second revision of the manuscript (v.2.0), Sept.2008 1

Filtered particle tracking in isotropic turbulence
and stochastic modeling of subgrid-scale
dispersion

By Jacek Pozorski { AND Sourabh V. Apte I

A numerical study based on the Eulerian-Lagrangian formulation is performed for
dispersed phase motion in a turbulent flow. The effect of spatial filtering, commonly
employed in large-eddy simulations, and the role of the subgrid scale turbulence on the
statistics of heavy particles, including preferential concentration, are studied through a
priori analysis of DNS of particle-laden forced isotropic turbulence. A stochastic Langevin
model is proposed to reconstruct the residual (or subgrid scale) fluid velocity along par-
ticle trajectories. In simulations where the subgrid scale kinetic energy attains 30-35% of
the total we observe the impact of residual fluid motions on particles of a smaller inertia.
It is shown that neglecting the influence of subgrid scale fluctuations has a significant
effect on the preferential concentration of those particles. The computation results for
a selection of particle inertia parameters are performed to appraise the model through
comparisons of particle turbulent kinetic energy and the statistics of preferential concen-
trations.

1. Introduction

Numerical studies of two-phase flows with dispersed droplets or solid particles con-
stitute an important activity in turbulence research. Both in the two-fluid and the tra-
jectory approach (e.g., Simonin 1996, Minier & Peirano 2001) there remain a variety of
open theoretical and modeling issues. Practical applications of two-phase polydispersed
flows include environmental studies, chemical and process engineering, as well as power
engineering, including wet steam flows and combustion of solid or liquid fossil fuels. A
relevant industrial example is fuel injection in Diesel engine or a gas turbine combustor
where the dispersed phase is present in the form of small droplets (Apte et al. 2003, Moin
& Apte 2006).

Historically, the trajectory approach with random walk ideas dates back to the land-
mark paper of Taylor (1921). Since then, the Lagrangian stochastic approach has been
developed in its natural context for modeling and prediction of turbulent diffusion and
dispersion. In the framework of statistical RANS (Reynolds-averaged Navier-Stokes) de-
scription of turbulence, various random walk models for the diffusion of fluid particles
(Thomson 1986, Sawford 2001) and the dispersion of solid particles in two-phase flows
have been proposed, cf. Stock (1996), Pozorski & Minier (1998) and references therein.
Moreover, a general probability density function (PDF) formalism has been developed
(Reeks 1992, Pozorski & Minier 1999, Minier & Peirano 2001, Mashayek & Pandya 2003,
Peirano et al. 2006). A review and some discussion of these issues is given in Sec. 2.2.

Nowadays, following a rapid progress in large eddy simulation (LES) of turbulence,
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the LES method has been used with success to compute two-phase dispersed flows. In
single-phase LES, the residual or subgrid-scale (SGS) flow scales remain unresolved by
definition and their impact on the resolved motion is usually accounted for through an
appropriate SGS stress model. In dispersed two-phase flows, the feasibility of LES to
study preferential concentration of particles by turbulence (Wang & Squires 1996) and
to compute flows with two-way momentum coupling (Boivin et al. 2000) has been re-
ported. In the Lagrangian-Eulerian studies of dispersed flows (i.e., LES of the continuous
phase coupled with particle tracking) it has been a common practice to neglect the SGS
flow scales. It has been argued that the long-time particle dispersion is governed by
the resolved, larger-scale fluid eddies (Armenio et al. 1999). Only recently, the influence
of the SGS flow turbulence on the statistics of particle motion and their preferential
concentration has received some attention in the literature.

Generally speaking, the main difficulty in extending LES to physically-complex flows,
such as dispersed two-phase flows, comes from the fact that some terms in the filtered LES
evolution equations have to be modeled altogether, because relevant physical processes
occur at unresolved scales. An example are the source terms, due to chemical reactions, in
mass and energy balance equations. Some other are partly resolved convective terms and
source terms due to the presence of particles: mass transport (evaporation/condensation),
momentum coupling, and energy balance (heating, latent heat of evaporation). It remains
an open question to determine in what cases the SGS part of these terms should be
accounted for when considering the behavior of the dispersed phase. In addition, new
models for the subgrid scale effects on the particle motion are necessary to correctly
predict particle dispersion in LES.

In the following, we first recall the issue of particle dispersion in the context of RANS
and LES turbulence modeling (Sec. 2). The main emphasis of the paper is to revisit the
role of the unresolved fluid turbulence in LES of particle-laden flows (also called SGS
particle dispersion). This is done with the help of a priori LES tests using filtered DNS
velocity fields, both without and with a model to account for the SGS turbulence “seen”
by particles. This approach is referred to as the filtered particle tracking (FPT). The first
aim is to study the impact of LES filtering on the particulate phase (Sec. 3). The effect
will be shown to be non-negligible for a sufficiently coarse LES mesh (judged by a residual
kinetic energy content). A quantitative assessment of this effect is accomplished through
particle velocity statistics and the statistics of preferential particle concentration: the
probability distribution of particle number density and the radial distribution function
of the interparticle distance. The second aim of the paper is to develop a model for
the SGS particle dispersion (Sec. 4). The model is meant to reconstruct statistically the
residual flow field along particle trajectories. Computation results are reported (Sec. 5)
for the forced isotropic turbulence case: turbulent kinetic energy of particles, particle
velocity autocorrelation time scale, and measures of preferential concentration.

2. Turbulent dispersion of particles
2.1. Problem statement

In the paper, the dispersed phase will be assumed dilute; consequently, the one-way
momentum coupling is adequate and particle collisions can safely be neglected. Yet,
for a sufficiently high load of the dispersed phase, the two-way coupling needs to be
accounted for in the momentum and energy equations; moreover, for high particle number
densities, the interparticle collisions will affect their dynamics. Additional complexity to
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the physical picture would be added through the interphase mass and energy transfer in
the case of evaporating droplets or volatilizing solid particles. Here, we concentrate on
the dynamical aspects only, and precisely on the impact of turbulence on the statistics
of the dispersed phase.

