
Direct Simulation Based Model-Predictive Control of
Flow Maldistribution in Parallel Microchannels

Mathieu Martin Chris Patton John Schmitt
Sourabh V. Apte∗

School of Mechanical, Industrial and Manufacturing Engineering
Oregon State University

Corvallis, OR 97331

July 5, 2009

Abstract

Flow maldistribution, resulting from bubbles or other particulate matter, can lead
to drastic performance degradation in devices that employ parallel microchannels for
heat transfer. In this work, direct numerical simulations of fluid flow through a pre-
scribed parallel microchannel geometry are performed and coupled with active control
of actuated microvalves to effectively identify and reduce flow maldistribution. Accu-
rate simulation of fluid flow through a set of three parallel microchannels is achieved
utilizing a fictitious domain representation of immersed objects, such as microvalves
and artificially introduced bubbles. Flow simulations are validated against experimental
results obtained for flow through a single, high aspect ratio microchannel, flow around
an oscillating cylinder, and flow with a bubble rising in an inclined channel. Results
of these simulations compare very well to those obtained experimentally, and validate
the use of the solver for the parallel microchannel configuration of this study. System
identification techniques are employed on numerical simulations of fluid flow through
the geometry to produce a lower dimensional model that captures the essential dynamics
of the full nonlinear flow, in terms of a relationship between valve angles and the exit
flow rate for each channel. A model predictive controller is developed which employs
this reduced order model to identify flow maldistribution from exit flow velocities and
prescribe actuation of channel valves to effectively redistribute the flow. Flow simula-
tions with active control are subsequently conducted with artificially introduced bubbles.
The model predictive control methodology is shown to adequately reduce flow maldistri-
bution by quickly varying channel valves to remove bubbles and equalize flow rates in
each channel.
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1 Introduction

Microchannels are employed in a variety of devices, such as heat sinks and heat exchangers,
to improve heat transfer effectiveness. For improved efficiency and cooling of high heat loads,
two-phase flows involving convective boiling of high latent heat fluids are often used. Forma-
tion of vapor bubbles inside the microchannel geometry can lead to blocking effects, resulting
in flow maldistribution with non-uniform spatial and temporal conditions. Such flow mald-
istribution reduces the effectiveness of the heat transfer, leading to decreased performance
of the devices under consideration.

Previous investigations into multiphase flow in microchannels [1, 2] have shown that the
vapor phase can take different forms, each yielding qualitatively different flow behavior. For
two-phase flow in a square channel, Cubaud et al. [3] classify flow regimes by the size and
occupation of the channel by the vapor phase. In bubbly flow, small bubbles comprise a
vapor phase that is relatively small in comparison to the channel dimensions. In this flow
regime, bubbles are mainly spherical and flow with the fluid at a similar velocity. Sharp
& Adrian [4] investigated clogging or arching structures inside microchannels or in sharp
corners due to interaction of rigid particles. Bubble-laden flows may also lead to similar
blocking effects in microchannel geometries.

In microchannel geometries using a liquid as a coolant for removal of high heat fluxes,
bubbles may form and grow at nucleation sites. These bubbles remain attached to channel
walls due to surface tension effects [5]. Existence of the bubble in a channel affects the
fluid flow not only in that channel, but also in all of the connected channels, leading to
flow maldistribution. As the bubble grows, eventually the surface tension forces keeping the
bubble attached to the wall are lowered; and the hydrodynamic forces acting on the bubble
may overcome any resistive forces, detaching and moving the bubble [6, 7]. Formation and
growth of bubbles inside parallel microchannel geometries can lead to flow instabilities, flow
reversals and can affect the flow distribution in a network of channels [8]. To mitigate these
flow instabilities, Mukherjee et al. [8] proposed use of a variable size microchannels with
increased cross-sectional areas in the downstream direction. Increasing areas in the down-
stream directions result in higher pressures locally, which tend to reduce the flow reversal,
and is an example of a passive control to mitigate flow distribution problems. Active control,
based on model-predictive control algorithm, has been used by Bleris et al. [9], in order to
improve mixing of chemical species in parallel microchannels. By regulating the mass-flow
rates in each channel, they showed how active control can be used to improve mixing and
chemical reaction processes.

In the present work, we investigate an active control strategy as applied to two-phase
flow in parallel microchannels in order to mitigate flow maldistributions due to presence of
single or multiple bubbles in one or more branches of the channels. We consider the bubbly
flow regime with one or more bubbles present in a parallel microchannel configuration as
shown in Fig. 1. As the first step, the bubbles are modeled as rigid spherical particles in a
two-dimensional simulation. Bubble growth is not simulated; instead, bubbles are injected
into the domain close to a microchannel wall. Bubbles are held fixed until the hydrodynamic
force applied by the flow reaches a critical threshold, at which point the bubble is released
into the flow. The threshold force that must be overcome by the hydrodynamic forces is
estimated by approximating surface tension forces based on the analysis performed by Lee
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et al. [6]. Flow maldistribution resulting from bubble injection is regulated through actuation
of valves at the entrance of each microchannel.

Figure 1: Schematic of parallel microchannels with bubbly flow.

The paper is structured as follows. Section 2 provides the mathematical foundation of
the direct numerical simulations employed in this study. Details regarding implementation of
the numerical algorithm employed are presented in Section 3. Control design methodology,
including the means by which reduced order models are produced from direct numerical
simulations and the use of such models in a model predictive control scheme, is detailed
in Section 4. Section 6 presents results of validation cases for the flow solver. Controlled
flow simulations of bubbly flow are examined in Section 7, with conclusions and avenues for
future work presented in Section 8.

2 Mathematical formulation

The computations carried out in this work utilize direct numerical simulation (DNS) with
fictitious domain representation of arbitrary shaped immersed objects such as the microvalves
and bubbles. The fictitious domain approach Glowinski et al. [10], Patankar [11], Apte et
al. [12] allows accurate representation of moving boundaries embedded in a fluid flow. Two
types of moving boundaries are considered in this study: (i) specified motion of the immersed
object and (ii) freely moving objects. The motion of the microvalves is a specified rigid
body motion consisting of translation and rotational velocities. The bubbles or particles are
allowed to move freely. Their motion is obtained by directly computing the forces acting on
them. As the first step, we assume the bubbles as rigid objects immersed in a surrounding
viscous fluid. As shown later, such an assumption is reasonable for low Reynolds numbers
and low Weber numbers. For small Weber numbers, the inertial shearing forces acting on
the bubble are much smaller than the surface tension forces. Under these conditions bubble
deformation is minimal, the shape of the bubble is preserved. One consequence of this
assumption is that modeling the motion of the bubble is much easier; the region occupied
by the bubble is forced to undergo rigid body motion consisting of only translation and
rotation. The bubble motion is then obtained directly by using a novel algorithm based on
fictitious domain method for high-density ratios between the fluid and the immersed object.
In this fully resolved simulation approach, models for drag, lift, or added mass forces on
the bubble are not required, but such forces are directly computed. Below we describe in
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detail the computational approach for freely moving rigid objects immersed in a viscous,
incompressible fluid. Details of the numerical scheme and several verification and validation
test cases are also presented to show good predictive capability of the numerical solver.

