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A Numerical Scheme for Euler-Lagrange Simulation of Bubbly
Flows in Complex Systems
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SUMMARY

An Eulerian-Lagrangian approach is developed for the simulation of turbulent bubbly flows in
complex systems. The liquid phase is treated as a continuum and the Navier-Stokes equations are
solved in an unstructured grid, finite volume framework for turbulent flows. The dynamics of the
disperse phase is modeled in a Lagrangian frame and includes models for motion of each individual
bubble, bubble size variations due to the local pressure changes, and interactions among the bubbles
and with boundaries. The bubble growth/collapse is modeled by the Rayleigh-Plesset (RP) equation.
Three modeling approaches are considered: (a) one-way coupling; where the influence of the bubble on
the fluid flow is neglected, (b) two-way coupling; where the momentum exchange between the fluid and
the bubbles is modeled, and (c) volumetric coupling; where the volumetric displacement of the fluid by
the bubble motion and the momentum-exchange are modeled. A novel adaptive time-stepping scheme
based on stability analysis of the non-linear bubble dynamics equations is developed. The numerical
approach is verified for various single bubble test cases to show second-order accuracy. Interactions
of multiple bubbles with vortical flows are simulated to study the effectiveness of the volumetric
coupling approach in predicting the flow features observed experimentally. Finally, the numerical
approach is used to perform a large-eddy simulation in two configurations: (i) flow over a cavity to
predict small-scale cavitation and inception, and (ii) a rising dense bubble plume in a stationary water
column. Results show good predictive capability of the numerical algorithm in capturing complex flow
features.
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1. INTRODUCTION

Two-phase flows with phase change occur in many engineering systems. Of specific interest
are two applications involving wide range of length and time scales: (a) bubbly turbulent flows
in the ship boundary layers for drag reduction and (b) hydrodynamics of cavitation. These
problems share common physical mechanisms of mass, momentum, and energy exchange across
the interface between the two phases.

Figure 1: Schematic of fully resolved and subgrid disperse phase.

The dispersed bubbles may deform, vary in size, or coalesce and the local grid resolution
may be such that the bubble is fully resolved or under-resolved in relation to the resolution
of the background mesh (see Figure 1). In cavitating flows, the vapor cavity size can change
dynamically and the the local grid resolution may be such that the cavity (or bubbles) are fully
(or partially) resolved on the grid or completely sub-grid. Different approaches are needed to
model these flow regimes accurately.

In this work, we focus on a numerical approach for the under-resolved or subgrid disperse
phase (in the form of bubbles or particles). Two approaches are widely used to compute
the hydrodynamics of under-resolved bubbly flows: the Euler-Euler and Euler-Lagrange.
The Euler-Euler model employs the volume or ensemble averaged mass and momentum
conservation equations to describe the time dependent motion of both phases [58]. In
the Eulerian-Lagrangian approach, a continuum description is used for the liquid phase
with discrete Lagrangian tracking of the bubbles. The bubbles are usually modeled as
spherical point-particles with models for fluid-bubble interaction forces and bubble-bubble
interactions [19, 10]. Such an approach has been used for turbulent bubbly-channel flows for
computation of drag reduction [1], cavitation inception studies with bubble dynamics modeled
using the Rayleigh-Plesset equation [24, 25]. The Euler-Lagrange approach is generally accurate
in predicting the bubble dynamics and transport when all bubble trajectories relevant to a
problem are tracked. This; however, also limits the capability of Euler-Lagrange approach
to small number of bubbles. If the bubbles are clustered only in a small region of the
computational domain that is decomposed to optimize the computation of the continuum
phase fluid equations; the Lagrangian bubble tracking can lead to significant issues related
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EULER-LAGRANGE SIMULATION OF BUBBLY FLOWS 3

to load-imbalance. Recently, Darmana et al. [10] developed a parallelization strategy for the
Euler-Lagrange bubble flow model for simulations of large number of bubbles on structured
grids.

The standard approach to simulate turbulent two-phase flows with the Euler-Lagrange
approach involves use of DNS, LES or RANS for the carrier phase whereas the motion of
the disperse phase is modeled. The ‘point-particle’ (PP) assumption is commonly employed
where forces on the disperse phase are computed through model coefficients. The effect of
the disperse phase on the carrier phase is represented by a force applied at the centroid
of the disperse phase. This exchange of momentum between the phases is termed as ‘two-
way’ coupling. For applications involving dense loading of the disperse phase (for example
for volume loading larger than 10−3 [53]), interactions among the discrete bubbles (or
particles/droplets) due to collision also becomes important. Collisions together with two-
way coupling interactions between the disperse and continuum phase is termed as ‘four-way
coupling.’ When the local concentration of the disperse phase is high, the volume displaced
by the disperse phase can be large. Equations using mixture theory or volume averaging have
been derived for two-phase mixture [60, 15, 31] that consider the variations in the fluid void
fractions in the Navier-Stokes equations for the continuum phase. In this work, we term this
interaction as ‘volumetric coupling.’ Volumetric coupling has been commonly used for dense
particulate/granular flows [50, 3] and bubble columns [57, 10, 12, 17].

In this work, we develop a finite volume based numerical technique for Euler-Lagrange
simulations of bubbly flows based on the volumetric coupling. The implementation of
the discretized volume-averaged two-phase equations in an unstructured grid finite volume
solver [40, 39] is described in detail. The Newton’s laws of motion are solved for the discrete
bubble phase together with variations in bubble size due to local pressure according to the
Rayleigh-Plesset equations. The accuracy of the numerical scheme and implementation of
the bubble dynamics model are tested through a variety of single and multiple bubble test
cases. The importance of the volumetric coupling in capturing the correct behavior of bubble-
vortex interactions is shown through validations against experimental data. Capability of the
numerical approach in simulating turbulent, dense bubbly flows is tested by performing large-
eddy simulation of bubble-column as well as cavitation inception in a high-speed flow over
cavity.

The paper is arranged as follows. The mathematical formulation for the continuum liquid
phase and discrete bubble phase are described in section 2. Semi-discretized version of the
liquid phase equations are presented in section 3 followed by the complete description of
the numerical algorithm for the disperse and the continuum phases in section 4. Variety of
verification and validation test cases are described in section 5.

2. MATHEMATICAL FORMULATION
In this work, a Euler-Lagrange approach based on the mixture-theory is used wherein the
bubble-fluid interactions are captured through inter-phase momentum exchange as well as
variations in local fluid void fractions. The mathematical formulation for the disperse and
continuum phases is described briefly in this section.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 00:1–0
Prepared using fldauth.cls



4 E. SHAMS, J. FINN AND S. V. APTE

2.1. Disperse Phase Equations

The motion of each individual bubble is computed by solving the equations of motion in a
Lagrangian frame. The bubble size variations are modeled by the incompressible Rayleigh-
Plesset equations. The position, momentum equations and bubble radius equations are given
as:

d
dt

(xb) = ub (1)

mb
d
dt

(ub) = F`→b (2)

ρ`

[
Rb
d2Rb
dt2

+
3
2

(
dRb
dt

)2
]

= pB − p∞ −
2σ
Rb
− 4µ`
Rb

dRb
dt

(3)

where xb and ub are the bubble position and velocity, mb is the mass,
∑

Fb is the total
force acting on the bubble, Rb is the bubble radius, pB and p∞ are the pressures inside
and outside of the bubble, σ is the surface tension coefficient, and µ` and ρ` are the liquid
viscosity and densities, respectively. To estimate pB , it is typically assumed that the bubble
contains some contaminant gas which expands or contracts according to adiabatic or isothermal
processes [7, 8]. The bubble inside pressure (pB) consists of contribution from the gas pressure
pg and the vapor pressure pv. The net force acting on each individual bubble is given as [30]:

F`→b = FG + FP + FD + FL + FAM + Fcoll + FṘb
(4)

where FG = (ρb − ρ`)Vbg is the gravitational force, FP = −Vb∇p is the pressure force
due to far-field pressure gradients, FD = − 1

2CDρ`πR
2
b |ub − u`|(ub − u`) is the drag force,

FL = −CLρ`Vb(ub − u`) × ∇ × u` is the lift force, FAM = − 1
2ρ`Vb

(
Dub

Dt −
Du`

Dt

)
is the

added mass force, and Fcoll is the inter-bubble or bubble-wall collision forces. The force
FṘb

= −4πρ`R2
b(ub − u`)dRb

dt represents momentum transfer due to variations in bubble
size. Here, Vb is the bubble volume, the subscripts ‘b’ and ‘g’ correspond to the bubble and
the fluid, respectively. Several different models for the drag (CD) and lift (CL) coefficients
have been used that account for bubble deformation and variations in bubble Reynolds
numbers (Reb = ρ`|ub − u`|2Rb/µ`) [10]. The collision forces can be computed using the
standard collision models typically used in the discrete element method and are described
later.

2.2. Fluid Phase Equations

The equations for the fluid phase are obtained by making use of the mixture theory. In this
formulation, the volume occupied by the bubble in a fluid control volume is accounted for by
computing the local bubble (Θb) and fluid void fractions Θ` (such that Θb + Θ` = 1). The
continuity and momentum equations account for local changes in void fractions [31, 28]. The
continuity equation is given as:

∂

∂t
(ρ`Θ`) +5 · (ρ`Θ`u`) = 0. (5)

Note that no summation is implied with the subscript ‘`.’ The local spatio-temporal variations
of bubble concentration, generate a non-divergence free velocity field,

∇ · u` = − 1
ρ`Θ`

Dρ`Θ`

Dt
(6)
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EULER-LAGRANGE SIMULATION OF BUBBLY FLOWS 5

where D
Dt is the material derivative.