To determine the evolution of a set of non-interacting solid particles in turbulent flow,
particle location x,, and its velocity U, should be known. Another variable of importance
for further considerations is the fluid velocity U* “seen” or sampled by the particle as
it moves across the flow. In terms of the instantaneous Eulerian velocity field U(x, 1)
of the carrier (fluid) phase, we have U* = U(x,,t). Respective governing equations for
particles are:

% =U,, (2.1)
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In general cases (Maxey & Riley 1983), the particle equation of motion (2.2) also in-
cludes the pressure-gradient, drag, added-mass and Basset forces. Yet, for particles much
heavier than the carrier fluid, p, > ps (ps and p, stand for fluid and particle densities,
respectively), an acceptable approximation is often to retain only the aerodynamic drag
and external force terms (if relevant). The drag coefficient, Cp = Cp(R,), is a function
of the particle Reynolds number, R, = d,|U* — U,|/v; (based on the particle diameter
d,, the relative particle velocity, and the kinematic viscosity of the carrier fluid, v). For
the case of R, < 1000, the drag coefficient is approximated by a well-known correlation
Cp = (24/R,)(1 4 0.15R9:%57). In the limit of small R,, the drag term takes the form
(U* —U,)/7p, written using the particle relaxation time 7, = (p,/ps)d2/18v;.

Obviously, modeling of the fluid velocities sampled by particles is no longer needed
when the carrier phase is fully resolved, possibly with source terms that represent the
exchange of mass, momentum, and energy between the particles and the flow. This is
the DNS with point-particle tracking, Eqgs. (2.1)—(2.2), where U* is simply the instanta-
neous fluid velocity interpolated at the particle location. Since the number of degrees of
freedom in turbulent flows scales as R%/* with the Reynolds number R, this approach is
feasible only for simple flow cases at relatively small R. Nevertheless, the DNS studies are
extremely valuable for model testing, as evidenced in the following sections: preferential
concentration patterns, first observed in experimental studies, are investigated (Sec. 3.3)
and the impact of filtering on particle statistics is assessed (Sec. 3.4). For finite-size par-
ticles (of diameters comparable to the Kolmogorov scale ng or larger), their dynamics,
fluctuating lift and drag forces can be computed from “true DNS” studies (Bagchi &
Balachandar 2003, Burton & Eaton 2003).

2.2. Turbulent dispersion in RANS

Despite the growing importance of DNS, a reduced (or contracted) description involving
far less degrees of freedom is still used for practical, “real-life” flow cases. In particular,
RANS remains a standard engineering approach. One of the difficult modeling aspects of
turbulent dispersion in RANS is accounting for the fluid velocity statistics seen along the
solid particle trajectories. They unavoidably differ from the “pure” Lagrangian statistics
because of the particle inertia (related to the relaxation time 7, of particle momen-
tum) and the effect of external forces (such as gravity). Stochastic models based on the
Langevin equation have been proposed to account for these effects (Pozorski & Minier
1998, Minier et al. 2004). Alternatively, the PDF formalism, initially developed in tur-
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bulence modeling (cf. Pope 2000), and particularly useful in turbulent combustion (Fox
2003), has been extended to turbulent dispersion issues, starting with the kinetic equation
of Reeks (1992) and further developed by Pozorski & Minier (1999). The system of flow
variables consists of x,, U, and U*. In the Lagrangian notation, particles are identified
by their location xg at a tagging time t°, that is xp(to;xg) = xg; so are the velocities
“seen” by particles: U*(t;x)) = U(x,(t;x)),t). Particle location and velocity are gov-
erned by Egs. (2.1) and (2.2), whereas U* evolves according to dU*/dt = A where the
acceleration A of the fluid “seen” should be modeled. This can be done by the stochastic
diffusion processes (the Langevin equation) with a proper account for gravity g and par-
ticle inertia. The kinetic equation of Reeks (1992) governs the transport of the joint PDF
of x, and U, in a general case of nonhomogeneous turbulence. Actually, it is not the
Fokker-Planck equation, since it is not local in time (history term is present); moreover,
the diffusion matrix of the underlying stochastic process is not positive-definite (Minier
& Pozorski 1997). An alternative derivation of the kinetic equation has been proposed
(Pozorski 1998) based on the cumulant expansion technique. It has also been shown (Po-
zorski & Minier 1999) that the modeled joint PDF of x,,, U, and U* is governed by the
Fokker-Planck equation.

In general terms, a physically-sound reconstruction of instantaneous fluid velocity
“seen” by the particles U* has to be performed out of limited information available
(such as the fluid mean velocity (U) and the turbulent energy). A classical approach
goes through the decomposition U* = (U) 4+ u* with the mean fluid velocity at the
particle location, (U)(xp,t), determined from the Eulerian RANS solver for the carrier
phase. (We recall that the simplistic assumption U* = (U) is fundamentally wrong since
it will predict no turbulent dispersion.) Various stochastic models have been proposed to
represent the fluctuating fluid velocity u* sampled by particles. They often are extensions
of fluid diffusion models, developed in environmental and atmospheric studies, but can
suffer from spurious drifts if improperly devised (MacInnes & Bracco 1992). A sound
alternative is provided by a stochastic model for U* (Minier & Peirano 2001, Sec. 7.5.2).

In the context of RANS, there are no instantaneous flow structures resolved; conse-
quently, there is no preferential concentration which, by definition, denotes correlation
of particle locations with certain flow structures (Eaton & Fessler 1994). In RANS of
non-homogeneous turbulence, spatial gradients of particle number density can develop
(even for initially uniform particle distribution) because of the so-called turbophoresis
effect. It consists in the net particle displacement in the direction of decreasing turbu-
lence intensity (for p, > py). Still remaining on the grounds of statistical description, we
note that a model for U* is needed only in one-point closures. For a two-point, two-time
PDF description, the fluid velocity Us at the particle location x5 at ¢, given the particle
location x; at t1, is determined from the velocity U; and the conditional probability
f(Ug;x9,t2|Uy;x1, t1), cf. Zaichik & Alipchenkov (2003).

