLE fields for at the z/D = 2.5 cross stream slice. The
LCS candidates in pores A, B, and C demonstrate distinct,
time dependent behavior.

in nature. After some experimentation, these values of
T and h were determined to provide sharp FTLE fea-
tures (long enough T ) and good temporal resolution of all
timescales (small enough h). The fields are visualized in
Figure 10b and c on the two dimensional z/D = 2.5 slice.
This slice is oriented perpendicular to the mean flow, at
roughly two thirds of the way through the packed bed.
The fine grid resolution used for the simulation provides
excellent resolution in the FTLE field, and a number of
porescale LCS candidates can be easily located with the
eye. We will discuss a few of the features in the plane
here. (A) is a thin region sandwiched between a sphere
and the x = 0 wall occupied by a pair of counter-rotating
helical (vorticity aligned with the z axis, in and out of
the page) vortices. The boundaries of the two vortex
cores are well defined by the forward and backward FTLE
fields. In time, these features wander slightly along the
wall, but remain distinct throughout the simulation. (B)
is a large open pore in the center of the packing, where
several streams of fluid converge. The LCS candidates,
which seem to distinguish the heads of jets as well as the

boundaries of vortex cores, are highly transient and move
throughout the pore as the simulation proceeds. Pore
(C) is a large open region near the wall of the packing
which is also highly transient. There is evidence of vortex
shedding as the tail of the ridge feature inside the boxed
region flaps periodically into the open area of the pore.
These results give us confidence that the integrated ap-
proach can capture FTLE features in large scale complex
configurations.

F. Computational Expense

By incorporating the FTLE calculation into our flow
solver we have removed the need to post-process a se-
quence of velocity fields. However, in many ways, we
have just shifted the computational overhead to the sim-
ulation, and it is important to quantify how much this
will cost in terms of additional simulation time. If the
cost of the FTLE computation were to become signifi-
cantly large relative to the standard flow solver, the ap-
peal of the integration we have described would dimin-
ish. In Figure 11 the expense of FTLE computations is
plotted in terms of the percentage of the total simula-
tion time that they consume for each case presented in
this section. The expense for each case is further broken
into contributions from (i) the Lagrangian update of the
forward time flow map tracers, (ii) the semi-Lagrangian
update of the backward time flow map scalar fields, (iii)
the reconstruction of time T flow maps from the time h
sub-steps including reading back the sub-steps from hard
disk, and (iv) all other FTLE related computations in-
cluding writing to the hard disk, composing the strain
rate tensor, computing its max eigenvalue and enforce-
ment of flow map boundary conditions. The double gyre
case has been omitted, since the velocity field in that
case is enforced artificially and the flow solver itself does
very little work. To make the comparison as equal as
possible for all cases, the time step, ∆t was chosen so
that the maximum CFL number was 0.3, the integration
time was set to T = 2400∆t, and the flow map sub-
step was set to h = T/12 = 200∆t. All cases were run
on the Lonestar super computer at the Texas Advanced
Computing Center (TACC), which consists of 1888 nodes
of 3.33GHz Intel 2 Hex-core (12 processing cores/node)
Xeon 5680r processors connected with a 40Gbit/s In-
ifiniband Mellanox Switch. Each node of 12 cores shares
24GB of memory. The grids for each case were parti-
tioned with between 38k and 56k control volumes per
partition, resulting in parallel simulations using between
24 and 1200 processors.
It is encouraging to see that the computational time

dedicated all FTLE related computations varies between
a low of 14% (the vortex ring), and a high of 26.5% (the
fixed cylinder) of the total simulation time. Variations
between the cases have to do with differences in the load
balancing of the parallel partition and the amount of iter-
ations required by the flow solver for convergence, among
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26.5%Fixed Cylinder (36 proc.)Total FTLE Cost