Let Γ be the computational domain which includes both the fluid (ΓF (t)) and the particle
(ΓP (t)) domains. Let the fluid boundary not shared with the particle be denoted by B and
have a Dirichlet condition (generalization of boundary conditions is possible). For simplicity,
let there be a single rigid object in the domain and the body force be assumed constant so that
there is no net torque acting on the object. The basis of fictitious-domain based approach [10]
is to extend the Navier-Stokes equations for fluid motion over the entire domain Γ inclusive
of immersed object. The natural choice is to assume that the immersed object region is filled
with a Newtonian fluid of density equal to the object density (ρP ) and some fluid viscosity
(µF ). Both the real and fictitious fluid regions will be assumed as incompressible and thus
incompressibility constraint applies over the entire region. In addition, as the immersed
objects are assumed rigid, the motion of the material inside the object is constrained to be a
rigid body motion. Several ways of obtaining the rigidity constraint have been proposed [10],
[13], [11]. We follow the formulation developed by Patankar [11] which was also applied by
Sharma & Patankar [14] for freely moving rigid objects in laminar flows. Apte et al. [12]
extended the formulation to co-located grid finite volume schemes with good conservative
properties necessary for turbulent flows. Details of the numerical algorithm are described in
detail by Apte et al. [12]. A brief description is given here for completeness.

The momentum equation for fluid motion applicable in the entire domain Γ is given by:

ρ

(
∂u

∂t
+ (u · ∇) u

)
= −∇p+∇ ·

(
µF

(
∇u + (∇u)T

))
+ ρg + f , (1)

where ρ is the density field, u the velocity vector, p the pressure, µF the fluid viscosity, g
the gravitational acceleration, and f is an additional body force that enforces rigid body
motion within the immersed object region ΓP . The fluid velocity field is constrained by the
conservation of mass which for an incompressible fluid simply becomes: ∇ · u = 0.

In order to enforce that the material inside the immersed object moves in a rigid fashion,
a rigidity constraint is required that leads to a non-zero forcing function f . Inside the particle
region, the rigid body motion implies vanishing deformation rate tensor:

1
2

(
∇u + (∇u)T

)
= D[u] = 0,

⇒ u = uRBM = U + Ω× r

}
in ΓP , (2)

where U and Ω are the translation and angular velocities of the object and r is the position
vector of a point inside the object from its centroid.

The vanishing deformation rate tensor for rigidity constraint automatically ensures the
incompressibility constraint inside the particle region. The incompressibility constraint gives
rise to the scalar field (the pressure, p) in a fluid. Similarly, the tensor constraint D[u] = 0 for
rigid motion gives rise to a tensor field inside the particle region. A fractional-step algorithm
can be devised to solve the moving boundary problem [11, 12]. Knowing the solution at time
level tn the goal is to find u at time tn+1.

1. In this first step, the rigidity constraint force f in equation 1 is set to zero and the
equation together with the incompressibility constraint (equation 2) is solved by stan-
dard fractional-step schemes over the entire domain. Accordingly, a pressure Poisson
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equation is derived and used to project the velocity field onto an incompressible so-
lution. The obtained velocity field is denoted as un+1 inside the fluid domain and û
inside the object.

2. The velocity field for a freely moving object is obtained in a second step by projecting
the flow field onto a rigid body motion. Inside the object:

ρP

(
un+1 − û

∆t

)
= f . (3)

To solve for un+1 inside the particle region we require f . The constraint on the defor-
mation rate tensor given by equation 2 can be reformulated to obtain:

∇ ·
(
D[un+1]

)
= ∇ ·

(
D

[
û +

f∆t

ρ

])
= 0; (4)

D[un+1] · n = D

[
û +

f∆t

ρ

]
· n = 0. (5)

The velocity field in the particle domain involves only translation and angular velocities.
Thus û is split into a rigid body motion (uRBM = U + Ω × r) and residual non-rigid
motion (u′). The translational and rotational components of the rigid body motion
are obtained by conserving the linear and angular momenta and are given as:

MPU =

∫
ΓP

ρP ûdx; (6)

IPΩ =

∫
ΓP

r× ρP ûdx, (7)

where MP is the mass of the particle and IP =
∫

ΓP
ρP [(r · r)I− r⊗ r]dx is the moment

of inertia tensor. Knowing U and Ω for each particle, the rigid body motion inside the
particle region uRBM can be calculated.

3. The rigidity constraint force is then simply obtained as f = ρ(uRBM− û)/∆t. This sets
un+1 = uRBM in the particle domain. Note that the rigidity constraint is non-zero only
inside the particle domain and zero everywhere else. This constraint is then imposed
in a third fractional step.

In practice, the fluid flow near the boundary of the particle (over a length scale on the
order of the grid size) is altered by the above procedure owing to the smearing of the particle
boundary. The key advantage of the above formulation is that the projection step only
involves straightforward integrations in the particle domain.

The above formulation can be easily generalized to particles with specified motion (such
as the microvalves) by directly setting uRBM to the specified velocity. In this case, the
integrations (equations 6) in the particle domain are not necessary.
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3 Numerical Approach

The preceding mathematical formulation is implemented in a co-located, structured grid,
three-dimensional flow solver based on a fractional-step scheme developed by Apte et al. [12].
Modifications to the original scheme for freely moving objects were made in order to handle
large density ratios (O(1000)) representative of water-to-air bubbles. Accordingly, in the
present work the fluid-particle system is solved by a three-level fractional step scheme. First
the momentum equations (without the pressure and the rigidity constraint terms) are solved.
The incompressibility constraint is then imposed by solving a variable-coefficient Poisson
equation for pressure. Finally, the rigid body motion is then enforced by constraining the
flow inside the immersed object to translational and rotational motion. The main steps of
the numerical approach are given below.

3.1 Immersed Object Representation

In the numerical implementation, we create small material volumes of cubic shape that
completely occupy the immersed object (see Figure 2). Each material volume is assigned
the properties of the immersed object (e.g. density etc.). The shape of the object can
be reconstructed from these material volumes by computing an indicator or color function
(with value of unity inside the object and zero outside) on a fixed background mesh used for
flow solution. In this work, the material volumes are forced to undergo rigid motion, based
on the translational and rotational velocities of the object, resulting in no relative motion
among them. At each time-step the material volumes are advanced to new locations. In the

Figure 2: Schematic of material volumes for a circular object.

present approach, the boundary of the object is represented in a stair-stepped fashion and it
is straightforward to create the material volumes using a bounding-box algorithm [14, 12]:

1. Determine the bounding box for the particle based on its surface representation.

2. Generate cubic grid within the bounding box.

3. Use distance searches to determine if the centroid of the control volume lies within the
bounding surface of the particle.

4. Eliminate points outside the particle domain.
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The total mass of the material volumes generated will be exactly equal to the mass of the
particle if the surface of the particle aligns with the grid. The stair-stepped surface repre-
sentation, however, results in an error in the total mass of the material volumes compared to
the original shape. This error reduces with an increase in the total number of material vol-
umes per object. A more complex grid generation process based on Delaunay triangulation
can be used to accurately represent the surface of the object by using standard body-fitted
grid generation tools. In the present work; however, we use sufficient number of material
volumes to represent the object boundary and follow the stair-stepped approach owing to
its simplicity.

3.2 Discretized Equations and Numerical Algorithm

Figure 3 shows the schematic of variable storage in time and space. All variables are stored
at the control volume (cv) center with the exception of the face-normal velocity uN, located
at the face centers. The face-normal velocity is used to enforce continuity equation. Capital
letters are used to denote particle fields. The time-staggering is done so that the variables are
located most conveniently for the time-advancement scheme. We follow the collocated spatial
arrangement for velocity and pressure field [15], [16]. Accordingly, the particle positions (Xi),
density (ρ), volume fraction (Θ), viscosity (µ), and the pressure (p) are located at time level
tn−1/2 and tn+1/2 whereas the velocity fields (ui, uN, and Ui) and the rigid body constraint
force fi,R , are located at time level tn and tn+1. This makes the discretization symmetric in
time, a feature important to obtain good conservation properties.

The semi-discretization of the governing equations in each time-step is given below.
Step 1: Starting with a solution at tn and tn−1/2, the centroids of material volumes

(Xi,M) representing immersed objects are first advanced explicitly.