2.3. Turbulent dispersion in LES

In LES, the resolved (large-scale) part of the instantaneous flow field, U say, can readily
be interpolated to particle locations. The major issue is now to determine whether the
remaining (residual or subgrid-scale) part of the flow velocity field can have a noticeable
influence on the particulate phase. In most studies reported so far, this influence has been
neglected and justified by a low residual energy content. A LES of particle-laden channel
flow was performed by Wang & Squires (1996). Analysis of their data (Fig. 4 there) shows
that the ratio of the SGS kinetic energy k¢s to U? remains small throughout the viscous
sublayer (roughly 10%). Also, Armenio et al. (1999) computed channel flow with the one-
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way momentum coupling. Particles were tracked in a fully-resolved (DNS) velocity field
and in filtered fields with up to 20% of the turbulent kinetic energy unresolved depending
on the filter size; however, there was no filtering in the wall-normal direction. They
performed then a corresponding LES with the same filter width A;. In all cases, the r.m.s.
particle dispersion was found to be only slightly affected by the incomplete resolution.
Indeed, the time scale of particle velocity autocorrelation increases with increasing filter
size, the particle turbulent kinetic energy decreases, and the long-term SGS dispersion
is the product of the two quantities (cf. Shotorban & Mashayek 2005). However, the
relative dispersion (cloud dispersion) will be affected by filtering.

Okong’o & Bellan (2004) performed an a priori analysis of a dispersed two-phase flow
in mixing layers. They distinguished four possibilities for the reconstruction of the fluid
velocities “seen”: an ideal model (velocity U; from DNS data), baseline model (velocity
Ui from LES), random model (velocity reconstructed as Ul + o&; where §; are Gaussian
random numbers) and deterministic model (including the local Laplacian of the resolved
field, cf. also Kuerten & Vreman (2005) for de-filtering in non-homogeneous directions).
Oefelein (cf. Segura et al. 2004) extended the eddy life-time and interaction-time model
known in RANS and successfully applied to the LES of channel flow. Also Sankaran
& Menon (2002) proposed a simple SGS dispersion model, yet its impact on final LES
results has not been reported. Moreover, it is not quite clear whether the successive
residual velocities were generated there as independent random values at every flow time
step or at time intervals prescribed otherwise.

Recently, Kuerten & Vreman (2005), Shotorban & Mashayek (2005), and Kuerten
(2006) studied the application of approximate deconvolution model (ADM) for particle-
laden flows. The ADM is theoretically supported as the inverse of LES filtering. It is
deterministic and results in a kind of structural SGS model, since it aims to reconstruct
(or mimic) the whole SGS flow field. In practice, ADM is able to retrieve only the largest
unresolved scales (of the order of the cut-off length) by multiple implicit filtering. For a
coarse-scale LES, one cannot (by definition) reconstruct all SGS flow (cf. also discussion
in Okong’o & Bellan, 2000). So, for a slightly-filtered DNS (A, = 25, say), ADM is
expected to work (Kuerten & Vreman 2005). Otherwise, ADM is helpful in cases where
particles are most responsive to scales just below the cut-off (Kuerten 2006). Shotorban
& Mashayek (2006) also proposed a stochastic model for SGS particles dispersion and ap-
plied it to decaying isotropic turbulence. There, additional complexity resulted from the
growth of nk in time since relatively less and less energy was filtered out. In the present
authors’ opinion, the problem with that stochastic model was that no crossing-trajectory
effect was accounted for. Hence, the integral time scale of the fluid “seen” by larger-inertia
particles, and consequently, also the r.m.s. particle dispersion were over-estimated. On
the contrary, the results for smaller-inertia particles were in good agreement with the
DNS reference data.

An often overlooked conceptual difficulty related to LES with stochastic SGS disper-
sion modeling, as opposed to particle dispersion in RANS, comes from the fact that the
latter is formulated in terms of statistical averages, whereas the nature of the former
is more complex. Indeed, random-walk (or stochastic particle) models in the context
of RANS are meaningful in terms of the statistics over particles (e.g., time-averaged
for steady flows), such as their kinetic energy, dispersion coefficient, etc. On the other
hand, the large-eddy flow field (obtained with local spatial averaging) can be thought of
as a perfectly deterministic, instantaneous solution. The marginally-resolved flow scales
can be partly retrieved through deterministic structural-type models (such as ADM, cf.
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Kuerten 2006) what makes a consistent approach. Otherwise, the subfilter-scale motions
remain statistical in nature and it is reasonable to conceive stochastic models for them.
However, although these are single-realisation approaches in practical implementation, a
question remains whether instantaneous particle variables are already physically mean-
ingful, or again (as in RANS) should they be somehow averaged first. This is actually
done here by the computation of the particle turbulent energy or by taking two-point
correlations to analyse spatial segregation patterns. Basically, the problem refers to any
stochastic model applied with LES (be it for dispersed flow, combustion, etc.) since, by
definition, stochastic modeling uses the underlying concept of the PDF (or FDF) and
only the ensemble-averaged quantities are of interest. In a strongly unsteady and/or in-
homogeneous turbulence the use of just single realisations to predict the system behavior
may not be appropriate.

3. Preferential concentration of particles in turbulent flows
3.1. Effect of turbulent structures on particles

Instantaneous structures of the turbulent velocity field influence the motion of heavy par-
ticles (droplets), depending on their inertia. A convenient definition of the particle Stokes
number in isotropic turbulence goes through the normalization with the Kolmogorov time
scale: St = 7, /7. Particles of St = O(1) tend to correlate with certain eddy structures
and this leads to the effect of preferential concentration, i.e. accumulation of particles
in flow regions of low vorticity and high rate of strain (streams, convergence zones); cf.
Eaton & Fessler (1994) for review. Studies reported in the literature include DNS of
isotropic turbulence (Squires & Eaton 1991, Wang & Maxey 1993) as well as LES (Wang
& Squires 1996).