Lagrangian quantities, such as bubble concentration, are interpolated to the Eulerian control
volumes effectively, using the following interpolation function,

Θb (xcv) =
Nb∑
b=1

VbG∆ (xcv,xb) (7)

where G∆ is the interpolation function, Nb is the total number of bubbles, the summation
is over all bubbles, xb is the bubble location, and xcv is the control volume centroid. The
momentum conservation equation is given as [21]:

∂

∂t
(ρ`Θ`u`) +∇ · (ρ`Θ`u`u`) = −∇ (p) +∇ · (Θ`µ`D)−Θ`ρ`g + fb→` (8)

where p is the dynamic pressure in the fluid phase, D = ∇u`+∇uT
` is the deformation tensor,

and fb→` is the reaction force from the disperse phase on to the fluid phase per unit mass of
fluid and is given as:

fb→` (xcv) =
Nb∑
b=1

G∆ (xcv,xb) (FP + FD + FL + FAM + Fcoll + FṘb
). (9)

Note that the total force on the bubble consists of the pressure force, FP = −Vb∇p. The
reaction of this force onto the fluid phase results in the force density +Θb∇p. This reaction
term related to the pressure gradient can be combined with the pressure gradient in the
momentum equation to obtain:
∂

∂t
(ρ`Θ`u`) +∇ · (ρ`Θ`u`u`) = −∇ (p) +∇ · (Θ`µ`D)−Θ`ρ`g + f′b→` + Θb∇p︸ ︷︷ ︸

FP Force Density

, (10)

where Θb∇p is the Eulerian force density obtained from the pressure force and f′b→` is the
Eulerian force density constructed from the Lagrangian force on the bubbles without the
pressure force (equation 9 without the pressure force, FP ). Noting that Θb + Θ` = 1, the
above equation can be re-written in a more commonly used form by combining the first and
last terms on the right-hand side of the above equation [21, 57],

∂

∂t
(ρ`Θ`u`) +∇ · (ρ`Θ`u`u`) = −Θ`∇ (p) +∇ · (Θ`µ`D)−Θ`ρ`g + f′b→`, (11)

where f′b→` contains summation of all reaction forces in equation 9 except the pressure force.
This formulation is commonly used in gas-fluidized beds [35, 10]. In the absence of any fluid
velocity, but in the presence of bubbles, the pressure gradient force is then appropriately
balanced by the gravity force.

For large-eddy simulation, the above equations should be spatially filtered using density-
weighted Favre averaging [27]. Using the form in equation 11; however, gives rise to an unclosed
term −Θ`∇p. It is therefore advantageous to use the original form (equation 8), resulting in
standard variable density LES equations [43, 39]. In this case, the reaction due to the pressure
force is treated explicitly. For turbulent flows, the Favre averaged equations then have the
same form as equation 8 with the exception that the left-hand side of the momentum equation
consists of an unclosed subgrid stress term,

τij = ρ`Θ`uiuj − ρ`Θ`ui ρ`Θ`uj/ρ`Θ`. (12)
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6 E. SHAMS, J. FINN AND S. V. APTE

Denoting ρ = ρ`Θ`, Favre-averaged velocity field can be obtained as ρũi = ρui. The unclosed
subgrid-scale stresses can be closed by use of a Smagorinsky model with a dynamic procedure
for the calculation of the model coefficient and eddy viscosity [20, 44].

µT = −CSρ`Θ`∆2S(ũ); ∆ = V 1/3
cv ; S(ũ) = (

1
2
SijSij)1/2, (13)

where Vcv is the volume of a grid cell, and the model constant CS is obtained using the dynamic
procedure and a test filter of twice the size of the control volume. The governing equation then
is obtained in terms of the filtered velocity fields ũi and the fluid viscosity µ` is changed to
µeff = µ` + µT accounting for the eddy viscosity.

3. DISCRETIZATION OF FLUID PHASE EQUATIONS

The numerical scheme for unstructured, arbitrary shaped elements [39] is modified to take into
account the fluid void fraction. The changes in local fluid volume fractions requires solution of
a variable density flow field as opposed to the constant density, incompressible flows studied
in [5, 40]. The steps in solving the coupled fluid-particle equations are given below. A semi-
implicit scheme is used for the fluid solver, however, the interphase momentum exchange terms
are treated explicitly.

Figure 2: Schematic of the grid stencil: (a) time staggering of variables, (b) velocity (ui) and
pressure fields (p) are colocated at the control volume center, uN is the face-normal velocity,
(c) control volume and face connectivity.

Figure 2 shows the schematic of variable storage in time and space. The dispersed phase
positions, density, pressure and volume fractions are staggered in time with respect to the fluid
and particle velocity fields, ui and Ui, respectively. All variables are stored at the control volume
(cv) center with the exception of the face-normal velocity uN, located at the face centers. The
face-normal velocity is used to enforce continuity equation. Capital letters are used to denote
disperse phase. The time-staggering is done so that the variables are located most conveniently
for the time-advancement scheme. We follow the collocated spatial arrangement for velocity
and pressure field as has been used by [33], [40], [39]. The main reason to use this arrangement
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EULER-LAGRANGE SIMULATION OF BUBBLY FLOWS 7

as opposed to spatial-staggering is its easy application to unstructured grids and/or adaptive
mesh refinement. Accordingly, the dispersed phase positions (Xi), density (ρ), volume fraction
(Θ), and viscosity (µ) are located at time level tn+1/2 and tn+3/2 whereas the fluid velocity
(ui, uN) and the dispersed phase velocity (Ui), and the pressure (p) are located at time level
tn and tn+1. This makes the discretization symmetric in time, a feature important to obtain
good conservation properties of the numerical scheme as emphasized and used by Pierce and
Moin [47] for low-Mach number, reactive flows.

Using these variable locations, integrating the governing equations over the control volume
and applying Gauss’ divergence theorem to transport volume integrals to surface integrals
wherever possible, the discrete governing equations are derived. Accordingly, the continuity
equation is

ρ
n+3/2
cv − ρn+1/2

cv

∆t
+

1
Vcv

∑
faces of cv

ρn+1
cv un+1

N Aface = 0, (14)

where ρcv = ρ`,cvΘ`,cv is the density at the CV-center, ∆t is the flow solver time-step, Vcv is
the volume of the CV, Aface is the area of the face of a CV, uN is the face-normal velocity,
and ρface is the density at face of a CV. The density at the face can be readily obtained
by using the arithmetic averages of the densities of the adjacent CVs (see figure 2), that is,
ρface = 1

2 (ρcv1+ρcv2). However, for the present co-located grid finite volume scheme the critical
difference between the density and the face-normal velocity is that, the face-normal velocity uN

is obtained through a projection scheme rather than interpolation. Furthermore, the density
at time level tn+1 is also obtained from interpolation, ρn+1

face = (ρn+3/2
face + ρ

n+1/3
face )/2.

The discrete momentum equation for the ith component of velocity can be written as

gn+1
i,cv − gni,cv

∆t
+

1
Vcv

∑
faces of cv

g
n+1/2
i,face u

n+1/2
N Aface = − ∂

∂xi
pn+1

cv +

1
Vcv

∑
faces of cv

(τij)
n+1/2
face Nj,faceAface + f

n+1/2
i,cv , (15)

where gi = ρui represents the momentum in the ith direction, (τij)face is the viscous stress at
the faces of control volume, and Nj,face represents the components of the outward face-normal.
Similarly to the face density (ρface), the velocity field (ui,face), and the momentum ρui,face at the
faces are obtained using arithmetic averages of the corresponding fields at two control volumes
associated with the face. The values at time level tn+1/2 are obtained by time-averaging. The
interface coupling force is represented by fi,cv. The pressure field pn+1

cv is unknown and is
obtained using the best available guess at the current iteration. This gets updated during the
solution of the pressure Poisson equation. The above discretization is implicit and thus the
time-steps are not limited by viscous stability limits. The use of symmetric centered differences
in space and time makes the algorithm second order on uniform Cartesian grids. The above
formulation can also handle variations in the fluid density (due to say temperature variations
in a gaseous fluid) by relating the fluid density ρ` to state variables through proper equation
of state.
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8 E. SHAMS, J. FINN AND S. V. APTE

4. NUMERICAL ALGORITHM

The coupled ordinary-differential equations for the subgrid dispersed phase are solved first.
The fluid-phase equations are solved using a pressure-based scheme for variable-density (due
to void fraction variations), low-Mach number formulation as described below. The interaction
forces between the two phases are treated explicitly.

4.1. Disperse-Phase Solution:

The equations for position and velocity of the dispersed phase are solved using explicit time
advancing. This involves interpolation of the fluid velocity (for drag force calculation), pressure
gradient (for pressure force), and vorticity (for lift force) to the disperse phase location. The
interpolation is performed using the same Eulerian-Lagrangian interpolation kernel used for
computation of the void fraction as described below.

4.1.1. Collision Force: The collision force is computed using a discrete element model of
Cundall & Strack [9]. Note that other event-based collision models can be used (such as those
proposed by Darmana et al. [10]) and implemented. Accordingly, the force Fpj on bubble p
due to collision with bubble j is given by

F pjcoll =

{
0 for dpj ≥ (Rp +Rj + α)(
kcδ

3/2
pj − ηc(up − uj) · npj

)
npj for dpj < (Rp +Rj + α) (16)

where dpj is the distance between the centers of the pth and jth bubbles, npj is the unit
vector from the center of bubble j to that of bubble p, α is the force range, kc the stiffness
parameter, and ηc the damping parameter, Rp and Rj are the equivalent radii of bubbles,
δpj = (Rp+Rj +α)−dpj . Also, in order to conserve the binary collision forces, F jpcoll = −F pjcoll.
Tsuji et al. [56] used the following expressions to compute the damping parameter

ηc = 2α

√
mpkc
1 + α2

; α = −ln (e/π) (17)

where e is the coefficient of restitution, mp is the mass of the bubble (p). Similarly, the collision
force ((F pwcoll) between the bubble (p) and the wall (w) is given

F pwcoll =

{
0 for dpw ≥ (Rp + α)(
kcδ

3/2
pw − ηc(up) · npw

)
npw for dpw < (Rp + α) (18)

where dpw is the distance between the bubble center and the wall, and npw is the unit vector
from the wall to the center of the parcel.