X
n+1/2
i,M = X

n−1/2
i,P +Rij

(
X
n−1/2
j,M −Xn−1/2

j,P

)
+ Un

i,M∆t, (8)

where Xi,M is the position vector of the material volume center, Xi,P is the position vector
of the immersed object centroid, Ui,M is the translation velocity, Ωi,M is the angular velocity,
and ∆t is the time-step. Here Rij is the rotation matrix evaluated using particle locations at
tn−1/2. The details of the particle update and the rotation matrix are given in Appendix 9.

Step 2: Knowing the new positions of the material volumes and particle centroid, an
indicator function (color function) Θn+1/2 is evaluated at the cv-center of the fixed back-
ground grid. We use a discrete delta-function [17] to compute the color function. The color
function is unity inside the particle region and vanishes outside with smooth variation near
the boundary. This thus allows identification of the particle on the background mesh. De-
tails of the interpolation between the material volume centers and the cv center are given in
Appendix 9. The density and the viscosity are then calculated over the entire domain as:

ρn+1/2
cv = ρPΘn+1/2

cv + ρF
(
1−Θn+1/2

cv

)
(9)

µn+1/2
cv = µPΘn+1/2

cv + µF
(
1−Θn+1/2

cv

)
(10)

where ρP is the density of the immersed particle and ρF is the density of the surrounding
fluid. Likewise µP is dynamic viscosity of the fictitious fluid inside the particle region, and
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Figure 3: Schematic of the variable storage in time and space: (a) time-staggering, (b)
three-dimensional variable storage, (c) cv and face notation, (d) index notation for a given
k-index in the z direction. The velocity fields (ui, uN) are staggered in time with respect to
the volume fraction (Θ), density (ρ), and particle position (Xi), the pressure field (p), and
the rigid body force (fi,R). All variables are collocated in space at the centroid of a control
volume except the face-normal velocity uN which is stored at the centroid of the faces of the
control volume.
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µF is the dynamic viscosity of the surrounding fluid. For particles with specified motion
(microvalves) µP is assumed equal to the fluid viscosity (µF ). For bubbles, appropriate
viscosity of the air bubble is specified.

Step 3: Advance the momentum equations using the fractional step method [18]. First,
obtain a predicted velocity field over the entire domain. We advance the velocity field
from tn to tn+1. The predicted velocity fields may not satisfy the continuity or the rigidity
constraints. These are enforced later.

u∗i,cv − uni,cv

∆t
+

1
Vcv

∑
faces of cv

u
∗n+1/2
i,face unNAface =

1

ρ
n+1/2
cv

(
1
Vcv

∑
faces of cv

τ
∗n+1/2
ij,face Nj,faceAface

)
+ gi (11)

where gi is the gravitational acceleration, Vcv is the volume of the cv, Aface is the area of the
face of a control volume, Nj,face is the face-normal vector and

u
∗n+1/2
i,face =

1

2

(
uni,face + u∗i,face

)
;

τ
∗n+1/2
ij,face = µn+1/2

cv

[
1

2

(
∂uni
∂xj

+
∂u∗i
∂xj

)
+

(
∂unj
∂xi

)]
face

In the above expressions, the velocities at the ‘face’ are obtained by using arithmetic averages
of the neighboring cvs attached to the face. For the viscous terms, the velocity gradients in
the direction of the momentum component are obtained implicitly using Crank-Nicholson
scheme. A centered discretization scheme is used for spatial gradients. Evaluation of the
pressure gradients at the cv centers is explained below.

Step 4: Solve the variable coefficient Poisson equation for pressure:

1

∆t

∑
faces of cv

u∗NAface =
∑

faces of cv

1

ρ
n+1/2
face

Aface
δp

δN

n+1/2

, (12)

where ρface is obtained using arithmetic averages of density in the neighboring cvs. The
face-normal velocity u∗N and the face-normal pressure gradient are obtained as:

u∗N =
1

2
(u∗i,nbr + u∗i,cv)Ni,face

δp

δN

n+1/2

=
p
n+1/2
nbr − pn+1/2

cv

|scv,nbr|

where nbr represents neighboring cv associated with the face of the cv, and |scv,nbr| is the
distance between the two cvs. The variable-coefficient pressure equation is solved using a
Bi-Conjugate gradient algorithm [19].

Step 5: Reconstruct the pressure gradient at the cv centers using density and face-area
weighting first proposed by Ham & Young [20]

1

ρ
n+1/2
cv

δp

δxi

n+1/2

=

∑
faces of cv

1

ρ
n+1/2
face

δp
δN

n+1/2 ·~i|Ni,faceAface|∑
faces of cv |Ni,faceAface|

(13)
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Step 6: Update the cv-center and face-normal velocities to satisfy the incompressibility
constraint:

ûi,cv = u∗i,cv −∆t
δp

n+1/2
cv

δxi
(14)

ûN = u∗N −∆t
δpn+1/2

δN
(15)

The face-normal velocity field ûN will satisfy the incompressibility constraint, however, the
cv-based velocity may not satisfy the rigid-body constraint inside the particle region. Note
that in the absence of any rigid body, ρ = ρF throughout the domain, and the algorithm
reduces to the standard fractional step scheme for single-phase, incompressible flow. The
above velocity field will then be denoted as un+1

i,cv . In the presence of rigid bodies, the following
steps are performed to enforce the rigidity constraint within the particle domain.

Step 7: First interpolate the velocity field ûi,cv from the grid cvs to the material volume

centroids to obtain Ûi,M using the kernel interpolation outlined in the Appendix 9. Solve for
the translational and rotational velocity fields

MPUT
P =

N∑
M=1

VMρMUM (16)

IPΩP =
N∑

M=1

ρMVM(r×UM), (17)

where subscripts P and M denote the particle and the material volume centroids respectively,
VM is the volume and ρM the density of each material volume, MP =

∑N
M=1 ρMVM is the

total mass of the particle, IP is the moment of inertia of the particle about the coordinate
axes fixed to the particle centroid, and r is the position vector of a point within the particle
region with respect to the particle centroid.. The moment of inertia is given as

IP =
N∑

M=1

ρMVM [(r · r)I− r⊗ r] , (18)

where I represents the identity matrix. The rigid body motion is then obtained as:

URBM
M = UT

M + ΩP × (XM −XP ). (19)

Step 8: Compute the rigid-body constraint force and correct the velocity field to satisfy
this constraint within the particle region.

Fn+1
i,M = −

(Ui,M − URBM,n+1
i,M )

∆t
. (20)

The force on the grid control volumes (fi,cv) is obtained from Fi,M by using the interpolation
scheme discussed in Appendix 9. The velocity field inside the particle region is then modified
as:

un+1
i,cv = ûi,cv + ∆tfn+1

i,cv . (21)

Martin et al. 10



4 Controller Design

Model-based control design requires a reduced order model of the flow dynamics that relates
individual channel valve openings with the exit flow velocities for each channel. While
direct numerical simulations of the flow field produce the most accurate relationship between
these quantities, the computationally intensive nature of these simulations precludes their
use in any real-time physical realization. However, many real-time control methodologies
have been developed to control linear, multiple-input, multiple-output (MIMO) systems.
The development of a reduced order, linear MIMO model is therefore motivated both by
the ability of linear models to adequately represent nonlinear flow dynamics in certain flow
regimes as well as the relative success of linear control methodologies in controlling nonlinear
systems.