The preferential concentration changes the physical picture of particulate flows in a
number of ways: it affects the particle deposition on walls (Uijttewaal & Oliemans 1996);
it leads to an increase of interparticle collision rates and, possibly, coalescence in a dense
two-phase flow regime (Reade & Collins 2000); it influences the particle settling velocity in
an external (gravity) field (Wang & Maxey 1993). For particles that move in the external
force field, their final settling velocity in turbulent fluid can be considerably larger than
that observed in a stagnant fluid, depending on St. This effect has been first noticed in
a laminar cellular flow field (Maxey 1987) and in random turbulence simulations (Wang
& Maxey 1993). Arguably, the same physical mechanisms will lead to the increase of
stopping distance of spray injected in turbulent flow due to the interaction of particles
and vortical structures, specially in a final (low velocity) stage of particle motion.

3.2. Quantifying preferential concentration

Various measures of preferential concentration have been established in the literature,
cf. Hogan & Cuzzi (2001) for a comparative study and sensitivity tests with respect to
the Reynolds number and bin size. Preferential concentration can be quantified by the
PDF of particle number density based on bin counting, cf. Fig. 1(a). The distribution
of particle number n = Np¢ per bin (or per cell), fg(n), will depend on St and on the
bin size. For a random (uncorrelated) distribution of particles in the domain, the PDF
is the discrete Poisson distribution, fp(n), with the parameter A being the mean of the
number density (exactly: the average number of particles per cell, (Np¢))

e~ A

fp(n) = F/\n 5 A= <Npc> . (31)
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A natural measure of the non-uniform particle concentration is the deviation of the
actual (measured) number density from the random one (Wang & Maxey 1993):

D=3 Ifs(n) ~ fr(n)” . (3.2)
n=1
Another measure of preferential concentration is (Fessler et al. 1994)
s—Sp
D=—— 3.3
. (33)

where s is the standard deviation of the actual number of particles per bin, and sp = \'/2
is the standard deviation of the corresponding Poisson distribution; normally, D > 0.

Yet another possibility to quantify the non-uniform particle concentration comes from
the two-point spatial distribution function. For a statistically isotropic and homogeneous
system of particles, Reade & Collins (2000) introduced the radial distribution function
(RDF) of the interparticle distance, g(r), where r = |x2 — x| for particles located at
points x2 and x7, cf. Fig. 1(b). The RDF is derived from the two-particle distribution
function ¢(® (x1,x2) under the assumption of isotropy. Basically, g(r)dr is the number of
particles located in a spherical cell (r, r+dr) around x1, divided by the expected number of
particles if their distribution were uniform, and averaged over first-particle locations x;.
The RDF is close to unity for a uniformly distributed particle system. Moreover, g(r) can
provide a clear estimation of the characteristic length scale of preferential concentration
(if any).

3.3. DNS of particle-laden, forced isotropic turbulence

The DNS of forced isotropic turbulence at Ry ~ 40 has been preformed on a 962 grid
with periodic boundary conditions. A statistically stationary flow field was generated
using a technique proposed by Lundgren (2003). Accordingly, a linear forcing function is
added as a source term in the momentum equations. Starting from an initially random
perturbation, the balance between the forcing function and viscous dissipation develops
a stationary isotropic turbulent flow. The time step of the flow simulation was At*T =
3-1073. The particle tracking has been performed in the DNS velocity field (with the
assumption of one-way momentum coupling) for a selection of St. In all simulations,
we have used 643 = 262 144 particles which is deemed sufficient to keep the statistical
error level reasonably low. The resulting snapshots of particle locations in a slice of the
computational box are shown in Fig. 2. As readily noticed, the preferential concentration
of particles is most visible for 0.2 < St < 2, in agreement with earlier observations of
Squires & Eaton (1991).

The bin counting has been applied to particle locations in 3D with the bin size varying
from the single cell size of the DNS (Api, =Ay) up to 1/6 of the domain size (Api, =
16Af). As evidenced by the profiles of fp in Fig. 3, the random particle pattern (the
Poisson distribution) is noticed for the smallest particles tracked (St=0.01) for all bin
sizes. Also for the largest particles (St = 4) the pattern is basically random, specially
for smaller bin sizes. Intermediate-size particles tend to deviate most from the random
distribution. As noticed from Fig. 3(d), the limit behavior for large (Np¢) (larger bins)
is well reproduced, i.e. the Poisson distribution, Eq. (3.1), tends to the Gaussian PDF,
N\ A2,

For particles in isotropic turbulence, D computed from Eq. (3.2) is shown in Fig. 4(a);
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the profile of D, Eq. (3.3), is shown in Fig. 4(b). Both confirm the visual impression from
Fig. 2 that the maximum of preferential concentration occurs for particles of St = O(1).

To better illustrate how the RDF g(r) works in practice, we started with three simple,
predetermined particle patterns in 3D (Fig. 5): uniform (particles distributed randomly),
regularly ordered at some scale L (resulting in a checkered pattern), and ordered with
some randomization. In the latter, particles were uniformly distributed in alternate boxes
whose sizes were provided by the random numbers taken from the uniform distribution
on intervals (0.5L,1.5L) in each coordinate direction. As quantified by the RDF in Fig.
6(a), the uniform random pattern from Fig. 5(a) does not exhibit any preferential con-
centration when looked at the scale of discretised RDF bins, Ar. The same remains true
for any pattern (even perfectly regular) ordered at a short scale | < Ar. For the regular
checkered pattern (L > Ar) from Fig. 5(b), the non-uniformities are clearly reflected in
the RDF. It deviates from 1 to larger values when the preferential concentration occurs
at a given separation. On the other hand, by definition of the RDF, it can drop to values
smaller than 1 when at a given separation there are less particle pairs than for a uniform
distribution. Moreover, the characteristic length scale of the pattern (~ L) is retrieved
from the plot (solid) in Fig. 6(a). When it comes to less regular particle arrangements
(like the checkered, randomized pattern of Fig. 5¢), the RDF plot becomes flatter. This
is specially evident for the three-dimensional (3D) treatments. On the other hand, the
RDF computed in 2D, when particles are located in a thin slice that represents a cut of
the whole (3D) domain, seems to better visualise the segregation in “randomized” cases.
For the checkered randomized pattern, the difference in the behaviour of the PDF (spe-
cially for larger r) is clearly noticed in Fig. 6(b). Accordingly, we have done some RDF
computations of the heavy particle patterns in turbulent flow also in 2D (out of slices
rather than boxes). The quite spectacular shape of the RDF for the pre-arranged pat-
terns of Fig. 5(b,c) resembles that of the macroscopic density computed out of molecules’
masses and locations (which is a well-known story when one discusses the shift from the
atomic-scale to continuum limit for a liquid, say).