To compute the collision force on a bubble, potential collision partners need to be identified
from surrounding bubbles. If there are N bubbles in the domain, computation of binary
collision is an N2 problem, significantly hampering the time required for collision calculations
per time-step in dense systems. Several approaches to in forming a list of bubbles for potential
collision partner have been used to reduce this computing time involving formation of linked-
lists [22] and Verlet lists [2]. In the present work, a simple node-based linked list of bubbles
is formed. First, all bubbles are located onto the computational mesh that is partitioned for
parallel processing using the search algorithms [5]. Knowing the control volume in which the
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EULER-LAGRANGE SIMULATION OF BUBBLY FLOWS 9

bubble lies, each bubble is assigned to one of the nodes (or vertex) of the control volume
depending upon its proximity to the node. Sine a node (or vertex) can share several control
volumes a list (using compact storage format) of all bubbles associated with a node is created.
Note that the grid partitioning algorithm (METIS [32]) uses partitions the grid along the edges
of the control volume. Thus nodes on the boundary of a processor can share control volumes
that are part of different processors. A communication across the processors is needed to form
the node-based linked list of bubbles. Figure 3 indicates a schematic of the bubble list creation.

Figure 3: Creation of list of bubbles associated with a node/vertex.

Once this list is formed, the collision partner for a given bubble (ib) is chosen as follows:

1. Identify the control volume (icv) in which the bubble lies.
2. Identify the nodes of associated with the control volume.
3. For each node of the control volume, loop over the list of bubbles associated with the

node.
4. Check for potential collision of the bubble with neighboring bubbles and compute the

collision force.

This procedure, effectively restricts the number of bubbles that are searched in order to obtain
a binary collision partner. However, if the bubbles are present only on few processors, load-
imbalance can still occur. Advanced domain decomposition strategies are needed to further
improve the performance of the collision algorithm. In the present work, the above approach
was deemed sufficient for computation of bubbles on the order of 105.

4.1.2. Solution to Rayleigh-Plesset Equation: The bubble dynamics is modeled by Rayleigh-
Plesset equation [48]. In this section we provide details of an adaptive time stepping method
for the solution of Rayleigh-Plesset equation based on the stability criteria of the highly non-
linear second-order ordinary differential equation. Solution to the Rayleigh-Plesset equation
can involve sharp variations in (Rb) near the collapse region of the bubble. It shows singular
behavior when the bubble radius tends to zero. An ideal numerical scheme should be able to
handle the rebound behavior of the bubble after it collapses; however, the solution may become
unstable if the time step used is not chosen properly. Use of a simple explicit scheme with
very small time-step can be prohibitively expensive even for a single bubble computation. An
adaptive time-stepping strategy is necessary such that the bubble collapse and rapid expansion
regions utilize small time-steps, but a much larger time-step can be used for relatively slow
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10 E. SHAMS, J. FINN AND S. V. APTE

variations in bubble radius. So we adaptively resize the time step used for the solution of the
disperse phase based on the stability threshold as derived below. Adaptive time-step refinement
has been used for the solution of Rayleigh-Plesset equation [1]. However, in the present
approach a new stability-analysis based adaptivity criterion is developed. This approach will
be shown to be robust for rapid changes in pressure in turbulent cavitating flows.

The equation for bubble radius variations (equation 3) can be cast into two first order
ODEs [1]:

dRb
dt

= y;
dy

dt
= − 3y2

2Rb
+
pB − p∞ − 2σ/Rb

ρ`Rb
− 4µ`y
ρ`R2

b

. (19)

This can be written in a matrix notation [X]′ = [F ] where [X] and [F ] are 2 × 1 matrices
defined below:

[X] =
[
Rb
y

]
; [F ] =

[
y

− 3y2

2Rb
+ pB−p∞−2σ/Rb

ρ`Rb
− 4µ`y

ρ`R2
b

]
. (20)

Following the above notation, a simple first-order blended Euler scheme can be derived:

[X]k+1 = [X]k + h
(
θ[F ]k + (1− θ)[F ]k+1

)
, (21)

where h is the step size, k and k + 1 denote the current and next time levels, respectively.
The blending parameter (θ) can be changed between 0 and 1 to change the scheme from fully
implicit backward Euler to fully explicit forward Euler method.

In presence of large variations in the outside pressure (P∞), the bubble radius Rb and its
time derivative Ṙb can change rapidly, which may give rise to numerical instability. Using the
notion of modified ODE for the stability analysis [42], one can derive the general stability
criteria for any system of first order ODE. Defining the Jacobian matrix [J ] = ∂[F ]/∂[X]
which is approximated at an old time level, the differential equation can be written as

[X]k+1 − [X]k

h
= θ[J ]k[X]k + (1− θ)[J ]k[X]k+1. (22)

Rearranging this can be written in terms of the amplification matrix ([A]) as,

[X]k+1 = [A]k[X]k, (23)

where [A]k = {1− h (1− θ) [J ]k}−1 (1 + hθ[J ]). This equation can be diagonalized to give

[Z]k+1 = [λ]k[Z]k (24)

where λ is the matrix of eigenvalues λ1 and λ2 associated with Rb and dRb/dt, respectively.
The solution of equation 24 is of the form:

Zk1 = eλ1Z0
1 ; Zk2 = eλ2Z0

2 . (25)

The adaptive time-stepping strategy here is therefore, to keep the magnitude of λ1 and λ2

close to unity. The magnitude of the eigenvalues is adjusted by resizing the time step h at each
subcycling time steps for the solution of Rayleigh-Plesset equation. Different steps in time step
calculation are explained below:
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EULER-LAGRANGE SIMULATION OF BUBBLY FLOWS 11

• Step 1: With f1 = y = dRb

dt and f2 = −3y2

2Rb
+ (PB−P∞−2σ/Rb)

ρ`Rb
− 4µ`y

ρ`R2
b
, calculate the

Jacobian matrix

[J ] =
∂[F ]
∂[X]

=

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
=

[
0 1
3
2

(
y
Rb

)2

− PB−P∞
ρ`R2

b
+ 4σ

ρ`R3
b

+ 8µ`y
ρ`R3

b
− 3y

Rb
− 4µ`

ρ`R2
b

]
(26)

• Step 2: Calculate matrix [A] and its eigenvalues λ1 and λ2. Then calculate their deviation
from unity, δ = max(abs(λ1 − 1), abs(λ2 − 1)).

• Step 3: Compare δ to δmax and resize h accordingly. Here, δmax represents the critical
value in this calculation. It should be as large as possible to achieve minimum number of
time steps in the computation. In the test cases presented in following sections, δmax was
set to 5%. Different time step resizing strategies are possible; to modify the time-step:

– 3.1: if h is small or δ < δmax then h′ = 2× h.
Keep multiplying by two until δ(h) < δmax < δ(h′).

– 3.2: if h is large or δmax < δ then h′ = 0.5× h.
Keep multiplying by 0.5 until δ(h′) < δmax < δ(h).

– 3.3: Once δmax is between δ(h) and δ(h′), average h and h′ (hnew = 0.5×(h+h′)).
Repeat the above calculations with the averaged value until δ(hnew) is close enough
to δmax.

The new time-step obtained above is based on stable solution of the Rayleigh-Plesset equation
and is denoted as ∆tRP . This approach is found to be very effective even in the case of rapid
and large pressure variations as shown in the validation cases in the following sections.

4.1.3. Subcyling and Adaptive Time Step Selection: Once all the forces are know for each
bubble, the position and velocity field are advanced using an explicit Euler scheme from tn+1/2

to tn+3/2. It is important to note that the time-scales associated with subgrid bubbles can be
vastly different from those of the flow solver time step (∆t = tn+3/2 − tn+1/2). Thus, the time
step used for integration of the dispersed phase equations can be different than the flow solver
time step. The time scales associated with the bubble motion can be characterized by looking
at the various forces acting on the bubbles. For example, the expression for the acceleration
due to drag force (FD/mb) can be rearranged to provide the particle relaxation time-scale:

FD
mb

= − (ub − u`)
τb

; τ−1
b =

3
4
CD

ρ`
ρb

|ub − u`|
db

. (27)

Likewise the time-scale associated with the lift force is proportional to the vorticity magnitude;
τ−1
L = CL|∇×u`|. The collision force also is constrained by a time-scale which depends on the

collision model and the parameters used. For the collision model described above, Cundall &
Strack [9] propose a time step restriction given as ∆tcoll ≤

√
mb/kc. Finally, in the presence

of large variations in fluid pressure, the time-scale restrictions based on the Rayleigh-Plesset
equations (∆tRP) can be obtained from the stability analysis described above.

Since we use explicit time-stepping, the time step (∆tbub) used for advancing the disperse
phase equations should be comparable to the smallest time-scales governing their dynamics.
Accordingly, for each flow-solver time-step (∆t), the time step used for bubble dynamics is
obtained as follows:
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12 E. SHAMS, J. FINN AND S. V. APTE

∆tbub = min
(

∆t
3
, τb, τL, τcoll,∆tRP

)
. (28)

If the other time-scales are larger than the flow-solver time-scale, this expression makes
∆tbub = ∆t/3. The factor 3 is used to get better accuracy than first-order Euler. Since ∆tbub

can be smaller than flow solver time-step (∆t), a sub-cycling procedure may be necessary.
The bubble dynamics equations are solved repeatedly until we reach one flow solver time step
(∆t). The bubble dynamics equations are updated using explicit Euler scheme; the bubbles
located using search algorithms for unstructured grids [5] are duly transferred across processors
as their positions are updated. During this sub-cycling process, it is assumed that the fluid
flow quantities do not change significantly similar to a quasi-steady assumption. In addition,
typically for time-resolved simulations (such as large-eddy simulation), it is necessary to use
the flow solver time-step such that the convective CFL number is less than unity. Under these
conditions, in most applications, the bubbles may not move significantly during one time-step.
Hence, an actual update of the neighbor list for collision partners can only be done once per
flow solver time-step.

4.1.4. Interpolation Operator for Lagrangian-Eulerian Mapping: In the simulation of a
coupled liquid and bubble system, mapping data from Eulerian framework (liquid phase)
to Lagrangian framework (bubble/particle phase) is necessary. In the Lagrangian calculation,
data sets such as flow velocity, pressure, acceleration, etc., are needed for the bubble/particle
motion. On the other hand, reaction forces acting on liquid phase and bubble volume fraction
are needed to be mapped into Eulerian framework.