4.1 System Identification

As a result, standard system identification techniques [21] are employed to produce a linear
model of the flow dynamics which relates channel valve openings (inputs) to channel exit
flow velocities (outputs). Specifically, an auto-regressive exogenous (ARX) model [22] of the
flow dynamics is developed from direct numerical simulations of the flow regime, in which
channel valve openings are varied in a prescribed fashion and the resulting output flow
velocities are recorded. While a linear, MIMO ARX model is developed, the relationship
between inputs and outputs in the ARX formulation is most easily illustrated for the single-
input, single-output case. In this instance a linear difference equation relates the input and
output

y(t) = −a1y(t− 1)− a2y(t− 2)− ...− anay(t− na) +

b1u(t− nk) + b2u(t− nk − 1) + ...+ bnb
u(t− nk − nb + 1) (22)

where y(t) is the output, u(t) is the input, nk is the time delay, na is the number of poles,
nb is the number of zeros plus one, and ai and bj are constants to be determined via the
identification process. The equation for the current output is therefore a function of both
values of the output and the input at previous sampling instants. The choice of how many
previous input and output values to retain is driven by the model validation procedure, in
which the output prediction of the model is compared to the results obtained from direct
numerical simulations of the flow for data not utilized in the identification process. In the
multi-variable case, the coefficients ai and bi become no×no and no×ni matrices, respectively,
where no and ni represent the number of model outputs and inputs.

System identification is conducted following the procedure presented in [22]. Uncontrolled
simulations are utilized to determine the system settling time, which informs the choice of
both the sampling interval and the duration of the identification tests. Identification tests
are subsequently conducted via numerical simulations of the flow field, in which channel
valve angles are randomly varied to excite all modes of the flow dynamics. Flow velocities
at the exit of each channel are recorded and this output data, in conjunction with the
recorded variation of the input valve orientations, is processed within the Matlab system
identification toolbox to produce multiple linear ARX models of varying order. Models
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are validated against numerical simulation data not used in the identification procedure.
Channel exit flow velocities are generated by each model from the prescribed variation of
the input valves used to produce the validation data set. These velocities are compared to
those obtained by direct numerical simulation of the flow field. Model selection is governed
by output accuracy, as balanced with model simplicity. The selected linear, MIMO system
model is subsequently employed as a substitute for the actual flow dynamics in the model
predictive controller design.

4.2 Model Predictive Control

A model predictive control (MPC) methodology [23] is employed to equalize flow velocities
in a parallel microchannel configuration in the presence of bubble disturbances. Benefits of
model predictive control include: real-time optimization of control outputs, direct incorpora-
tion of constraints on both manipulated and controlled variables, successful system operation
closer to constraints, and robustness to model uncertainty and external disturbances. An
overview of the functionality of a model predictive controller is illustrated in Figure 4 and
summarized below.

Figure 4: Model predictive control scheme: (a) inputs and outputs and their relation to the
control and prediction horizons (b) control system diagram including the model predictive
controller.

For the parallel microchannel configuration studied, the model predictive controller pre-
scribes the valve openings for each channel (control inputs) from knowledge of the desired
flow velocity at the exit of each channel (system setpoints) and the actual flow velocities
(measured outputs). To determine the valve openings that will result in the measured flow
velocities reaching the desired values in the future, the model predictive controller utilizes
the linear system model produced by the system identification procedure. Predictions of the
exit flow velocities are generated using the model for a user-specified duration into the future
(prediction horizon) from a sequence of channel valve openings over a user-specified control
horizon. Optimal values for the valve openings are determined, via solution of a quadratic
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programming problem, over the control horizon such that a cost function involving the devi-
ation from the desired setpoints is minimized over the prediction horizon. Once the optimal
sequence of valve openings is determined, only the first set of openings are provided to
the flow solver (plant). At the next sampling instant, the resulting exit flow velocities are
measured and sent to the model predictive control scheme. Utilizing this new information
regarding the actual flow velocities achieved as a result of the valve openings, as opposed to
those predicted by the linear model, the process repeats.

Realization of the model predictive control design is achieved by through the Matlab
model predictive control toolbox. The system model, control horizon, prediction horizon,
cost function structure and associated weighting matrices, setpoint values and the measured
outputs are input into the MPC toolbox. The quadratic programming problem is solved
within the toolbox to produce the channel valve openings utilized by the flow solver. The
resulting strategy is computationally lightweight, enabling future physical implementation
with small microcontrollers.

5 CFD-Controller Interface

To perform the coupled CFD-controller simulations, we have developed a simple commu-
nication interface between the Matlab-based control algorithms and Fortran-based CFD
solver. The controller algorithms are run on a single processor; whereas, the direct numer-
ical simulations are performed on multiple processors. Figure 5 shows the schematic of the
communication interface between the two packages.

Figure 5: Schematic of CFD-controller interface.

An external communication interface, developed in Fortran, is created to manage execu-
tion of both the CFD simulation and the Matlab-based model predictive controller. Direct
numerical simulations are executed as directed by the communication interface, and at each
sampling instant, produce an ASCII text file containing the outlet flow velocities of each
channel. This file is read by the Matlab-based control program, and system states are em-
ployed by the model predictive control algorithm to produce a new set of valve openings,
written to an external file. Once written, the file of valve openings is read by the CFD solver,
and the process repeats. Valve openings are not instantaneously changed in the direct nu-
merical simulations; rather, a maximum rate of change is prescribed and the valves move
from their prior position to the prescribed openings at this rate.
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The direct numerical simulations mainly govern the total simulation time mainly due to
the details of the flow captured. The Matlab-based controller takes negligible amount of
time compared to CFD. This framework is efficient and is applicable to several other physics
problems requiring coupling of CFD and model-predictive control.

6 Validation cases

The numerical formulation together with the control algorithm are first used to perform
basic validation and verification studies. The numerical test cases were chosen to validate
the basic incompressible flow algorithm applied to high-aspect ratio channel flows, flow
developed by objects undergoing specified motion to test the capability of the solver to handle
moving microvalves, motion of freely moving particles and bubbles, and finally testing of the
coupled CFD-control algorithm. Accordingly, the following tests are performed: (i) single
phase incompressible flow in a high-aspect ratio microchannel at different Reynolds numbers
corresponding to the experimental data of Qu et al. [24], (ii) flow over a fixed cylinder at
different Reynolds number, (iii) flow developed by an oscillating sphere corresponding to
experiments by [25], (iv) rising of a small bubble in an inclined channel corresponding to
experiments by [26], and (v) equalizing mass-flow rates in parallel microchannels using model-
predictive control. After these extensive validation studies, the coupled solver is applied to
mitigate flow maldistribution in parallel microchannels.

6.1 Microchannel channel case

Simple flow in a 3D channel, as studied by Qu et al. [24], serves as the initial test case.
Validation of the flow solver for this test case is a critical step towards our simulation goal,
since the parallel microchannel geometry of interest involves flow through microchannels
with a high aspect ratio (see Fig. 6).

Table 1: Dimensions (in [mm]) for the single-microchannel [24].

Wch Wp Hch Lp1 Lpch Lp2

0.222 6.35 0.694 6.35 120 12.7

Channel dimensions are given in Table 1. As seen from the schematic, the ratio of plenum
to microchannel height is very large. The computational grid consists of around 1.5 M grid
points with roughly 30 cells inside the microchannel in the vertical direction. The grid
cells are refined near the walls and near the entrance region to resolve the flow accurately.
Fluid flow through the channel is simulated for different Reynolds numbers (Re = 196 and
Re = 1895), and the resulting velocity profiles and pressure drops are compared with the
experimental and numerical results presented in [24]. In these simulations, two large plenums
are used at the inlet and outlet of the domain to ensure that the boundary conditions do
not perturb the solution inside the channel. A fully developed velocity profile for a three-
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Figure 6: Schematic and grid for the single channel geometry. The grid used consists of
around 1.5M grid elements. tOnly a small section of the grid is shown.
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dimensional rectangular channel [24] is applied at the inlet of the domain and data is only
collected after the flow in the channel reaches steady state.
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Figure 7: Velocity profiles in the center plane of the channel taken at x′ = 1cm and x′ = 10cm
from the entrance of the channel. • shows the experimental data, − − − the numerical
simulation from [24] and — the present study. The velocity is expressed in [m/s] and the y
location in [µm].
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Figure 8: Velocity distribution along the central line of the channel. Re = 196: N exper-
imental data from [24], — present simulation; Re = 1895: H experimental data, − − −
present simulation. Velocity is expressed in [m/s] and the [x] location in [m].