Then, we applied the RDF procedure in 3D to snapshots of particles moving in the DNS
flow field. The plots in Fig. 7(a) show a departure from the uniform (random) distribution
of particle locations in space, most pronounced for 0.2 < St < 2. The characteristic length
scale of the pattern is about 107k, again in line with the findings of Eaton & Fessler
(1994). We note that the interpretation of the RDF plots is fairly subtle since the actual
results depend on the choice of the RDF bin size Ar with respect to the scales (L or nk)
considered.

3.4. A priori tests of preferential concentration: particle tracking in filtered DNS field

To the best of the authors’ knowledge, apart from the present study the effect of LES
filtering on preferential particle concentration has been investigated only in a compre-
hensive paper by Fede & Simonin (2006). In the following, we report interesting findings
from an a prior: test. The instantaneous velocity field computed from DNS is subjected
to spatial filtering to obtain the large-eddy velocity field. The filtering procedure involves
a local volume averaging of the control volume (cv) based velocity field to the grid ver-
tices and reverse averaging from the grid vertices to the cv centroids. The instantaneous
DNS velocity field has been filtered so that kgitered = 0.65kpNs.

Then, the particles have been tracked in a filtered (smoothed) velocity field. To deter-
mine the impact of smoothing on preferential concentration, the statistics of the particle
number density in the physical space have been gathered. The pattern of preferential
concentration is indeed modified by filtering. As noticed from the computed RDF of par-
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ticle locations (Fig. 7b), the impact of the LES filtering is visible for the smaller-inertia
particles (St = 0.7), correlated with the smaller eddy scales, and the resulting RDF in
3D becomes flatter for larger interparticle distance r. In the filtered velocity field, those
particles behave as though their effective Stokes number were larger (the RDF for filtered
St = 0.7 becomes close to that corresponding to DNS of St = 2 particles); yet, short-scale
correlations remain strong. On the other hand, the RDF of St = 2 particles exhibits a
steeper profile (up to r ~ 107k, say) upon filtering, indicating the lack of the small-scale
fluid eddies that in the full DNS velocity field induce a stirring action. Therefore, the the
shorter-range correlations become stronger in an a priori LES. This gives us some hint
as to the construction of a SGS dispersion model. The snapshots of particle locations
moving in the smoothed (LES-like) velocity field are shown in Figs. 8(b) and 9(b).

We have also checked the impact of filtering on the particle kinetic energy k,(St).
Results are shown in Table 1. As can be seen (DNS vs. a priori LES results without the
SGS dispersion model), the turbulent kinetic energy is reduced in a filtered field (more for
the smaller Stokes number studied). Then, we have considered the Lagrangian particle
velocity autocorrelation. As observed in Fig. 10 (DNS vs. “no model LES” plots), because
of the removal of smaller fluid eddies that basically induce a decorrelation of particle
velocities (“random stirring”), the velocity correlation lasts longer. Consequently, the
particle Lagrangian autocorrelation time scale 7}, increases in a priori LES. As known
from the theory of Tchen, the long-time particle dispersion coefficient is the product of
k, and T),; consequently, the two effects partly compensate, so filtering is unlikely to have
a major impact on the particle dispersion.

4. Reconstructing residual fluid velocity field along particle paths
4.1. Reasons behind SGS dispersion modeling

In LES, by definition of the method, a major part of the turbulent kinetic energy should
be resolved (say, 80%, Pope 2000). Yet, this can be estimated only in simple cases where
there is a DNS study at hand. For practically-relevant computations, the resolution often
varies in space. The LES is known to face particular difficulties in wall-bounded flows,
since the complete near-wall resolution becomes costly as the number of grid nodes scales
roughly as R!® (cf. Pope 2000) and wall-modeling (or hybrid RANS/LES approach) is
preferred. Also in this case, the SGS energy content may be considerable.

Regarding the LES of two-phase dispersed flows, several new issues appear. A con-
cern about LES with the two-way coupling (of mass, momentum, energy) relates to the
modeling of carrier phase source terms due to particles. Another concern, of importance
here, is the impact of unresolved (subgrid-scale) flow quantities on particles: their dis-
persion, preferential concentration, deposition on walls. The effect can vary depending
on the particle inertia parameter. In particular, for evaporating spray flow, the droplets
become increasingly smaller and their inertia parameter changes, hence sooner or later
the droplets unavoidably enter the size range where there is an impact from the flow SGS.
In a numerical study of near-wall turbulence, Uijttewaal & Oliemans (1996) pointed out
to the significant deviation of their LES results on particle deposition on the wall with
respect to reference data. The LES predicted the particle deposition coefficient to be one
order of magnitude smaller than the value found in experiment and DNS. A probable
reason was the insufficient resolution of near-wall eddies responsible for deposition of
smaller particles, and a need of a model to account for subgrid scale effects on particles
was suggested.
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4.2.  Requirements for a SGS particle dispersion model

To specify criteria of a good SGS dispersion model, let us start from the well-established
case of single-phase LES. Arguably, a sound model for the SGS stress should simulate the
effects of small eddies without altering the motion at large-eddy scales. For particle-laden
turbulent flows, but still with the one-way coupling of mass, momentum, and energy (i.e.,
no evaporation/condensation, light loading, no heat transfer), a pre-requisite for a good
SGS dispersion model, suitable for FPT, is that particle characteristics should remain
close to those from a fully-resolved computation. They include the statistics of instanta-
neous particle locations (preferential concentration, if any), averaged locations (e.g., the
r.m.s. particle position in line-source dispersion, the concentration profile in jet or mixing
layer), and velocities (turbulent kinetic energy, Lagrangian velocity autocorrelation).