The interpolation function should be smooth and conserve the transferred variable [34].
In an orthogonal structured computational grid, linear or bilinear interpolation technique
can be applied, depending on the level of accuracy needed. Snider et al. [50] used a
trilinear interpolation technique in a staggered grid computation. McDermott and Pope [41]
have recently proposed the Parabolic Edge Reconstruction Method (PERM) for continuous
velocity field reconstruction in the subgrid level. Kernel-based interpolation techniques, typical
of particle methods, can be easily applied to complex and unstructured grids. Different
interpolation kernels using polynomial [12, 10] or exponential [16, 4] function formulation
have been used. Gaussian kernel provides quadrature spectral accuracy, provided that the
interpolation is being performed over a region much larger than the kernel width [16], otherwise
the accuracy reduces to second order. They do not have a compact support, but are smooth,
accurate and easy for use on unstructured grids.

The Gaussian interpolation function is given by

Gσ(x,xb) =
1

σ
√

(2π))3
exp(

[
−
∑3
k=1(xk − xb,k)2

2σ2

]
, (29)

where σ is the kernel width, xk and xb,k denote the available data point on the grid and
the bubble location, respectively. In order to enforce mass conservation, the kernel function is
normalized over the volume of integration by∫

Vcv

Gσ(xcv,xb)dV = 1. (30)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 00:1–0
Prepared using fldauth.cls



EULER-LAGRANGE SIMULATION OF BUBBLY FLOWS 13

Using the above kernel, volume fraction of the liquid can be calculated as

Θ` = 1−
∑nb

i=1 VbGσ
Vcv

. (31)

4.2. Fluid-Phase Solution:

The fluid flow solver is based on a co-located grid finite volume scheme for arbitrary shaped
unstrcutured grids [39, 43]. The main steps of the solver are described below.

• Step 1: Advance the bubble positions, velocities, and radii using the adaptive time-
stepping algorithm described above. Compute the void fraction field at the new bubble
locations using the Lagrangian-Eulerian interpolation kernel and set the density ρ =
ρ`Θ`. The pressure seen by the bubble (p∞ in the Rayleigh-Plesset equation) is basically
obtained as follows: we first interpolate the pressure gradient from the faces of a control
volume to the cv centers using a least-squares interpolation consistent with the pressure
reconstruction (Step 6 below). The pressure field at any point within the cv centers is
then obtained by using a linear interpolation in space as well as linear interpolation in
time. This preserves the continuity of the pressure field from one cell to another.

• Step 2: Advance the fluid momentum equations using the fractional step algorithm,
with the interphase force, fi, treated explicitly (the subscript ` for fluid phase is dropped
for simplicity).

ρn+1
cv u∗i − ρncvu

n
i

∆t
+

1
2Vcv

∑
faces of cv

[
ρn+1

face u
∗
i,face + ρnfaceu

n
i,face

]
u
n+1/2
N Aface =

− δp

δxi

n

+
1

2Vcv

∑
faces of cv

µ∗face

(
∂u∗i,face

∂xj
+
∂unj,face

∂xi

)
Aface + f

n+1/2
i , (32)

where N is the face-normal component, and Aface is the face area. The density fields
at faces are obtained using simple arithmetic averages of density at adjacent CVs. Here
the fluid viscosity is given as µ∗face = Θ`,faceµeff,face where µeff is the summation of the
dynamic viscosity and eddy viscosity obtained from the dynamic Smagorinsky model.
The pressure gradient at the CV centers in the above equation is at the old time-level and
is obtained as described below. The reaction force fn+1/2

i is obtained through Lagrangian-
Eulerian interpolation and consists of the pressure force on the disperse phase. In the
above step, the viscous terms are treated implicitly, the three equations for the velocity
components at the CV centers are solved using iterative scheme such as Gauss-Seidel.

• Step 3: Remove the old pressure gradient to obtain the velocity field, ûi:

ρn+1
cv ûi − ρn+1

cv u∗i
∆t

= +
δp

δxi

n

(33)

• Step 4: Interpolate the velocity fields to the faces of the control volumes and consider
the corrector step:

ρn+1
face u

n+1
N − ρn+1

face ûN

∆t
= − δp

δxN

n+1

, (34)

where ûN = ûi,faceNi,face is the approximation for face-normal velocity and Ni,face are the
components of the face-normal. To compute the face-based pressure gradient, we make
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14 E. SHAMS, J. FINN AND S. V. APTE

use of the face and its two adjacent CVs (CV1 and CV2) as shown in figure 2c. The
face-normal pressure gradient is discretized as:

δp

δxN

n+1

=
pn+1

nbr − pn+1
cv

|Scv→nbr|
, (35)

where the subscripts cv and nbr stand for the the control volume CV for which the
velocity field is being solved and the neighboring CV sharing a common face, respectively
and |Scv→nbr| represents the magnitude of the vector connecting the two control volumes.

• Step 5: The pressure field and the pressure gradients at tn+1 are unknown in the above
step. A pressure Poisson equation is derived by taking a discrete divergence of the above
equations and solving for the pressure field at each control volume:∑

face of cv

∆t
δp

δxN

n+1

=
∑

faces of cv

ρn+1
face ûi,faceAface + Vcv

ρ
n+3/2
cv − ρn+1/2

cv

∆t
. (36)

• Step 6: Reconstruct the pressure gradient at the CV centers. The face-normal pressure
gradient δp

δxN
and the gradient in pressure at the CV-centroids are related by the area-

weighted least-squares interpolation [40, 39]:

εcv =
∑

faces of cv

(
P ′i,cvNi,face − P ′face

)2
Aface, (37)

where P ′i,cv = δp
δxi

and P ′face = δp
δxN

.
• Step 7: Compute new face-based velocities, and update the CV-velocities:

un+1
N = ûN −

∆t
ρn+1

face

δp

δxN

n+1

(38)

un+1
i,cv = ûi,cv −

∆t
ρn+1

cv

δp

δxi,cv

n+1

(39)

5. NUMERICAL TEST CASES

The above numerical scheme is applied to different test cases in order to evaluate its accuracy.
First, the accuracy of the numerical implementation are verified by conducting simple test
cases with and without volumetric coupling. This includes potential flow field developed by an
oscillating bubble, bubble dynamics due to imposed pressure variations testing the effectiveness
of the adaptive time-stepping approach, and trajectory of a single bubble (with and without
cavitation) in a vortical flow. Interactions of non-cavitating micro-bubbles with vortical flows
are then investigated using the Euler-Lagrange volumetric coupling model and compared with
other simulation techniques such as Euler-Euler two-fluid approach. Effect of large bubbles
on a traveling vortex tube is used as a validation test case comparing the predictions of the
volumetric coupling model with experimental data of Sridhar & Katz [55]. Also the capability
of the bubble dynamics model together with large-eddy simulation in predicting small-scale
cavitation and cavitation inception in a high-speed flow over an open cavity are tested by
comparing with the experimental data of Liu & Katz [37]. Finally, LES of dense rising bubble
plume in a liquid column is also conducted to study the effect of the volumetric coupling
in capturing vortical flow field generated by the bubble motion. These numerical cases are
described below.
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EULER-LAGRANGE SIMULATION OF BUBBLY FLOWS 15

5.1. Oscillating bubble:

A single air bubble is placed in water inside a cubical domain. A sinusoidal perturbation is
imposed on the bubble. Bubble radius changes in time as Rb = Rb,0(1−ε sinωt), where Rb and
Rb,0 are the instantaneous and the initial radius, respectively, ε is the perturbation magnitude,
ω is frequency and t is time. In this simulation, Rb,0 = 0.01 × D, where D is the cube size,
and gives overall bubble concentration of 4 × 10−6, ε = 0.1, ω = 50 [Hz]. One can derive the
analytical expression for pressure, following the potential flow theory [45],

p(R)− p(∞)
ρR2

0ω
2

= −ε sinωt+
2
3
ε2
(

1− 5
2

sin2 ωt

)
, (40)

where ρ is liquid density.
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Figure 4: Flow developed by an oscillating bubble: (a) Pressure distribution caused by volume
displacement around the bubble (solid line) and two-way coupling alone (neglecting volume
displacement effects, shown by dashed line) compared with analytical solution (symbols), (b)
instantaneous velocity vector field due to bubble oscillations.

Figure 4a shows the radial distribution of hydrodynamic pressure around the bubble created
by the size variation at t∗ = 0.3 where t∗ = t/T and T = 2π/ω. Also shown are the
instantaneous velocity vectors due to bubble oscillation (Figure 4b). The pressure field is
well predicted by the present numerical scheme with volumetric coupling effects whereas the
two-way coupling alone does not predict any variations in pressure as shown by the dashed
horizontal line. Note that the grid resolution used for this calculation is such that the bubbles
are smaller or comparable in size to the control volume dimension. The domain size was
considerably larger (10 times) than the bubble size (even at the maximum radius of the bubble).
It was verified that he boundary effects were minimal in this test case by varying the domain
size compared to the bubble size. The above result indicates that that the local variations in
mixture density in momentum and continuity equation provide the correct solution even for a
single, subgrid bubble with very low volume loading.

In another example two bubbles oscillating in tandem were considered [51]. Two similar
bubbles were placed in a box and their radii change sinusoidally as above with a phase difference
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16 E. SHAMS, J. FINN AND S. V. APTE

of π [rad]. All properties were similar to the single bubble case, except they are both located
D/6 away from the box center. The result is a doublet-like flow which is also well captured by
the volumetric coupling model.

5.2. Bubble Dynamics Under Imposed Pressure Variations:

(a) Imposed outside pressure

(b) R(t), λ1(t), λ2(t) (c) Number of iterations

Figure 5: Time variation of bubble radius and eigenvalues (λ1,2) for a cavitating bubble with
imposed pressure variations.