Figure 7 illustrates the comparison of the simulated velocity profile over the cross-section
at different locations within the channel to the numerical and experimental data of [24]. The
simulations produce a parabolic profile and good agreement with the both the numerical and
experimental results. For larger Reynolds numbers, the numerical velocity at the center of the
channel is slightly larger than the experimental data; however, agrees with the simulations
conducted by Qu et al. [24]. These deviations are within the uncertainties in maintaining
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constant flow rates as well as velocity measurements. As illustrated in Figure 8, the velocity
along the center line of the channel, for the length of the channel, shows very good agreement
with the experimental data.

Table 2: Comparison between computed and theoretical pressure drops at different Reynolds
numbers.

Pressure Drop [bar]

Rech DNS (with plenum) DNS (without plenum) Theory (without plenum)
196 0.189 0.195 0.20
1021 1.09 1.06 1.04
1895 1.33 1.87 1.93

Table 2 presents the comparison of numerically obtained pressure drop inside the mi-
crochannel with the theoretical pressure drop in a square microchannel (excluding the
plenums). A good agreement is achieved for low Reynolds number (up to Rech = 1021).
For Rech = 1895 the pressure drop is under-predicted by the simulation. This is attributed
to the effects of sudden changes in aspect ratios near the inlet and outlet plenums. Flow
separations are possible near the entrance, modifying the flow evolution to fully developed
velocity profile and thus affecting the overall pressure drop. To test the accuracy of the solver,
we have also simulated flow through the microchannel duct (without the plenums) with uni-
form inlet on a grid similar to the grid used for the case with plenums. The pressure-drop
values for the same mass-flow rates are shown in Table 2 and agree well with the theoretical
estimates.

6.2 Flow induced by an oscillating cylinder

Simulation of a periodic oscillating cylinder in a fluid at rest has often been used to test the
accuracy of immersed boundary techniques, and serves as our second test case. Numerical
simulation results are validated against those of [27] as well as experimental data available
from [25].

Two non-dimensional numbers characterize a periodic oscillating cylinder: the Reynolds
number Re = Umd/ν and the Keulegan-Carpenter number KC = Um/fd, where Um =
0.01m/s is the maximum velocity of the cylinder, f = 0.2Hz the frequency of the oscillations,
d = 0.01m is the diameter of the cylinder and ν the kinematic viscosity. The position of the
cylinder in the x-direction is defined by the equation:

xp(t) = −Ap sinωt (23)

where xp(t) is the location of the centroid of the cylinder in the x-direction and Ap is
the maximum amplitude of the oscillations. Because the oscillation frequency is given by
ω = 2πf , the Keulegan-Carpenter number can be rewritten as KC = 2πAp/d. Simulations
are conducted with Red = 100 and KC = 5, as in [27]. The computational domain is
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Figure 9: Normalized axial velocity (u/Um) at three different phase position. The velocity
is measured at a fixed x location (x = −0.6d) relative to the initial location of the particle
center: � Experimental data from [25]; — present simulation; −−− Numerical results from
[27].

comprised of a square box 100d× 100d× d respectively in the axial, vertical and span-wise
directions. The grid is refined and uniform in the region of motion of the cylinder and
stretched towards the walls. Grid resolution in the cylinder region is refined so that 20
grid-points are always located along the cylinder diameter. Neumann boundary conditions
are applied in the x and y directions. Simulations begin with the both the flow and cylinder
at rest, with the cylinder positioned in the center of the domain. Simulation data regarding
fluid flow is collected after the cylinder has gone through ten cycles.

The normalized velocity in the wake of the cylinder at three different phases of the cycle
is compared to numerical and experimental results in Figure 9. As illustrated, our results
show excellent agreement with both the experimental [25] and numerical simulation data
[27].

Rising spherical bubbles

We test the numerical algorithm for bubbles rising in a stationary fluid. Two test cases are
considered: (i) a single spherical bubble rising in an inclined channel corresponding to the
study of Lumholt et al. [26] at low density ratio (ρf/ρp =), and (ii) a spherical bubble rising
in a straight channel at high density ratio (ρf/ρp = 1000). The first case is important to
show that the present approach correctly captures the hydrodynamics of the rising bubble
and the thin layer between the bubble and the channel wall. The second case tests the
stability of the solver at high density ratios.

6.2.1 Sphere rising in inclined channel

Flow solver performance is also examined for another case of particle motion: a bubble rising
in an inclined channel. In the simulation, the bubble is modeled as a rigid spherical particle
flowing in an inclined channel. The simulation is conducted with a fluid density of ρf =
1115 kg/m3, a bubble density of ρp = 1081 kg/m3, and a fluid viscosity of ν = 3.125mm2/s.
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The Reynolds number ReStokesp based on the Stokes settling velocity W is defined as :

ReStokesp =
2aW

ν
=

4a3

9ν2
|ρp
ρf
− 1|g (24)

where g = 9.82 m/s2 is the gravitational acceleration, and a = 2 mm is the diameter of the
particle. The channel is inclined at an angle of 8.23◦ with the vertical. This is simulated by
adding components of gravitational forces in the horizontal and vertical directions.

The computational domain consists of a rectangular box with dimensions 10 mm in the
x direction, 80 mm in the y direction and 40 mm in the z direction. The grid is Cartesian
and uniform over the domain with 40 × 320 × 160 grid points, respectively in the x, y
and z directions so that ∆ = 0.25 × 10−3 m. The bubble is injected at x = −1.4 mm,
y = −1.0mm and z = 20.0mm. Simulation results for a Reynolds number of ReStokesp = 13.6
are compared with experimental and numerical data from [26]. As illustrated in Figure 10,
the numerical simulation exhibits excellent agreement with both experimental and numerical
results. Buoyancy forces cause the bubble to rise and travel alongside the right wall of the
domain. Ultimately, the particle follows the right wall without touching it, keeping a very
thin lubrication layer between the particle and the wall. This simulation validates that the
numerical approach is capable of simulating freely moving rigid objects.

Rising sphere with high density ratio

We consider a sphere (diameter 6.66 [mm], ρp = 1 [kg/m3] ) rising in a quiescent fluid
(ρf = 1000 [kg/m3], µf = 0.0422 [kg/m.s]) in a vertical channel of size 0.02×0.02×0.09 [m].
Initially the spherical bubble is placed at the center of the channel and a height of 0.01 [m]
from the bottom wall. The bubble starts rising due to buoyancy force (g = 9.8 [m/s2]) and
reaches a terminal velocity. The computation is performed on a uniform grid (80× 80× 360
giving approximately 26 points within the sphere) and the time step is 25 [µs].

Mordant & Pinton [28] performed experiments on freely falling spherical particles in a
large water tank for various density ratios (maximum density ratio considered was ρp/ρf =
14.6). They showed that for small particles falling in a large tank (that is, for small values
of the ratio of particle diameter to tank width Dp/L ∼ 0.005) the temporal evolution of the
particle velocity can be well predicted by the the curve:

U∗ = 1− exp

(
− 3t

τ95

)
, (25)

where U∗ is the velocity of the particle normalized by its terminal velocity, τ95 is the time
it takes for the sphere to reach 95% of its terminal velocity, and t is time. We compare the
temporal evolution of the rising spherical particle to this curve in Figure 11. The present
simulations are performed for a much higher density ratio ρf/ρp = 1000. The domain size in
simulations is small (Dp/L = 0.333) and thus wall effects become important. This test case
confirms the stability of the numerical solver when applied to large-density ratio fluid-particle
systems.