8.3%Lagrangian tracer update
Simlation Wall Clock = 13 min/T

6.9%semi-Lagrangian scalar update

8.7%Construct time T flow maps

2.6%Other

22.8%Oscillating Cylinder (24 proc.)Total FTLE Cost

2.8%Lagrangian tracer update
Simlation Wall Clock = 43 min/T

6.0%semi-Lagrangian scalar update

12.8%Construct time T flow maps

1.2%Other

14.2%Vortex Ring (660 proc)Total FTLE Cost

3.9%Lagrangian tracer update
Simlation Wall Clock = 70 min/T

3.8%semi-Lagrangian scalar update

4.4%Construct time T flow maps

2.1%Other

16.1%Packed Bed (1200 proc.)Total FTLE Cost

4.1%Lagrangian tracer update
Simlation Wall Clock = 58 min/T

3.9%semi-Lagrangian scalar update

6.4%Construct time T flow maps

1.7%Other

0% 5% 10% 15% 20% 25% 30%

FIG. 11. Computational cost of embedding the FTLE com-
putations into the direct numeric simulation. Bars indicate
percentage of the total simulation time dedicated to certain
parts of the FTLE computations for each case studied.

other factors. It is evident that the implementation scales
effectively to the larger, three dimensional simulations
distributed in parallel on over 1,000 processors. It is im-
portant to note that the time required to construct the
time T flow maps from the time h sub-steps scales al-
most linearly with the speedup factor, N . In this study
we have chosen N = 12, as we have found it to be suffi-
cient to resolve most FTLE features of interest in these
flows.
Memory and hard disk usage is also of concern when

performing either distributed memory or shared mem-
ory flow simulations. In our current implementation, the
simulation memory increase is small because all flow map
sub-steps are stored in temporary files on the hard disk.
To do this requires

Ncv ×
T

h
×

6 doubles

cv
×

8 bytes/double

10243 bytes/GB
(23)

of temporary hard disk space. Thus, a 1 million cv sim-
ulation with N = 12 will require 0.54GB. Our largest
simulation, the 46 million cv simulation of flow through
the packed bed with T/h = 7 required 22GB of tem-
porary disk space, an amount readily available on most
modern computing platforms.
To compare the computational overhead of our inte-

grated approach with the post processing approach, 48
equally spaced velocity fields were output from the fixed
cylinder simulation over an interval corresponding to the
FTLE integration time, T = 2400∆t. The velocity fields
were then interpolated to a uniform 1750 × 750 grid
(1.3× 106 total points) covering a subset of the total do-
main near the cylinder and its wake (−10 ≤ x/D ≤ 25,

−7.5 ≤ y/D ≤ 7.5). Using a Lagrangian tracer grid of
the same size, a single, backward time FTLE field was
computed for integration time T using the freely avail-
able LCS Matlab Toolkit17,48. The computation took 17
minutes using a single core of a 2.83GHz Intel Core 2
Quadr processor, and consumed 0.47GB of memory.
In comparison, a total of 24 FTLE fields (12 forward and
12 backward) were computed for the same number of
cells during the simulation using the integrated approach.
This required 13min of simulation time and 0.7GB of
hard disk space to store the intermediate flow maps. The
FTLE related computations accounted for 26.5% of the
simulation time, meaning each FTLE field took about 9
seconds to compute. This represents a roughly 2 order
of magnitude speedup over the post processing approach,
and is due to both the parallelism of the integrated ap-
proach as well as the efficient flow map composition tech-
nique.

V. CONCLUSIONS

In this paper, we have demonstrated that both the
forward and backward time FTLE fields may be com-
puted, on-the-fly, during direct numerical simulation of
the Navier-Stokes equations. Our implementation into
a parallel, distributed memory, unstructured grid flow
solver utilizes Lagrangian particle tracking to compose
the forward time flow maps, and an Eulerian treatment
of the backward time flow map along with a simple
semi-Lagrangian advection scheme. To avoid redundant
tracer integrations and scalar advections, time T flow
maps are composed from a sequence of time h sub-steps,
corresponding to the unidirectional single-tiered method
of Brunton and Rowley 2 . This enables us to visualize
the evolution of the FTLE fields with high temporal res-
olution, without burdening the simulation excessively.
The implementation has been tested for several canon-