To test the adaptive time-stepping approach, a numerical test case is considered wherein
the external pressure is specified as a function of time and the bubble radius is computed
using the Rayleigh-Plesset equation. This test case was also used by Alehossein & Qin [1]
(denoted as AQ2007 henceforth) in their work on simulating cavitating bubbles in a convergent
divergent nozzle. Figure 5a shows an imposed pressure variation to a stationary bubble. The
fluid properties are those for water (ρ` = 1000 kg/m3, µ` = 0.798×10−3 kg/ms, σ = 0.072 N/m,
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EULER-LAGRANGE SIMULATION OF BUBBLY FLOWS 17

pv = 0.00424 MPa). A bubble of initial radius (Rb,0 = 100 µm, dRb,0/dt = 0) is subjected to
the outside pressure variation shown in figure 5a. The bubble undergoes growth and collapse
as the outside pressure decreases and increases with time. Rapid accelerations and variations
in bubble radius are observed. This test case is challenging for a numerical scheme based on
constant time-steps. For an explicit Euler scheme, for example, a constant time-step on the
order of 10−17 s would be required to capture the bubble growth and collapse and maintain a
stable solution. Multiple periods of bubble oscillation would be very time-consuming for such
an approach and adaptive time-stepping is essential. Figure 5b shows the solution obtained
from the adaptive time-stepping. Also shown are the temporal variations in the eigenvalues λ1

and λ2 of the the coupled system of equations 24. Deviation of these eigenvalues from a value
of unity correspond to rapid growth or decay period of the bubble and are good indicators
for adaptive time-stepping. The time-step is thus changed if the eigenvalues depart from the
unity value by 5% or more. With this approach stable solutions are obtained for much higher
time-steps and multiple periods of bubble oscillation can be easily computed. Figure 5c shows
that only around 2000 iterations are required to compute five periods of bubble oscillation.
A time-step refinement study provided little variations in the predicted values of the bubble
radius.

To analyze the robustness of the present stability theory-based adaptive time-stepping
scheme, a similar test case as the above was considered. The outside pressure variation was
similar to the above case, except that the range of pressure changes was from 12 kPa to
−1 kPa, corresponding to the small pressure case by AQ2007 [1]. The initial bubble size is
small (2 micron), chosen mainly because small bubbles exhibit strong sensitivity to outside
pressure variation. Figure 6 compares the time evolution of the bubble radius as predicted by
the present adaptive time-stepping scheme, the approach by AQ2007, and constant time-step
fourth-order Runge-Kutta schemes. It is observed that the adaptive time-stepping criterion
of the present approach is very robust providing stable and accurate evolution of the bubble
radius.

Figure 6: Comparison of the present stability theory based adaptive time-stepping approach
with that of AQ2007 [1] showing robustness of the present criterion.
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18 E. SHAMS, J. FINN AND S. V. APTE

Table I: Computational parameters for the Rankine vortex.

Γ (m2/sec) V∞(m/sec) C0(m) ac(m) ReC0 ρ`(kg/m3)
1.91511 12.5 0.6096 0.009486 7.62× 106 1000

Grid Size small medium large
Nxy ×Nz 1182 × 3 2362 × 4 4722 × 8

The robustness of the adaptive time-stepping was further tested in large-eddy simulation of
small-scale cavitation in flow over an open cavity; wherein bubbles of different size are injected
in the shear layer and undergo rapid variations in their radius due to spatio-temporal changes
in the pressure field. This test case is presented later in section 5.5.

5.3. Bubble Trajectory in a Vortex:

Accurate prediction of bubble motion in a vortex is highly important since forces other than
drag (i.e. lift and added mass) may become significant in this complex flow. We chose a line
vortex configuration to evaluate the ability of the method to accurately compute the bubble
trajectory in a vortical flow. A line vortex (often called Rankine Vortex) is a model for vortical
flow generated at the tip of ship propeller blades [23]. The model consists of a forced vortex
region in the core of the vortex, and a free vortex region outside the core. Flow velocity and
pressure are defined as

uθ(r) =
{

Γ
2πa2

c

r , r ≤ ac;
Γ

2πr
, r > ac

}
(41)

pω(r) =
{
p∞ −

ρΓ2

4π2a2
c

+
ρΓ2r2

8π2a4
c

, r ≤ ac; p∞ −
ρΓ2

8π2r2
, , r > ac

}
, (42)

where uθ is the angular component of velocity vector, Γ = πa2
cω is the vortex circulation, ω

is vorticity inside the core, r is the radial distance to the vortex center, and ac is the vortex
core radius, within which the circulation is constant, and outside of the core is zero. Vortex
core size, vorticity, and circulation which are functions of the velocity in z direction (V∞) and
chord length of the propeller (C0).

Motion of a single air bubble in a line vortex is simulated using the discrete bubble model
with volumetric coupling. This test case shows the ability of the method to accurately predict
the bubble motion in a relatively complex flow on an unstructured grid. The flow configuration
is the same as medium scale vortex used by [23] and listed in the table I. Bubble diameter and
density are db = 100 µm and ρb = 1 kg/m3, respectively and it is initially located at r = 9 mm
from the vortex center.

A cylindrical domain is chosen for this test case. Boundary conditions are wall on the
peripheral boundary and periodical on the xy-plane. The computational grid is shown in
figure 7. A grid convergence study is conducted by performing simulations at three different
resolutions as shown in Table I. The numerical simulation results are compared to the Rankine
vortex model to calculate the error associated with the single phase flow itself. Figure 8 shows
L2 norm for error in the horizontal velocity component indicating a second-order accuracy. The
error is defined as uerror = |(ucomp.−umodel)|/umax, where ucomp. and umodel are velocity of a
particular location from computation and Rankine model, respectively, and umax is maximum
velocity in the domain.
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(a) entire domain in vortex plane (b) grid refinement in the vortex core

Figure 7: Computational grid for the Rankine vortex simulations (coarse grid is shown.)

(a) error versus time (b) error versus grid size

Figure 8: Time evolution of L2 error in the horizontal velocity component for the Rankine
vortex.
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20 E. SHAMS, J. FINN AND S. V. APTE

5.3.1. Non-Cavitating Bubble: Trajectory of a single bubble with 100 µm diameter and
density of 1 kg/m3 is studied in the Rankine vortex. Bubble is initially located close to the
vortex edge at r0/ac = 0.95. The initial velocity is set to the local flow velocity, which is
almost the maximum velocity in the domain. Different force models include drag, lift, added
mass, pressure, and buoyancy force. Figure 9 shows the trajectory of the bubble indicating a
spiral trajectory towards the vortex center, mainly under influence of drag, added mass, and
pressure force. The figure compares the trajectory obtained using two approaches for different
grid resolutions: (i) the fluid velocity and pressure fields used in the computation of the forces
on the bubble (for example, drag, lift, added mass, pressure force etc.) are obtained from the
solution of the Navier-Stokes equations, (ii) the fluid and pressure fields are taken from the
exact solution of the Rankine vortex (equations 41) at the bubble location.

The first approach includes the interpolation errors from the grid control volume to the
bubble location, time and space integration of the fluid flow and the discrete bubble equations.
The latter approach basically provides the true trajectory of the bubble if the effect of the
bubble motion on the fluid flow is neglected. For a large section of the bubble trajectory,
all three grid resolutions show very close agreement with the direct integration result. Near
the vortex center; however, the coarse grid is less accurate, due to insufficient grid resolution
(shown in figure 9(b)).

(a) BubbletrajectoryandCp contours (b) medium grid shown

Figure 9: Trajectory of single bubble using small (dash-dotted red line), medium (dashed
green line), and large (solid blue line), in comparison to the results from direct integration of
equations of motion in Rankine vortex model (solid cyan line).

In order to further quantify the accuracy of the bubble trajectory, an L2 error in trajectory is
monitored (figure 10). Here the error is defined as rerr = |(rcomp−rdirint)|/ac, where rcomp, and
rdirint are bubble distance to the vortex center from the computation and direct integration,
and ac is the vortex core radius. The error is integrated in time to calculate the L2 norm.
Close to second order convergence is observed.
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(a) error of radius calculation with different number
of grids

(b) L2 error for different number of grids

(c) error of radius calculation with different time
steps

(d) L2 error for different time steps

Figure 10: Error in the trajectory of a single non-cavitating bubble in a Rankine vortex,

5.3.2. Cavitating Bubble: In this test case, we compare trajectories of a single bubble in
Rankine vortex, with and without cavitation. When the bubble travels to the vortex center,
it starts growing due to the decreasing pressure towards the vortex center. It is important to
have a smooth representation of the pressure field seen by the bubble (P∞) as the bubble goes
from one control volume to another. The pressure seen by the bubble is basically obtained
by interpolating the pressure gradient from the faces of the cv to the cv centers using the
least-squares interpolation consistent with the pressure reconstruction. The pressure field at
any point within the cv centers is then obtained by using a linear interpolation in space as well
as linear interpolation in time. This preserves the continuity of the pressure field from one cell
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to another. In the present model, we do approximate that the outside pressure (or the pressure
seen by the bubble) by interpolating it to the bubble center. Chahine and co-workers [23] have
developed a Surface Average Pressure (SAP) model to more accurately represent the pressure
field seen by the bubble. Knowing the size of the bubble and assuming a spherical bubble, this
model can be easily implemented into the present framework as well (with little additional
cost). However, for present test case this surface averaging of the pressure was not included.

Bubble growth changes the effect of the different forces on the bubble trajectory. Figure 11
shows trajectory of a 23 µm bubble with and without cavitation. The bubble moves towards the

Figure 11: Trajectory of cavitating (solid line) versus non-cavitating (dashed line) bubbles in
a Rankine vortex. The dash-dot line shows the vortex core.

center very slowly, since the flow acceleration is small at the initial radial location (r0 = 2.4ac).
But once it faces a slightly lower pressure region at r = 2ac, it starts growing. When the bubble
grows the added mass effect and pressure force effect grow and it accelerates faster towards
the center. Once the bubble enters the core, growth continues unrealistically (since there is no
feedback effect on the flow in this test case to stop the growth) until gravity becomes important
and it starts rising then.

5.4. Bubble-Vortex Interactions:

Interaction of multiple bubbles with vortical structures is important for many turbulent and
separated flow structures. For example, turbulent cavitating flows involve highly separated
flow structures behind propeller blades giving rise to tip vortices that can be modeled by a
Rankine vortex [23], traveling vortex rings generated during propulsion and crashback [29], or
recirculation regions over hydrofoil structures. In this section, we test the discrete bubble
model’s capability in accurately capturing the interaction of bubbles with vortical flows.
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Specifically, we investigate: (i) large number of micro-bubbles in decaying Taylor-Green vortex,
and (iii) a few large bubbles in a traveling vortex tube. The first case is based on the Euler-
Euler two-fluid modeling of bubble-vortex interaction by Ferrante and Elghobashi [18] and
allows comparison of the discrete bubble model with the two-fluid model. The second case is
based on the experiments by Sridhar and Katz [54, 55] on bubbles entrained in a vortex ring
and provides validation of the volumetric coupling effects.