The constraints to be satisfied by a SGS dispersion model are: (i) in the limit of
fully-resolved computation (LES then becomes DNS, kg, — 0), the model should have
no effect on particle motion; (ii) in the limit of small particles (7,/7; — 0 where 77 is
a characteristic fluid time scale) the model should boil down to the prediction of fluid
diffusion; the velocity filtered density function (FDF) approach of Gicquel et al. (2002)
may possibly serve as the limit case to compare with; (iii) in the limit of large particles
(1p/Tf — 00) the model should have no short-time effect on particle motion; (iv) in the
presence of external force field (gravity), the model should possibly take it into account;
(v) in the limit of under-resolved velocity field (LES then becomes RANS, k¢ — k),
the particle turbulent dispersion should be fully modeled; (vi) for pairs of neighboring
particles (located within the same cell or closer to each other than O(Ay)), the model
should possibly account for relative dispersion effects.

We perceive the constraints (i)—(iii) as really important for SGS dispersion models in
the context of LES. The effects of external fields (iv) are, apparently, not well known;
the limit of RANS (v) is unlikely to be approached in real-life LES computations; finally,
the relative dispersion (vi) cannot be accounted for in the one-point approach that is of
interest here because of computational efficiency.

An essential ingredient of the SGS dispersion model is the residual kinetic energy kqg. It
determines the level of residual velocity fluctuations, also those “seen” by particles. In a
particular test case considered here (forced isotropic turbulence), ksg can readily be found
from the DNS data (raw and filtered). In general case, the subgrid kinetic energy of the
flow can be estimated from its transport equation. Wang & Squires (1996) and Sankaran
& Menon (2002) recall the kg equation based on the Schumann non-equilibrium model.

Alternatively, approximate expressions for the subgrid eddy viscosity 4+ can be explored
and compared. Assuming that the cut-off wavenumber k. = 1/Ay lies in the inertial
range, the spectral analysis (cf. Lesieur, 1997) predicts v, = 0.267+/E(k.)/k. . Together
with the assumption of the Pao energy spectrum, this yields v, = 0.067A f\/E where
the proportionality constant has been given by Sankaran & Menon (2002); hence ksy =
(v¢/0.067A f)2 . Now, the eddy viscosity can be substituted from the SGS model used in
actual LES computation.

4.3. SGS dispersion model for locally homogeneous and isotropic turbulence

A reasonable assumption about LES is to consider the residual turbulent motion as locally
homogeneous and isotropic. Then, the fluid velocity “seen” by particles is computed as

U = U;(xp,t)+u;, ie. the sum of the filtered LES velocity U; interpolated at the particle

K2
location and the residual velocity “seen” by the particle. The assumption of the residual

field being uncorrelated with the resolved one is implied here. It is quite strong for the
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LES (yet correct in the RANS context) and can be partly justified by the fact that the
model for u}, proposed below, is meant to reconstruct some statistical quantities only
(the energy and the time scale of the SGS fluid "seen”). An attempt to use the correlation
of unresolved scales (just below the filter level) with the resolved ones (just above that
level) is made in the approximate deconvolution models.

Crucial ingredients of a model to be put forward below refer to the residual fluid motion
“seen” by the particle. They are the subgrid velocity scale of the fluid “seen”, o,, and a
subgrid time scale of the fluid “seen”, 77. We assume in the following that the velocity
scale of the fluid “seen” is equal to the characteristic SGS fluid velocity, o3, = 0gg, where:

0w = || kg (4.1)
3
yet, some error can occur due to preferential particle concentration. The timescale 7} is
generally a function of the SGS fluid time scale 7.z, the time scale related to external
fields, and possibly also of the particle relaxation time: 7} = f(7sg, 0sg/ 9, Tp)-

Langevin stochastic equation has been used in turbulent diffusion models on the one
hand, and adopted in the Lagrangian PDF approach to turbulent flows in seminal de-
velopments by Pope and coworkers (cf. Pope 2000) on the other hand. From these two
areas of application, the Langevin-type equations migrated to the modeling of two-phase
dispersed flows. By analogy to modeling particle dispersion in isotropic turbulence in the
context of statistical (RANS) description (Pozorski & Minier 1999), we assume that the
SGS velocity "seen” u* is governed by the Langevin equation

u’f‘ 2Us2g
duj = ——dt + —= dW; (4.2)
L L

where dW; is an increment of the Wiener process (Gardiner 1990). We note that in LES
(and in non-homogeneous RANS) the equation for the SGS (or turbulent) fluid velocity
contains two more RHS terms: the gradient of the SGS (or turbulent) stress, (97;;/0x;)dt,
and the filtered (or mean) velocity gradient term, —u}*(@l}i/axj)dt; cf. Pope (2000) and
Minier & Peirano (2001, Sec. 6.7.2) for RANS and Fede et al. (2006) for LES. Such a
Langevin-type equation (with the two ”turbophoretic” terms present) for residual fluid
motion should always be used in more complex turbulent flows simulated with LES
(spurious drifts will appear otherwise). We argue that in isotropic turbulence, there is no
significant ”turbophoretic” effect due to filtered velocity gradients (which are smooth)
inducing any mean drift, and the gradients of the SGS stress tensor are correlated over a
short length scale (~Ay) only. This provides us with a partial justification of the neglect
of these terms in a homogeneous isotropic turbulence considered in the paper.