Additional test cases of the present approach for large-density ratio fluid-particle systems
were also performed to show code stability and accuracy [29].
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6.3 Equalizing flow rates in a parallel microchannel geometry

The coupling and coordination between the control system design and the flow solver is
examined via flow equalization in a parallel microchannel geometry. In this test case, a fully-
developed parabolic velocity profile is imposed at the inlet. This inflow condition combined
with the non-symmetric geometry of the parallel microchannels produces different mass flow
rates in each of the channels. Because the mass flow rate is imposed at the inlet, the amount
of fluid entering the geometry is known. As a result, without any bubble in the geometry,
the controller regulates the flow in each channel by varying channel valve openings to achieve
equal mass flow rates in each channel. Simulation details, including the geometry, boundary
conditions, grid, and controller design are detailed in the following section.
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Figure 12: Steady state velocity contours in a parallel microchannel after flow rates in each
channel are made equal. Also shown are the steady-state position of the microvalves. Lengths
are expressed in [mm] and the velocity contours are in [m/s].

Figure 12 shows the velocity contour of the fluid inside a three-channel microchannel once
the steady state has been achieved and the flow equalized by the controller. As illustrated,
mass flow rates are equalized in each channel through partial closure of each valve. The
maximum amount of closure occurs for the center channel valve, due to the increased flow
velocity that occurs as a result of the inlet boundary condition and the asymmetry of the
geometry.

Figure 13a shows the mass flow rate history in each channel, and Figure 13b illustrates
the corresponding history of the controller actions. Initially, different mass flow rates exist in
each channel, with the maximum flow rate occurring in the middle channel. Valve actuation,
as prescribed by the controller, partially closes the valves in each of the channels, reducing
the flow rate in the center channel while increasing it in both the upper and lower channels
until equal flow rates are achieved. The maximum difference between the mass flow rates in
the three channels is 0.12%, and the error in the steady state flow rates to the theoretically
computed value for the inlet flow rate is 0.16%.

7 Flow Simulation Through Parallel Microchannels

In this section the results for a three-channel microchannel are presented. The schematic
of the geometry and the model used for these simulations are presented in Fig. 1. A single
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Figure 13: Time evolution of the flow rates 13a and controller input 13b to the flow solver:
−−− shows the data for the top channel; — middle channel; -.- bottom channel. Mass flow
rate is expressed in [kg/s], time in [ms] and angles in degrees.

bubble is introduced in the top channel and the resultant flow distribution is first examined.
A control algorithm is developed that senses the presence of the bubble and resultant flow
maldistribution, activates microvalves and facilitates effective removal of the bubble. Details
of these coupled CFD-control simulations are discussed here.

7.1 Geometry and model

The parallel microchannel geometry considered consists of three microchannels, and two
plenums for the inlet and outlet (see Fig. 1). The dimensions of the domain are 0.8 mm in
the x direction, 0.4 mm in the y direction and 0.025 mm in the span-wise direction. The
span-wise dimension remains constant for the entire geometry. The inlet plenum is 0.25mm
and 0.4mm in the x and y directions, respectively. The outlet plenum is 0.75mm and 0.4mm
in the x and y directions, respectively. The outlet plenum is longer than the inlet to prevent
the outflow boundary from perturbing the flow inside the channels. Dimensions of all three
channels are equal: 0.8mm in the x direction and 0.1mm in the y direction. The fluid used
in this study is water with fluid properties at room temperature. The density ratio between
the fluid and the rigid vapor bubble was held fixed at 10. Simulations with higher density
ratios (on the order of 100) revealed similar results as presented below.

The grid is cubic and uniform in each direction so that ∆ = 0.005mm, therefore there are
five grid points in the z direction all over the domain. Each channel contains 20 grid-points
in the y direction and 160 grid-points in the x direction. Over the entire domain there are
128, 000 grid-points.

At the inlet boundary of the domain a 2D fully-developed parabolic profile is applied,
the fluid used having the same properties as water. The maximum velocity at the center of
the parabolic profile is defined by 3

2
Up where Up = 0.6m/s so that the global mass flow rate
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entering the computational domain is ṁ = 2.4mg/s.

7.2 System identification and controller development

The system settling time in response to a step change in a valve position was numerically
determined as approximately 0.8ms, which was the time required for the channel flow veloc-
ities to reach 98% of their steady state values. A sampling interval of one twentieth of the
settling time, or .04ms, was chosen for both the identification tests and the control design.
A generalized binary noise (GBN) signal was generated to prescribe the closure of each of
the valves between fully open and 50% closed for the system identification test. The GBN
signal was created with a mean switching time of one third the settling time and a minimum
switching time equal to the sampling rate. The duration of the test was twelve times the
settling time, or 9.6ms.

Input and output data generated by the numerical system identification test was pro-
cessed in the MATLAB system identification toolbox to produce ARX models of varying
complexity. Model validation was performed for each model, with model quality judged by
a ”best fit” criteria

Best F it =

(
1− ‖y − ŷ‖
‖y − ȳ‖

)
× 100 (26)

where y is the measured output, ŷ is the predicted output and ȳ is mean of the measured
output. A model has a perfect Best Fit value of 100% if ŷ is equal to y. A best fit value
of zero represents a fit which is no better than picking a constant value of ȳ for the model
output. A model with three poles, two zeros and one delay produced best fit values of 86.5%,
87.6% and 83.7%, for channels one, two and three, respectively. Models of lower order were
significantly less accurate while higher order models were only marginally more accurate.
The model identified by this process, and subsequently utilized in the controller design, was

Iy(t) = −

−2.09 −0.91 −0.74
−1.70 −3.00 −1.87
3.13 3.21 1.96

y(t− 1)−

 2.15 1.92 1.69
−1.00 −0.72 −0.76
−0.99 −1.04 −0.77

y(t− 2)−

−1.82 −1.85 −1.79
1.99 2.04 1.92
−0.03 −0.05 0.01

y(t− 3) +

 0.05 −0.02 −0.02
−0.02 0.05 −0.02
−0.03 −0.03 0.04

u(t− 1) +

 0.01 −0.03 −0.01
−0.01 0.03 −0.02
−0.01 −0.00 0.02

u(t− 2) +

−0.02 0.02 0.01
0.01 −0.04 0.01
0.01 0.02 −0.02

u(t− 3) (27)

where y(t) = [y1(t) y2(t) y3(t)]T represents the flow velocity in each channel and u(t) =
[u1(t) u2(t) u3(t)]T represents the valve closure for each channel.

Controller design required specification of the control horizon, prediction horizon, as well
as the cost function form and associated weighting parameters. In this study, a quadratic
cost function was constructed in terms of a vector of valve positions, a vector comprised
of the change in the valve positions in one sampling period, and a vector representing the
difference between the exit flow rates and the desired values. Selection of the values in the
weighting matrices of the cost function provided a means to balance the magnitude and rate
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of the valve closures with the attainment of the desired exit flow rates. Initial values for the
control horizon, prediction horizon and weighting matrices were computed via the tuning
strategy detailed in [30]. These parameters were subsequently refined based upon simulation
results of the controlled performance. Final values utilized in the simulation results are
presented in Table 3.

Table 3: Control parameters used for controller design and system ID tests.