5.4.1. Taylor-Green Vortex: Taylor-Green vortex is a two dimensional decaying vortex which
has exact solution of Navier-Stokes equations for a single phase, incompressible flow. It is
frequently reported as a test case for validation of numerical schemes for single phase flows.
The flow velocity component is given as:

Ux = −ω0
ky
k2

exp(νk2t) cos(kxx) sin(kyy), (43)

Uy = −ω0
kx
k2

exp(νk2t) sin(kxx) cos(kyy), (44)

where ω0 is the initial vorticity, kx and ky are wave number in x and y direction, k2 = k2
x+k2

y,
and ν is the kinematic viscosity.

In a vortical flow, bubbles start migrating to the vortex center, essentially due to added
mass and pressure gradient effects as shown by Ferrante and Elghobashi [18] (whose work will
be referred to as FE07 henceforth). We choose one of the cases from FE07 (case a), to compare
our Euler-Lagrange results to their Euler-Euler two-fluid computations. We use a tetrahedral
unstructured mesh for these simulations. Bubbles start migrating in spiral routes towards the
vortex centers (high enstrophy regions), mainly under the influence of the effects from pressure
gradient and added mass (in this flow Du/Dt). Bubble concentration in the high enstrophy
regions starts growing and consequently this motion modifies the flow field. Their results show
that, micro bubbles with small initial volume fraction (∼ 0.01) can remarkably modify the
vortex.

Figure 12 shows the time variation of bubble concentration at the vortex center in comparison
to the results of FE07. Both results from one-way coupling and volumetric coupling compare
well with the Euler-Euler two-fluid computations from FE07. Figure 13 shows the modified
flow vorticity in axial direction and in time. Our one way coupling result, match perfectly
with the two-fluid formulation. The volumetric coupling effects also show similar trends. Small
variations are mainly due to differences in the models. The variations in bubble concentrations
in the initial times is close to the Euler-Euler simulation by FE07; however, at later times
our predictions are slightly higher. This difference is perhaps due to the numerical diffusion
present in the Euler-Euler scalar-transport models nature of the Euler-Euler models. In the
present Euler-Lagrange scheme, however, the Lagrangian tracking is accurate to second-order
accuracy as shown in earlier test cases.

5.4.2. Traveling Vortex Tube: Interactions of micro-bubbles with a traveling vortex
corresponding to the experiments by Sridhar and Katz [54, 55] are investigated. Specifically,
Sridhar & Katz observed that eight small bubbles, once entrained into a vortex ring, could
deform the ring significantly. The simulations are setup to investigate if the discrete bubble
model with volumetric effects can capture this phenomenon.

The computational domain and the evolution of an undisturbed pair of vortex tubes are
shown in Figure 14. There is an inflow boundary at the left wall, an outflow condition at

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 00:1–0
Prepared using fldauth.cls



24 E. SHAMS, J. FINN AND S. V. APTE

t

C
m
/C

0

0 0.05 0.1 0.15 0.2 0.25 0.3
0

20

40

60

80

100

Figure 12: Bubble concentration (normalized by maximum initial value) at the vortex center
from one-way coupling (solid line), and volumetric coupling (dashed line), in comparison to
one-way (squares) and volumetric (circles) coupling simulation from FE07 [18].
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Figure 13: Flow vorticity (normalized by maximum initial value) in comparison to the
simulation by FE07.
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Figure 14: Computational domain and vortex tube evolution: (a) Two, symmetric vortex tubes
are created by an inlet jet pulsed at X = 0. Contours show vorticity out of the plane as the
undisturbed vortex travels downstream. Location of bubble injection is X/hjet = 5.0

the right boundary, and walls on the top and bottom. The total domain size is X/hjet = 10
by Y/hjet = 3 and is centered at Y/hjet = 0. At the left inlet boundary, a jet is pulsed for
0.27 seconds into the initially quiescent domain, which causes the roll up of two symmetric
vortex tubes. The contours in figure 14 show the diffusion of high vorticity as the vortex
tube travels downstream. Table II lists the computational parameters used in this study. The
inflow velocity is a function of time, and is described by a sixth-order polynomial to match the
experimental conditions. To keep the size of the computation small, a two-dimensional domain
is simulated with periodic conditions in the spanwise direction giving rise to a vortex-tube. A
uniform Cartesian grid is used throughout the area below the line of symmetry with a total of
800× 121 elements in the X and Y directions.

Table II: Parameters for the traveling vortex tube case.

Parameter Value
ρl, νl 1, 000 kg/m3; 10−6 ms−2

Domain Size 1m× 0.15m× 0.005m;
Grid Size 800× 121× 4
Jet height (hjet) 0.1 m
Inflow Time 0.27 s
Initial Vortex Strength, Γ0(m2s−1) 0.0159, 0.0207, 0.0254
Bubble Size (µm) 500, 700, 900, 1,100
Inflow Velocity U(t) =

∑6
n=0 ant

n

a6, a5, a4, a3 62278; -47082; 13686; -2062
a2, a1, a0 159.5; -1.289; 0.006

At a value of X/hjet = 5.0, eight bubbles are injected below and in front of the vortex
core. Due to buoyancy, the bubbles rise around the rear of the vortex and are swept into
the downward velocity region on the forward side of the passing core. A parametric study
is performed to determine how bubble settling location and vortex structure are affected by
bubble size and vortex strength. Depending on the Stokes number, the bubbles may circle
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the core multiple times before ultimately reaching their final settling location, where their
average motion relative to the vortex center is zero. Once they have reached this state,
the settling coordinates (rs, θs) are averaged over all bubbles and in space over a distance
of 5.2X/hjet < Xvx < 5.8X/hjet. The average settling radius for each case is plotted
against the non-dimensional parameter gd3

b/8Γ2
0 (ratio of buoyancy force to hydrodynamic

pressure gradient) in figure 15 alongside the experimental data. Even at this small overall
volume fraction, the local volume displacement effects are crucial in obtaining the correct
bubble settling radius, particularly as the ratio of bubble size to vortex strength is increased.
In obtaining these results, the lift coefficient measured by Sridhar & Katz [54] was used;
CL = 0.22α−3/4, where α is the local shear rate.
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Figure 15: Comparison of the non-dimensional settling location with the experimental results
of Sridhar & Katz [55]. The parameter gd3

b/8Γ2 is the non-dimensional ratio of the buoyancy
force and the hydrodynamic pressure gradient experienced by the bubble. (•) Experimental
data, 2 simulations with two-way coupling (neglecting volumetric effects), 4 simulations with
the volumetric displacement effects.

Importantly, significant vortex distortion is predicted by the numerical model for certain
bubbles with parameters similar to those observed in the experiments. In the absence of the
bubbles, the vortex core is stable. In the presence of some entrained bubbles, the vortex core
deforms, altering the vorticity distribution as shown in figure 16. The contours of vorticity
in figure 16a are shown approximately 1 second after bubble entrainment. The core has been
fragmented into several regions of higher vorticity. The average radial vorticity distribution
(figure 16b) shows that the volumetric displacement of the fluid due to bubble motion has
resulted in a decrease of inner core vorticity, while a band of high vorticity has been created
just outside of the bubble settling radius. The vortex distortion was found to be predominantly
an effect of variations in the void fraction as the bubbles travel to their settling location. This
was confirmed by computing the bubble trajectories without considering the void fraction
variations. With two-way coupling and neglecting volumetric displacement effects (i.e. Θ` set
equal to 1), vortex distortion was not obtained for any of the cases studied. This test case
confirms the effectiveness of the present numerical model in properly predicted bubble-vortex
interactions.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 00:1–0
Prepared using fldauth.cls



EULER-LAGRANGE SIMULATION OF BUBBLY FLOWS 27

r
c


π

3 __

π4

1


__
π

2

1


__

π
4

0

1__

π4

1__
π

2

3__
π

4

(a) Vorticity contours

r/r
c

ω
(r

)

0 0.5 1 1.5
0

20

40

60

80

(b) Radial vorticity distribution

Figure 16: Vortex distortion by the entrained bubbles (db = 1, 100µm bubbles; Γ0 =
0.0159 m2s−1) : (a) vorticity contours and average bubble location (black dot), (b) radial
mapping of vorticity. (—) with void fraction variations, (- - ) without accounting void fraction
variations.

It should be noted that the intention of this test case was to indicate the effectiveness
of volume displacement effects in predicting the vortex distortion phenomenon. However, the
experiments are three-dimensional, whereas we use a two-dimensional approximation in present
work in order to be able to perform several parametric studies. For this reason, the level of
vortex distortion observed in the experiments cannot be compared directly to that predicted
by the simulations. However, the qualitative trend as predicted by the volumetric effects is
compared with the experimental data as opposed to purely two-way coupling effects.

5.5. LES of Small Scale Cavitation and Inception in Flow Over an Open Cavity:

This flow configuration is based on the experimental study of Liu and Katz [37] (will be referred
to as LK2008 henceforth); wherein high-speed flow over a nearly square cavity is studied. The
Reynolds number based on the cavity length (see figure 17) 170,000 and upcoming stream to
the cavity section is fully turbulent, due to the presence of tripped section at the inlet ramp to
the cavity (see [37] for the details). They have shown that cavitation occurs near the trailing
edge of the cavity and on the shear layer (for low cavitation indices). Upstream flow velocity
is 5 m/s, cavity length (L) and (D) are 38.1 and 30 mm, respectively. We performed a large
eddy simulation of this flow to study small-scale cavitation and cavitation inception using the
discrete bubble model. In our study, bubbles of different sizes are injected upstream of the
cavity and their size variation due to the pressure fluctuation on the shear layer is modeled
by solving Rayleigh-Plesset equation. Outside pressure variations are directly taken from the
pressure data at the bubble location.

The computation is performed on a grid (figure 17) with predominantly orthogonal,
hexahedral elements together with unstructured grid connectivity. Three different
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(a) 3D View (b) Symmetry Plane

Figure 17: Computational domain and grid: (a) three-dimensional domain with Cartesian grid,
(b) refined grids (dimensions shown are in mm) are used in the shear layer and near the cavity
leading and trailing edges. A zoomed-in view of the grid near the trailing edge is shown in wall
co-ordinates.

computational grids are used to study grid dependency. The total number of elements is nearly
5 million with approximately 2 million grid elements inside the shear layer. The smallest grid
size is 1.1 in wall units. More details of the simulation settings are shown in Tables III and
IV.