ical and new flows where LCS theory has not yet been
applied. We first showed that the Lagrangian and Eule-
rian treatments of the forward and backward time flow
maps produce high quality and similar results using the
analytic double gyre test case. We next showed the appli-
cability to unstructured grids and bluff body flows (the
fixed cylinder), rigid body motion and multiphase flow
problems (the oscillating cylinder), three dimensional
flows (the traveling vortex ring), and large scale simu-
lations with complex boundaries (the packed bed). In all
of these cases, the overhead related to the FTLE compu-
tations is small relative to the total simulation time. The
implementation also scales well for simulations utilizing
over 1000 processors.
The integration of these computations directly in

the simulation eliminates the need for expensive post-
processing of large data sets, but also has a number of
additional benefits. Because the velocity field is available
at the native space and time resolution of the simulation,
integration errors in the flow maps are minimized. Hav-
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ing the FTLE fields available to the simulation makes
exploring active control of the FTLE fields and their as-
sociated LCS much more accessible, and could prove im-
portant to a number of applications. Our future work
will pursue the possibility of this. We also plan to inte-
grate the extraction of the LCS based on new, more rigor-
ous LCS theory10,11,21,22 as it continues to evolve. Addi-
tional exploration of LCS-like flow features such as iner-
tial LCS which are the attracting and repelling structures
for inertial particles17,49, and burning invariant manifolds
(BIMs) which are invariant barriers to reaction fronts50

are also possible within a similar framework.
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Appendix A: Parallelization of the flow map construction

scheme

The “single tiered unidirectional” reconstruction pro-
cedure proposed by Brunton and Rowley 2 is used to com-
pose the time T flow maps from the sequence N time h
flow map sub-steps. Here, we describe the parallelization
of this step in our distributed memory, unstructured grid
flow solver. Let t be the current simulation time which is
a multiple of the flow map sub-step, h ( mod (t, h) = 0),
and assume that we are interested in constructing the
time T forward flow map, Φt

t−T from the sub-steps which
have already been written to the hard disk. Let tC be the
current construction time. We initialize tC = t − T , so
that our construction begins at the beginning of our for-
ward time interval, [t− T, t], and initialize a temporary
construction of the flow map, ΦtC

t−T = xcv everywhere.
We then perform the following steps in a loop from n = 1
to n = N :

• Each processor reads its own time h flow map,
ΦtC+h

tC = Φt−T+nh
t−T+(n−1)h into memory from the bi-

nary file located on the hard disk.

• The goal is to update the flow map construction,
ΦtC

t−T , to account for the current sub-step. This

involves interpolating the values of ΦtC+h
tC which is

known at the grid points, to the non-mesh points
of the current flow map construction, ΦtC

t−T

ΦtC+h
t−T = IΦtC+h

tC ◦ΦtC
t−T (A1)

It is likely that the non-mesh points of the current
construction will lie across processor boundaries,
meaning a coordinated search and retrieve opera-
tion is required by all processors to perform this up-
date. To do this, each processor sends a query to
all processors which could potentially contain each
non-mesh point, ΦtC

t−T . This is determined simply
by comparing each non-mesh point to the minimum
bounding box of the grid partition belonging to all
other processors.

• Each processor receives a list of non-mesh points,
which may lie within its grid partition, to search
for. These are the points where the value of the cur-
rent flow map sub-step is needed by another proces-
sor. A bounding box Oct-Tree search algorithm is
used to efficiently determine the cell (if any) which
contains each of these points. If found, the value of
ΦtC+h

tC is interpolated to the non-mesh point using
the interpolation kernel described in section IIIA.
These values of are sorted and sent back to the
processor which requested each search.

• Each processor receives values of the updated flow
map ΦtC+h

t−T from potentially all other processors.

• The construction time is advanced to tC = tC + h.

At the end of this loop, ΦtC
t−T is an approximation of time

T flow map Φt
t−T . The procedure can be repeated to

compute the backward time flow map, Φt−T
t , by starting

at tC = t and advancing the construction time in the
negative time direction.
As the number of sub-steps, N , increases this portion

of the algorithm can become computationally expensive
due to the relatively naive search procedure for non-mesh
points in our unstructured grids. In the case of a shared
memory structured grid flow solver, these steps could be
simplified significantly. Nonetheless, we find that the to-
tal expense of this step remains small (see section IVF)
relative to the simulation time for moderate values of N .
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