Control Parameters
Control Horizon 5 sampling periods 0.2 ms
Prediction Horizon 10 sampling periods 0.4 ms
Valve Position Weighting Matrix Diagonal 3 x 3 matrix, 0.001 on diagonal
Valve Rate Weighting Matrix Diagonal 3 x 3 matrix, 1.0 on diagonal
Output Error Weighting Matrix Diagonal 3 x 3 matrix, 10 on diagonal
Valve Opening Constraint Constrained to remain between 0 and 1
Valve Rate Constraint Constrained to remain within -0.15 and 0.15

7.3 Effect of a single bubble on the flow distribution

First, the effect of a single bubble, present in the top channel of the three-channel geometry,
on the flow distribution is investigated. A 60 µm bubble is introduced in the top channel,
close to the bottom side of the channel wall. The bubble plugs 60% of the channel height.
The bubble is held fixed at this location and its effect on the flow distribution and pressure
drop are presented below. In this work, we do not simulate the physics of bubble nucleation
and bubble growth. Instead, a bubble is introduced initially and held fixed. This represents
a practical situation wherein the surface tension and viscous forces on the bubble are greater
than the hydrodynamic forces, and the bubble remains attached to one side of the channel
wall.

Figures 14a-b show contours of axial flow velocity and pressure inside the parallel mi-
crochannel in the presence of a bubble in the top channel. For this configuration the mi-
crovalves are completely open and controller is not activated, and the flow maldistribution
is clearly visible. Figure 15a shows the history of flow rates in each channel after the bubble
is injected into the top channel, whereas Fig. 15b shows the steady state pressure drop in
each branch of the microchannel in the presence of the bubble, indicating higher pressure
drop in the top channel.

Next, we estimate the range of forces acting on the bubble held fixed in the top channel by
varying the microvalve configurations. We consider two extreme cases: (a) all microvalves
are completely open, and (b) the middle and bottom channel are completely closed by
microvalves. In the first case, majority of the flow goes through the middle and bottom
branches, whereas in the latter case all flow goes through the top channel. Figure 16 shows
the time history of the forces on the bubble in these two extreme configurations. It is found
that when the bottom and middle channels are completely closed, the entire inflow goes
through the top channel, increasing the hydrodynamic forces on the bubble. The range
of the forces applied to the bubble in these extreme configurations vary from 0.013 µN to
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Figure 14: Velocity and pressure contours inside the parallel microchannel with presence of
a stationary bubble in the top channel. The lengths are expressed in [mm], the velocity in
[m/s] and the pressure in [Pa].
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Figure 15: Temporal evolution of mass flow rate (15a) in each channel and steady-state
pressure drops (15b) in each branch: — the top channel; −−− middle channel; -.-.- bottom
channel. The mass flow rates are expressed in [mg/s], time in [ms], length in [mm], and
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0.19 µN . The magnitude of the force, when the bottom and middle channels are closed, is

Figure 16: Temporal evolution of the total force acting on the bubble: − − − all channels
are open, — the middle and bottom channel are completely closed. The forces are expressed
in [µN ] and the time in [ms]. The horizontal dashed line represents the threshold inertial
force necessary to set the bubble in motion.
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larger than the forces necessary to hold the bubble fixed, estimated based on the surface
tension forces, and thus the bubble can be removed by increasing mass flow rate in the top
channel. Without any actuation (i.e. all valves are completely open), the hydrodynamic
force on the bubble is insufficient to overcome the estimated surface tension forces, and thus
the bubble will remain fixed inside the top channel. The goal of the controller then is to
first detect flow maldistribution and then activate microvalves such that the flow rate inside
the top channel is increased sufficiently to remove the bubble. This is achieved by slowly
activating the microvalves in the middle and the bottom channel.

7.4 Coupled CFD-Controller Simulations

The model predictive control algorithm developed above is applied to mitigate flow maldis-
tribution due to presence of bubbles in branches of parallel microchannels shown in Fig. 1 .
Two cases are investigated to show the effectiveness of the controlled simulations: (i) pres-
ence of a single bubble in the top channel, (ii) presence of one bubble in the top and bottom
channels. The history of the controller commands, evolution of the flow rates in each branch,
and the trajectory of the bubble are presented below.

7.4.1 Single bubble simulation

We start with a steady-state solution for the three-channel geometry (see Fig. 1) with valve
configurations set such that flow rates are equalized in branch of the channel. A single bubble
of diameter 60 µm, blocking the upper channel 60% is then introduced in the upper channel.
The controller sensor and actuator are activated to first sense the flow maldistribution and
then provide inputs to the microvalves to regulate the flow rates in each channel such that
the bubble is effectively removed.

As a sensor, we monitor the flow rates at the exit of each branch of the microchannel.
Figure 17 shows the history of the mass flow rates in each branch of the microchannel starting
with initial equal rates. With the presence of the bubble in the top branch, the mass-flow
rate in the top channel decreases whereas those in the bottom and middle channels increase.
This disparity in the flow rates is detected by the sensor, and the controller provides a series
of commands to each microvalve such that equal flow rates are restored in each channel.

Figures 18a-c provide the temporal history of the controller command, the location and
velocities of the bubble. As the sensor senses flow maldistribution, it starts to close the
middle and bottom channels, thus increasing the flow rate in the top channel. This increase
in flow increases the hydrodynamic forces on the bubble and the bubble is set in motion
as soon as the hydrodynamic force exceeds a pre-calculated resistive force (due to surface
tension forces) on the bubble. Once in motion, the bubble quickly acquires the velocity of
the fluid flow as its Stokes number is very small. The bubble is slowly moved out of the top
branch. The controller then starts to close the top channel such that the flow rates in all
channels are equalized.
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Figure 17: History of the flow in each channel with injection of the bubble at t = 0.04ms.—
shows the data for the top channel; −−− middle channel; -.- bottom channel. The time is
expressed in [ms] and the mass flow rate in [mg/s].
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Figure 18: Temporal evolution of the bubble motion and the controller commands: 18a
controller command —– history correlated with angular location −−−− for each microvalve,
18b : axial —- and vertical − − −− velocity of the bubble, and 18c axial —– and vertical
− − −− location of the bubble. Time is expressed in [ms], velocities are in [m/s], bubble
locations in [mm], and angles in degrees.
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7.4.2 Multiple bubble simulation

To test the controller on multiple bubbles, we introduce bubbles in the top and the bottom
channels. The bubbles are placed close to the bottom walls of respective branches. The
bubble in the bottom channel is further downstream as compared to the bubble present in
the top channel. Figure 19 shows the pressure drop distribution inside the microchannel
after the bubbles are introduced and before the controller is activated. It clearly shows large
pressure drops in branches with bubbles and correspondingly the flow rates are also reduced
in those channels.
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Figure 19: Pressure contours in the presence of two bubbles before the controller is activated.
The pressure is expressed in [Pa] and lengths are in [mm].

Once the controller is activated, the sensors sense flow maldistributions; with lower flow
rates in the bottom and the top channels and high flow rate in the middle channel. The
controller starts closing the middle valve while keeping the others fully open. This diverts
the flow in the other two channels. Figure 20a shows temporal history of the controller
command correlated with the angular positions of the microvalves. Large variations in the
microvalve positions are observed initially, during the initial transient after introduction of
the bubbles. A time history of the flow rates in each branch of the channel is shown in
Fig. 20b. With increase in flow rates in the top and bottom channels, the net force on the
bubbles in respective branches also increases. Figure 20c shows the history of the force acting
on the bubbles in the top and bottom channels. For this simulation, the force on the bottom
bubble exceeds the threshold required to obtain an attached bubble, releasing the bubble in
the bottom channel first. As soon as the bubble starts moving, it quickly reaches its terminal
velocity (owing to small Stokes number) and the total force on the bubble reduces. Once
the hydrodynamic forces on the bubble in the top channel overcome the estimated resistive
forces, the bubble starts moving downstream. Finally, the bubbles move out of the channel
branches to the exit plenum and the controller acts on all microvalves in order to equate the
flow rates in each branch of the parallel microchannel.