Table III: Properties for flow over cavity (+ denotes wall units, y+ = yuτ/ν).

Average inflow velocity U∞ = 5.175 m/s
Kinematic viscosity 1.121× 10−6 m2/s
Reynolds number ReL = 170, 000
Vapor pressure Pv = 2.337 kPa

Table IV: Cavity geometry and computational grid (+ denotes wall units, y+ = yuτ/ν.
uτ ≈ 0.42 at a point upstream of the leading edge). Base grid is refined in all directions
compared to coarse grid. Fine grid is refined in spanwise direction compared to base grid.

Geometry and parameters Cavity size 38.1× 30× 50.8 mm3

Duct size 92.4× 20× 50.8 mm3

Cavity length L 38.1 mm
Average inflow velocity, U∞ 5 m/s
Reynolds number ReL = U∞L

ν 170,000
coarse grid ∆xmin = ∆ymin, ∆x+

min = ∆y+
min 3.8 µm, 1.3

(6× 105) ∆z, ∆z+ 1000 µm, 348
base grid ∆xmin = ∆ymin, ∆x+

min = ∆y+
min 1.9 µm, 0.67

(5× 106) ∆z, ∆z+ 500 µm, 174
fine grid ∆ymin, ∆y+

min 2.0 µm, 0.7
(7× 106) ∆z, ∆z+ 200 µm, 69
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(a) x/L = 0.08, Mean (b) x/L = 0.2, Mean (c) x/L = 0.32, Mean

(d) x/L = 0.08, RMS (e) x/L = 0.2, RMS (f) x/L = 0.32, RMS

Figure 18: Effect of grid refinement on the mean and rms of stream-wise flow velocity
component. Shown in the figures are the results from the fine (solid line), coarse (dashed
line) computational grid, and experimental data (symbols) of LK2008.

In the present simulation, the turbulent boundary layers are resolved, and no-slip conditions
are applied at all walls. A convective outflow boundary condition is applied at the outlet.
In the experimental setup, the upstream region of the duct consists of a convergent section
near the bottom wall and the flow is tripped using thirteen notches to create turbulence [37].
In the experiments, there was also a significant amount of vertical velocity in the downward
direction, possibly obtained because of the convergent section in the upstream part of the duct.
The divergent section is not simulated in the present study. Instead, it is assumed that the
flow is fully developed and the experimentally measured mean velocity field in the symmetry
plane is used to specify the inlet conditions. To create proper turbulence structures, a separate
periodic flow in a duct is simulated at the desired mass-flow rate and Reynolds number using
a body-force technique [46]. The Reynolds number based on the friction velocity for the inflow
duct is very high (Reτ = 7500). To match the mean flow with the experimental data, we use
the mean flow field from the experiments and the instantaneous velocity fluctuations from the
periodic duct flow as inlet conditions for the cavity calculation. In order to show the accuracy
of the flow simulation, a comparison of the flow velocity statistics to those of experiment is
presented.

Figure 18 shows the mean and rms of horizontal velocity distribution against experimental
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(a) Mean Velocity (b) RMS Velocity (c) Reynolds Stress

Figure 19: Comparison of velocity statistics in the vertical direction near the trailing edge: (a)
u
U∞

, (b) urms

U∞
, (c) uv

U∞
, where U∞ = 5 m/s is the upstream velocity. Symbols are experimental

data (LK2008), lines correspond to present simulations fine (solid line), base (dotted line)
coarse (dashed line).

results near the leading edge of the cavity for the fine and coarse grid resolutions. The mean
flowfield is captured reasonably well by both grids. RMS values, however, show more substantial
dependence on the grid resolution. Better agreement achieved with the finer grid, especially
away from the boundary layer edge. Figure 19 shows comparison of normalized mean velocity,
rms velocity and Reynolds stress near the trailing edge, again showing good comparison on fine
grid. Owing to the large friction Reynolds number for upstream duct flow, precise predictions of
the rms fluctuations compared with experimental data is difficult even for large-eddy simulation
in the wall-bounded region. Detailed comparisons of the flow statistics over the shear layer
and the trailing edge showed reasonable predictive capability of the present LES (for the mean
and rms fluctuations) on fine grids [51]. In addition, near the trailing edge (where the shear
layer impinges), there are no homogeneous directions to average the dynamic Smagorinsky
constant used in the LES subgrid model. This may influence the turbulence levels and further
investigation of the subgrid LES model is needed.

Cavitation inception is studied using the discrete bubble model with adaptive time-stepping.
The gas content in the liquid was assumed to be small (initial gas void fraction was assumed to
be 10−5). It is important for the bubble nuclei to pass through the small pressure regions above
the cavity (‘window of opportunity’ to get drawn into low pressure regions and cavitate) [25].
Accordingly, air nuclei were distributed evenly in a small band around the shear layer. The
bubbles were initially injected over a small region in stream-wise direction and in a band of
10 mm in the mid section of flow span. In order to keep the number of bubbles constant in
the domain, bubbles were continuously injected near the leading edge and removed farther
away from the trailing edge. Bubbles are released near the leading edge and their size changes
according to the outside pressure variation on the shear layer. The initial bubble size and
the cavitation index (σi) were varied to numerically predict the inception index as well as to
investigate the sensitivity to the model parameters. Table V shows the parameter setup in
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these studies.

Table V: Case studies to analyze cavitation inception using the Discrete Bubble Model.

Case Figure dinitial σi
Symbol (µm)

C1 square 10 0.4
C2 triangle 50 0.4
C3 circle 100 0.4
C4 diamond 50 0.9
C5 circle (filled) 50 1.4
C6 square (filled) 50 0.1

Figure 20 shows temporal evolution of bubble locations inside the shear layer and above
the trailing edge. The size of the scatter symbols is scaled with respect to the size of the
bubble. Accordingly, large size bubbles are obtained near the trailing edge. The initial pressure
inside the bubble was set based on an equilibrium radius corresponding to the radius of the
nuclei and its location in the domain. Using the Rayleigh-Plesset equations (3), at equilibrium
conditions, the pressure inside the bubble can be obtained as: Pb = P out + 2S/Rb (S is the
surface tension coefficient). The bubbles are then advected using the adaptive time-stepping
described earlier. On an average, approximately 100, 000 bubble trajectories are tracked at
each instant. This also tests the robustness of the adaptive time-stepping procedure outlined
earlier. Figure 21 shows the trajectories and bubble outside pressure variation in time for two
different bubbles. Bubble radius and time are non-dimensionalized by initial radius and cavity
flow through time of cavity, respectively. Figure 21 shows sharp variation of bubble radius
near the trailing edge, where the pressure suddenly drops in the separation zone. For lower
cavitation index, bubble growth in the trailing edge can be much larger. The sharp variations
in pressure, causes a huge bubble growth, especially when the cavitation index is low. This
needs to be handled with a very small time step to capture the collapse and rebound process
properly. The adaptive time stepping method handles this behavior very well, without adding
significant computational overhead for bubble dynamics. For upstream cavitation number of
σi ≤ 0.4, small-scale cavitation was observed on the shear layer in the experiments. The
discrete bubble model predicted cavitation on the shear for lower values of σi ∼ 0.2. However,
a scalar-transport based model [51] did predict occurrence of cavitation on the shear layer for
σi ≤ 0.4. This suggests that for the discrete bubble model, it is critical for the bubbles to have
sufficient time to be trapped into the vortical structures observed in the shear layer.

In order to gain better understanding of how different parameters such as the initial bubble
size and cavitation index σi affect the inception and the behavior of bubbles, three different
initial bubble sizes (10, 50, and 100 µm) were considered with a constant cavitation index
(σi = 0.4). In addition, four different cavitation indices (0.1, 0.4, 0.9, and 1.4) were examined
on a certain initial bubble diameter (dinit = 50 µm). Table V shows different diameters and
cavitation indices used in the present study. Effect of cavitation index on the bubble cavitation
is studied in more detail by performing PDF analysis on the bubble size distribution. This
analysis is done on the entire bubbles in the whole simulation domain and also in three different
zones of interests. These zones are defined on the shear layer (zone 1 and 2) and trailing edge
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(a) side view (b) top view

Figure 20: Temporal evolution of bubble distribution (initial size 50 µm) on the shear layer
for σi = 0.4: (a) side view showing entire shear layer and trailing edge, (b) top view above the
trailing edge.

Figure 21: Temporal evolution of bubble radius (normalized by initial radius) and outside
pressure coefficient (Cp) seen by the bubbles for two sample trajectories of bubbles released
near the leading edge. The upstream pressure level is set based on σi = 0.8. Bubble is released
at y = 0.2 mm from the leading edge surface.
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(zone 3) and shown in figure 20. This analysis will clearly show which zones are more prone
to cavitation and the effect of σi on the number of bubbles undergoing changes in diameter.
Figure 22 shows the results of PDF analysis on the entire bubbles and also different zones.

(a) (b)

Figure 22: Effect of cavitation index σi on the PDFs and average number of bubbles (Nb)
sampled based on the growth ratio (d/dinitial) for case C2 (triangle symbols), C4 (diamond
symbols), C5 (filled circles), and C6 (filled square): (a) PDF of all bubbles over the region of
interest; (b) average number of bubbles in zone 3 (trailing edge).

Figure 22(a) shows that the majority of bubbles have not grown and they retain their initial
size. This shows the importance of regional sampling in this analysis, since only a few bubbles
have the chance of being trapped in the low pressure zone on the trailing edge. This figure
shows that decreasing cavitation index σ increases the PDF of higher growth ratios for bubbles.
PDF of growth increases up to three orders of magnitude for instance for bubbles of 10 times
larger (d/dinit = 10). The maximum growth rate almost increases two orders of magnitude by
decreasing σ from 1.4 to 0.1. Near the trailing edge, large differences in the average number
of bubbles with the same growth ratio are observed (figure 22(b)). For the lowest σi (C6),
number of large bubbles observed near the trailing edge is at least an order of magnitude more
than other cases (C2, C4, and C5). The highest cavitation index nearly shows no cavitation
above trailing edge. Numerically the inception index of 0.9 was predicted to be close to that
observed in the experiments.