In Eq. (4.2), the time scales of residual motions “seen” by the particle are related to
Tsg (the time scale of residual fluid motions), estimated from:

Teg = C—A'f . (4.3)

s

The model constant C' = O(1) accounts for the uncertainty concerning the time scale of
the residual velocity autocorrelation. The prediction 7} = 7, is expected to work well for
small St (also in the limit case of fluid diffusion). For larger St, we tentatively propose an
extension of the model for RANS particle dispersion (Pozorski & Minier 1999) drawing
on the Csanady expressions to account for the crossing-trajectory effect. The time scale
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will now differ in the directions parallel and perpendicular to the relative velocity U — U,

% Tsg % Tsg
T E—_—, T = ——
LI iepe’ b iy ape

where £ is the normalized drift velocity determined from ¢ = |U — U, /0. Note that
the relative velocity in RANS is computed from the mean values as [(U) — (Up)|; yet,
in LES the filtered particle velocity is not available (by definition, spatial smoothing can
only be applied to field variables). Therefore, we decided to keep U, in the expression. In
the context of RANS, 8 in Eqs. (4.4) represents the ratio of Lagrangian to Eulerian time
scales 8 = T, /Tg; here, we assume (3 = 1 for SGS velocity field. Also note that, unlike
stochastic models proposed by Shotorban & Mashayek (2006) and Fede et al. (2006),
the statistics of the SGS fluid “seen” used to close the Langevin equation are different
from those of the SGS fluid motion. To sum up: the present choice of choice of 77 means
that the SGS fluid velocity "seen” is autocorrelated over the time scale of the residual
motion, being of the order of Ay/ug, for the smallest particles (that behave like fluid
ones) or correspondingly shorter for particles of larger inertia, taking into account the
crossing-trajectory effect, Eq. (4.4).

In practical implementation, a discrete version of the model (unconditionally stable,
first-order accuracy in time) becomes

(4.4)

u;‘(n-i'l) _ au:(") 4 b& (45)

where At = t("+1)—¢(") ig the time interval and &; are random numbers from the standard
Gaussian distribution, & € N(0, 1). The values of a and b are given by the explicit solution
of the stochastic differential equation (SDE), Eq. (4.2), with frozen coefficients over a

time step At:
a=e AL b=o0suV1—e 28T (4.6)

In the particular example of Eq. (4.2), which is a SDE with constant coefficients, the
solution provided by Egs. (4.5) and (4.6) is exact. Higher-order numerical schemes for
this class of SDEs have recently been proposed (Peirano et al. 2006). However, the con-
struction of higher-order schemes for general (variable coefficients) SDEs (Kloeden &
Platen 1992) remains an open issue.

Equation (4.5) can be further simplified to the Euler scheme

“(n At wn 2At
7L V' 7L

Yet, in contrast to formulation (4.5)—(4.6), discretization (4.7) does impose a time step
restriction At < 77 because of stability concerns.

It may be interesting to note that in the limit of At > 7} the scheme (4.5) boils down
to generating a series of independent successive velocities u*, i.e.

wr D) — o€ . (4.8)

However, for a physically-consistent use of Eq. (4.8), it is imperative that the time inter-
vals for generating a series of independent velocity realizations be 277 in order to preserve
the correlation time scale (cf. Pozorski & Minier 1998). These time intervals should not
be related to the time step of fluid simulations, although this aspect is sometimes over-
looked in papers applying random-walk type models for SGS particle dispersion in LES.
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[NB: In our case, this behavior is implied by the choice of the model constant C' = 0 in
a discrete setting, cf. Egs. (4.3) and (4.6).]

5. Results of the SGS dispersion model
5.1. Particle velocity statistics

We start here with the particle statistics that are classical mean quantities (widely-used
also in RANS); in the next section, we will discuss statistics of particle locations, and
specially their segregation in space, which are two-point statistics (more subtle, say),
specific to LES rather than RANS. We note that the segregation, although formally
quantified through two-point correlations (the statistics of interparticle distance), results
from the (one-point) correlations of fluid and particle velocities.

We have computed the particle turbulent kinetic energy from FPT with the SGS
dispersion model (4.2) in a priori LES computations of forced isotropic turbulence for
the same conditions as those described in Sec. 3.3. Because the maximum of preferential
concentration in DNS is achieved around St = 1, for further studies we have chosen a
slightly smaller (St = 0.7) and slightly larger value (St = 2) of particle inertia, since
we suppose that the impact of filtering and a subsequent effect of the SGS dispersion
model will be qualitatively different for particle inertia located on the opposite sides of
the maximum.

Results are shown in Table 1. As readily noticed, the particle kinetic energy increases
with increasing model constant C'. The DNS energy level can be restored in the simula-
tions for a suitable choice of the model constant; for the Stokes numbers studied, C' =1
works quite well as far as the turbulent energy of particles is concerned.

The particle velocity autocorrelations are plotted in Fig. 10. As discussed before, the
filtering (“no model” LES results) tends to increase the correlation for intermediate
time intervals. The effect of the Langevin-type SGS particle dispersion model, by its
very nature, is to add some random decorrelation, the stronger the larger is the model
constant C'. The conclusion here is that the Langevin-type SGS dispersion model can not
be tuned to satisfy the two constraints: a correct level of particle kinetic energy on the one
hand, and a correct Lagrangian velocity correlation and the preferential concentration
patterns on the other hand. Recently, an interesting proposal of separating the particle
velocity in turbulent flow into a continuous field and a random (uncorrelated) part has
been put forward by Février et al. (2005). Arguably, LES filtering affects both, and the
Langevin-type, stochastic diffusion model is suitable as a remedy to the effect of filtering
on the uncorrelated part only.