Figure 20a-c shows the velocity contours at three different stages during this coupled
simulation: (i) before activation of the controller indicating flow maldistribution, (ii) after
the controller is activated, the time at which the bubble in the bottom channel starts moving,
and (iii) the time at which the bubble in the top channel is released. Before the controller
is activated, the flow rate in the middle channel is much larger compared to the other two
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Figure 20: Temporal histories of controller command, mass flow rates and forces on the bub-
bles: 20a history of controller commands — correlated with angular positions of microvalves
−−−,20b mass flow rates measured at the end of each channel, — top channel; −−− middle
channel; -.-.- bottom channel, 20c history of total forces acting on the bubbles, — bubble
initially in the top channel; −−− bubble initially in the bottom channel, Time is expressed
in [ms], angles in degrees, force is expressed in [µN ], and mass flow rates are expressed in
[kg/s].
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Figure 20: Temporal evolution of velocity contours and bubble trajectories in the coupled
CFD-cotroller simulation for two bubbles.The lengths are expressed in [mm], the velocity in
[m/s].

branches. Once the controller is activated, it closes the microvalve for the middle channel and
fully opens the valves in the top and bottom channels. The bubbles are then set in motion
and finally escape into the exit plenum, reducing the flow maldistribution. Figure 20d shows
the trajectory of each bubble inside the parallel configuration.

8 Conclusion

We investigated flow maldistribution occurring in parallel microchannels due to presence
of vapor bubbles in certain branches of the channel. In the present work, the bubbly flow
regime consisting of small bubbles inside the microchannels was simulated at low Reynolds
numbers. Neglecting any deformation of the vapor bubble, the bubbles were treated as rigid
particles of density lower than the surrounding fluid. This assumption is reasonable for low
Weber and Reynolds numbers. A novel fictitious-domain based direct numerical simulation
approach was developed to simulate, from first principles, motion of freely moving rigid ob-
jects with large density ratios between the object and the surrounding fluid. The approach
is also applicable to model flow around rigid microvalves with specified rotational motion.
The numerical approach was thoroughly validated over a range of standard numerical tests
for freely moving and specified motion of particles to show good agreements with available
experimental data. The parallel numerical solver was integrated with a MATLAB-based
model-predictive control algorithm to perform coupled CFD-controller simulations wherein
the flow rates in different branches of the microchannels are controlled by activating mi-
crovalves at the entrance to the channels.

The goal of these coupled simulations was to first detect flow maldistribution in the
presence of bubbles, and then eliminate any disparity in the flow rates through microvalve
actuation. Accordingly, the flow rates in each branch of the microchannel were used as sensor
input. System identification techniques were first employed on numerical simulations of fluid
flow through the parallel microchannel in the absence of any bubbles. These studies produced
a lower dimensional model that captures the essential dynamics of the full nonlinear flow, in
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terms of a relationship between valve angles and the exit flow rate for each channel. A model
predictive controller was then developed by utilizing this reduced order model to identify
flow maldistribution from exit flow velocities and prescribe actuation of channel valves to
effectively redistribute the flow. Coupled simulations were first applied to single-phase flow
in three-channel geometry that equates the flow rates in each branch of the channel. The
approach was then applied to two-phase flow, with artificially introduced bubbles in certain
branches. The model predictive control methodology was shown to adequately reduce flow
maldistribution by quickly varying channel valves to remove bubbles and equalize flow rates
in each channel. The approach developed is general in the sense that it is also applicable
to fouling and clogging of microchannels to presence of rigid particulates. The numerical
model is efficient and simulations involving particle clusters are feasible due to its parallel
implementation.
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9 Appendix

9.1 Interphase Interpolations

Any property defined at the material volumes within the particle can be projected onto the
background grid by using interpolation functions. Use of simple linear interpolations may
give rise to unphysical values within the particle domain (e.g. volume fractions greater than
unity) [14] and may give rise to numerical oscillations in the particle velocity. In order to
overcome this, a smooth approximation of the quantity can be constructed from the material
volumes using interpolation kernels typically used in particle methods [31]:

Φ∆(x) =

∫
Φ(y)ξ∆(x− y)dy (28)

where ∆ denotes grid resolution. The interpolation operator can be discretized using the
material volume centroids as the quadrature points to give

Φ∆(x) =
N∑

M=1

VMΦ(XM)ξ∆(x−XM) (29)

where XM and VM denote the coordinates and volume of the material volumes respectively
and the summation is over all material volumes for a particle. For example, in order to
compute particle volume fraction, Φ(XM) will be unity at all material points. This gives
unity volume fraction within the particle domain and zero outside the particle. In order to
conserve the total volume of the particle as well as the total force/torque exerted by the
particle on the fluid, the interpolation kernel should at least satisfy

N∑
M=1

VMξ
∆(x−XM) = 1 (30)

N∑
M=1

VM(x−XM)ξ∆(x−XM) = 0 (31)

Several kernels with second-order accuracy include Gaussian, quartic splines etc. A kernel
with compact support requiring only the immediate neighbors of a control volume has been
designed and used in immersed boundary methods [17]. For uniform meshes with resolution
∆ it utilizes only three points in one dimension and gives the sharpest representation of the
particle onto the background mesh:

ξ∆(x−XM) =
1

∆3
δ

(
x−XM

∆

)
δ

(
y − YM

∆

)
δ

(
z − ZM

∆

)
, (32)

where

δ(r) =


1
6
(5− 3|r| −

√
−3(1− |r|)2 + 1, 0.5 ≤ |r| ≤ 1.5, r = (x−x0)

∆
1
3
(1 +

√
−3r2 + 1, |r| ≤ 0.5

0, otherwise.

(33)
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The same interpolation kernel can be used to interpolate an Eulerian quantity defined at
the grid centroids to the material volume centroids. The interpolation kernel is second order
accurate for smoothly varying fields [32]. The effect of these interpolations is that the surface
of the particle is smoothed over the scale proportional to the kernel length. Note that in
order to reduce the spreading of the interfacial region, it is necessary to use compact support
as well as finer background grids and material volumes.

9.2 Updating the Particle Position

The rigid body motion (RBM) of a particle can be decomposed into translational (UT ) and
rotational (UR) components. The total velocity field at each point within the particle is
given as

URBM = UT + Ω× r (34)

where UT is the translational velocity, Ω the angular velocity, and r the position vector of
the material volume centroid with respect to the particle centroid. All the material volumes
have the same translational velocity as the particle centroid (UT = UP ).

Given a velocity field and the positions (X0
M) of the material volume centroids and the

particle centroid (XP ) at t = t0, the new positions (Xt
M) at t = t0 + ∆t are obtained by

linear superposition of the rotational and translational components of the velocity. The axis
of rotation passing through the rigid body centroid XP is given as σ̂ = Ω/ |Ω|. The new
coordinates due to rotation around σ̂ are given as

X′ = R(X0
M −XP ) + XP (35)

where the rotation matrix is

R =

 tσ̂xσ̂x + c tσ̂xσ̂y − sσ̂z tσ̂xσ̂z + sσ̂y
tσ̂xσ̂y + sσ̂z tσ̂yσ̂y + c tσ̂yσ̂z − sσ̂x
tσ̂xσ̂z − sσ̂y tσ̂yσ̂z + sσ̂x tσ̂zσ̂z + c

 . (36)

Here c = cos(α), s = sin(α), t = 1− cos(α), and α = |Ω|dt. The material volume centroids
are all uniformly translated to give the final positions,

Xt
M = X′ + UTdt. (37)
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