5.6. LES of Rising Bubble Column:

In this study, we demonstrate the effectiveness of our approach in simulating buoyancy driven
dense bubbly flows. The geometry selected corresponds to the ‘Becker case’ [6], which has
become an almost standard test case in the chemical engineering literature [52] [14] [13] [26].
The domain is shown in figure 23(a), and its characteristic dimensions are summarized in
table VI. All boundaries are assigned a no-slip condition except for the top wall at Y = 1.5,
where a slip condition (uy = 0) is applied to approximate the experimental free surface. Air
bubbles are continuously injected into the water filled domain from a disk located on the
bottom wall with a flow rate of 1.6 l/min and a superficial gas velocity of 0.66m/s. The
injection disk is 0.04m in diameter and located 0.15m from the left hand wall. At this gas
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flow rate, the fluid and bubble motion is known experimentally to be periodic in nature. We
use this test case to see if the present methods can capture the transient behavior. We use a
Dynamic Smagorinsky model to compute the subgrid scale fluid stress. In computing bubble
motion, we use the lift and drag coefficients suggested by Darmana et al. [11] for a similar
flow:

CD = max

[
min

[
16
Rep

(1 + 0.15Re0.687
p ),

48
Rep

]
,

8
3

Eo

Eo+ 4

]
(45)

CL = 0.5 (46)

Table VI: Computational parameters used for the 2D bubble column case

Lx, Lx, Lx 0.5m, 1.5m, 0.08m
nx, ny, nz 80, 150, 15
Gas Flow Rate 1.6 l/min
Superficial gas velocity 0.66mm/s
Injection location (x, y, z) = (0.15, 0, 0)
Injection area Øinj = 0.04m
Bubble Diameter 1.6mm
Bubble Density 1.2kg/m3

Liquid Density 1, 000kg/m3

Liquid Viscosity 10−3Ns/m2

Probe ‘A’ location (x, y, z) = 0.035m, 0.9m, 0.04m
Probe ‘B’ location (x, y, z) = 0.45m, 1.05m, 0.04m

In figure 23(b) we show the streamlines corresponding to the average velocity field in the
X-Y midplane. In the lower half of the domain, a large clockwise vortex is generated by the
bubbles rising along the left hand wall. The upper half is highly transient, and marked by
the periodic migration of the bubble plume in the X direction. This migration corresponds
with the growth and collapse of several secondary vortices in the upper regions of the domain.
The periodicity of the bubble plume is shown in figure 24 where we have plotted 8 snapshots
of instantaneous bubble positions, each 7 seconds apart. In figure 24a, the plume is firmly
directed against the left wall through most of its length due to the strong lower vortex. A
secondary, counter-clockwise vortex located in the upper left corner of the domain pushes the
top of the plume to the right. In figures 24b through 24e, this secondary vortex strengthens
and slides downward along the left hand wall, creating a bulge in the plume. This bulge cannot
travel into the lower part of the plume due to the size and strength of the main circulation
region, and eventually it collapses, as a new counter-clockwise vortex is created in the upper
left corner (see figures 24f through 24h).

The periodic nature of the liquid phase is shown in figure 25, where we plot the vertical
velocity in time for points ‘A’ and ‘B’ as shown in figure 23(a). The magnitude of the velocity
peaks at these two points is similar to the values measured in the experiments of Sokolichin
& Eigenberger [52]. We observe an average oscillation period of about 49 seconds, which is 8
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(a) Geometry (b) Avg. Velocity field

Figure 23: (a)Bubble column geometry showing the instantaneous bubble locations. Points A
and B correspond to the location of two velocity probes. (b) Contours of time averaged Y
component of fluid velocity. Streamtraces show the time averaged velocity field.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 24: Periodic migration of the bubble swarm. Each figure is a snapshot of instantaneous
bubble positions, with 7 seconds between each frame. The first (a) and last (h) frame are
chosen to correspond with the approximate beginning and end of one cycle.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 00:1–0
Prepared using fldauth.cls



36 E. SHAMS, J. FINN AND S. V. APTE

(a) Point ‘A’ vertical velocity

(b) Point ‘B’ vertical velocity

Figure 25: Fluid velocity at the points ‘A’ and ‘B’ shown in Figure 23a.

seconds longer than observed in the experiments. Deen et al. [13] and [14] also had trouble
matching the oscillation period in their computations. There are numerous factors which play
a role in the oscillation period including grid resolution, bubble size, lift coefficient and drag
coefficient. Also it was found that small changes in the injection velocity and inlet conditions
can influence the oscillation periods. The LES results with volumetric coupling; however, do
show the experimentally observed trends of periodic jet oscillation and large scale vortical
regions.

6. SUMMARY AND CONCLUSIONS

In this work a numerical approach capable of capturing the bubble dynamics of subgrid
(or under-resolved) bubbles was developed. A mixture-theory based Eulerian-Lagrangian
approach accounting for volumetric displacements due to bubble motion and size variations
was implemented into an unstructured grid large-eddy simulation (LES) solver [39]. The bubble
dynamics is modeled by Rayleigh-Plesset equations using an adaptive time-stepping scheme.
A generalized criterion based on the eigenvalues of the coupled ordinary differential equations
for bubble radius was developed and tested to give robust solutions for large variations in
the surrounding pressure field. A detailed verification and validation study of this approach
was performed to test the accuracy of the method on a variety of single and multiple bubble
problems to show good predictive capability. The approach was applied to study bubble-
vortex interaction in a traveling vortex tube (a two-dimensional representation of a vortex
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ring experiment by Sridhar and Katz [55]) and small-scale cavitation and inception in a high-
speed flow over an open cavity [37]. It was found that the Eulerian-Lagrangian subgrid model
captures the trends observed in the experiments. The above numerical approach is developed
in a parallel numerical framework [5] for large-scale simulations of bubbly flows. The approach
is suitable for simulation of subgrid bubble dynamics in complex flows without cavitation as
well small-scale bubbly cavitating flows. Use of unstructured grids facilitates application of the
numerical approach to complex configurations.

The approach is suitable for simulation of up to million bubbles in a turbulent flow. Large
number of bubbles with non-uniform distribution; however, can lead to presence of bubbles on
only few number of processors partaking in the simulation. This gives rise to load imbalance,
especially if the computational domain is partitioned based on the background mesh. Dual-
constraint partitioning that optimize the number of grid cells and the number of Lagrangian
points are necessary to balance the load and improve the efficiency of the scheme. These
dynamic-load balancing strategies together with advanced methods for finding the nearest
neighbors within the mollification kernels will make the current approach feasible for full
three-dimensional simulations [49].
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APPENDIX

Search Algorithm for Locating Bubbles:

In Euler-Lagrange simulations, it is necessary to locate the bubble/particle onto a background
grid as it moves from one location to another. This involves two parts: (i) strategy to decide
whether a bubble lies inside a grid control volume, and (ii) effectively locating the bubble by
applying the bubble-locating strategy to few number of control volumes.

Bubble/Particle Location Strategy: Locating particles in a generalized-coordinate structured
code is straightforward since the physical coordinates can be transformed into a uniform
computational space. This is not the case for unstructured grids. Westermann [59] describes
several approaches to locate particles in particle-in-cell codes. Two such techniques are
described below.

One approach to determine whether a particle lies inside a control volume is based on
the calculation of partial volumes. The nodes of the control volume are joined to the particle
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(a)

(b)

Figure 26: (a) Schematic of the known-vicinity algorithm to track particle positions on
unstructured grids. (b) Comparison of the modified brute force and known vicinity search
algorithms, known-vicinity, modified brute force.

location, and the volumes of the resulting sub-cells are compared to that of the control volume.
If the particle lies inside the control volume, the sum of the sub-cell volumes will be equal to
the total volume. However, this approach was found to fail drastically for highly skewed meshes
due to round-off inaccuracies in the computation of partial volumes.

The second approach projects the particle location onto the faces of the control volume and
compares these vectors with outward face-normals for all faces. If the particle lies within the
cell, the projected vectors point the same way as the outward face-normals. This technique is
found to be very accurate even for highly skewed elements. A search algorithm is then required
to efficiently select the control volume to which the criterion should be applied.

Search Algorithm: Two approaches were examined and are termed as the modified brute-
force and known-vicinity algorithms, respectively. A naive strategy (brute-force approach)
would simply loop over all the elements of the grid and applies the localization criterion
described above. As expected, it is extremely slow for a large number of particles, as is the
case even for coarse LES. The modified brute-force approach evaluates the closest point of the
mesh to the particle location and only considers the elements surrounding that point. Should
this attempt (which in general is very successful) fail, the elements surrounding all the close
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points are considered. If this also fails for some pathological cases [38], the search region is
enlarged or the brute force method is applied. This modified approach is found effective to
initialize particles, and as a fall-back position for more refined algorithms.

Given a good initial guess for a particle location, the known-vicinity algorithm out performs
all others [38]. Particle location at earlier time-steps provide a very good initial guess in LES.
Knowing the initial and final location of the particle, this algorithm searches in the direction
of the particle motion until it is relocated (Fig. 26(a)). The neighbor-to-neighbor search is
extremely efficient if the particle is located within 10-15 attempts, which is usually the case
for 95% of the particles in present simulations. If this algorithm fails, we fall-back to the
‘modified-brute force’ method to locate the particle. A combination of these two algorithms
is found highly efficient and robust for complex geometries and hybrid meshes encountered in
realistic combustor geometries. A similar approach was also applied by Li & Modest [36] to
perform hybrid finite volume/PDF-Monte Carlo simulations implying a wide range of potential
applications utilizing this scheme.

The known-vicinity algorithm is compared to the modified-brute force method in Fig. 26(b).
Two cases are considered: (i) the grid is fixed, and the particles are displaced by 2-3 cell-sizes
in all three coordinate directions, (ii) the number of particles is fixed (∼ 1000) and the number
of elements per processor is increased. The known-vicinity approach is seen to be noticeably
better than the modified brute-force. Note that these comparisons were performed on a single
processor of an Origin 2000 for a cubic box with tetrahedral elements.
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