5.2. Preferential concentration

Next, we have found the statistics of the instantaneous particle locations resulting from
a priori LES. The computational results for two values of the Stokes number and some
choices of the model constant are shown in Figs. 8 and 9. The impact of the residual veloc-
ity field, reconstructed in FPT, is readily noticed. As expected, the one-point stochastic
model introduced here has a “randomizing” effect on particle locations. For particle sizes
larger than that of maximum preferential concentration effect (roughly St~ 1 in our case)
the randomizing effect of small scales is lost (the picture of preferential concentration be-
comes overly sharp), so the model is meant to restore it, cf. Fig. 9. In the case of smaller
particles that are most influenced by smaller eddies and correlated on a shorter length
scale, it is shown in Fig. 8 that the filtering does an inverse effect, i.e. it partly kills
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this short-scale preferential concentration (the picture of preferential concentration be-
comes somewhat “blurred”), so a potentially successful model for this case should rather
be of an “antidiffusive” character (arguably, scale-similarity arguments can be used for
its construction). As found from the instantaneous particle snapshots (Figs. 8 and 9),
the choice of the model constant to restore the turbulent energy of particles, C' ~ 1 is
not suitable as far as the preferential concentration patterns are concerned since already
C = 0.1 tends to destroy them.

To confirm the visual evidence of Figs. 8 and 9, we have computed again some measures
of preferential concentration (cf. Sec. 3.2). Now, also to enhance the visibility of changes
due to filtering and subsequent modeling, the RDF is computed with particles located in
2D cuts (slices, about 2% thick) of the computational box. Figure 11 shows the impact
of the SGS dispersion model on the statistics of preferential concentration, as quantified
by the RDF and compared to Fig. 7(b). The observation for smaller inertia particles
(St = 0.7) is that even the a priori LES results (no model) show a slightly flatter RDF
(less structure) than the DNS case. Consequently, application of the stochastic diffusion
model further decreases the preferential concentration. On the other hand, for larger
inertia particles (St = 2) the a priori LES with no model shows a steeper RDF profile
than the DNS, meaning that the preferential concentration becomes more pronounced
for this combination of particle inertia and the filter size. Conclusion here is that the
SGS model does a better job for St = 2 where some random stirring of particles due to
the smaller fluid scales (removed by LES filtering) is restored by the stochastic diffusion
model of the Langevin type, Eq. (4.2). However, the model is not able to retrieve the
DNS preferential concentration patterns for particles of St = 0.7 (and smaller).

6. Conclusion and future plans

In the present paper, we have investigated the impact of filtered velocity field, typically
used in LES, on particle motion in two-phase turbulent flows. In particular, the changes
in particle preferential concentration patterns have been quantified. Then, a stochastic
model has been proposed to reconstruct the residual velocity field along heavy particle
trajectories, accounting for the crossing-trajectory effect. The model is able to retrieve
a correct level of particle turbulent kinetic energy. For smaller-inertia particles that are
preferentially-concentrated with the flow scales filtered out by the LES, a diffusion-type
SGS dispersion model proposed in the paper is not able to retrieve the small-scale patterns
of particle segregation. For larger-inertia particles, small scales filtered out in LES have
a randomizing effect on particle spatial distribution and this effect is well simulated by
our SGS dispersion model. It can thus be recommended for use in situations involving
larger-inertia particles that are still susceptible to filtering. For smaller-inertia particles,
the model is still helpful in restoring correctly the short-time dispersion and the particle
turbulent kinetic energy.

A lingering question as to the present SGS particle dispersion model is that it is
only a single-realization (one-particle) approach. The statistical interpretation of the
model has to be thought over, including the inhomogeneous turbulence, and also in
the context of parcels (representing many solid particles). Possibly, along more general
ideas of stochastic modeling (beyond the Langevin equation), an improved model should
consist of a random ingredient (since the details of residual fluid motion are unknown)
and possibly also of a deterministic ingredient, dependent on the structure of the resolved
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field and justified by the hope that the largest unresolved scales are in a sense similar to
resolved ones.

The stochastic Langevin model proposed for SGS particle dispersion is one-point by
construction. Hence, it is able to correctly reconstruct the particle turbulent kinetic en-
ergy and the long-time dispersion. Otherwise, to exactly account for two-particle quan-
tities (such as relative dispersion, relative velocity statistics, or SGS preferential concen-
tration effects), a structural approach, trying to mimic most important features of the
subgrid-scale flow field, should be conceived.

A further-term objective is to unify the LES/FPT approach for the dispersed flows,
presented above, with the LES/FDF approach for flows with scalars, possibly reactive,
developed by Colucci et al. (1998). This should ultimately provide a physically-sound, yet
efficient, tool for the computation of dispersed turbulent two-phase flows with chemical
reactions (spray combustion).
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| | DNS| a priori LES | model, C'= 0.1 | model, C' = 1|

|St=0.7 |0.83] 054 | 0.60 | 077 |

[St=2 ]0.60] 042 | 0.46 | 062 |

TABLE 1. Turbulent kinetic energy of particles normalised with the fluid energy (“model”: a
priori LES with the SGS dispersion model).

FIGURE 2. Snapshots of particle positions from DNS; runs with various values of the particle
inertia parameter: a) St = 0.01, b) St =0.2, ¢) St =0.7,d) St =1, e) St =2, f) St = 4.
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FIGURE 5. Various particle arrangements for RDF testing: a) uniform, b) regular checkered, ¢)
randomized checkered.
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FIGURE 6. Particle radial distribution functions: a) for all pre-arranged patterns in 3D, b) for
the checkered, randomized pattern in 2D and 3D.
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FIGURE 7. Radial distribution function of heavy particle locations. Fluid velocity computed in:
(a) DNS for all St; (b) DNS and a priori LES (filtered) for St = 0.7 and St = 2.0.

(d)

FIGURE 8. Snapshots of particle positions; runs for particles of St = 0.7. a) DNS; b) a priori
LES with with no FPT model; ¢) a priori LES with FPT model and C=0; d) with C=0.05.

(a) (b)

FIGURE 9. Snapshots of particle positions; runs for particles of St = 2. a) DNS; b) a priori
LES with no FPT model; c¢) a priori LES with FPT model and C=0.05; d) with C=1.
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FIGURE 10. Particle velocity autocorrelation function: a) St = 0.7; b) St = 2.
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FIGURE 11. RDF of particles: a) St = 0.7; b) St = 2. Results for DNS, a priori LES with no
SGS dispersion model, and LES with the model of Eq. (4.2); two different choices of the model

constant, Eq. (4.3).



