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Abstract
A hybrid Lagrangian-Eulerian (hLE) scheme, combining a particle-based, mesh-free technique with a finite-
volume flow solver, is developed for direct simulations of two-phase flows. This approach merges the naturally
adaptive nature of particle-based schemes, for efficient representation of the interface between two media,
with the relative flexibility offered by grid-based solvers for complex flows. A mesh-free, particle-based scheme
for interface tracking (Hieber & Koumoutsakos 2005) is first integrated with a co-located grid based finite
volume solver. A balanced force algorithm (Francois et al. 2006, Herrmann 2006), for accurate representation
of surface tension forces, is used to solve the two-phase flow equations on a fixed background mesh. The
accuracy of the particle-based scheme is first verified for standard test cases on interface tracking. The
hybrid scheme is then applied to perform coupled two-phase flow simulations of stationary drop and rising
bubbles.
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Introduction
Many problems in nature and engineering in-

volve multiphase flows where a dispersed phase
(solid, liquid, or vapor) exists, in the form of a cloud
of heterogeneous size, in an ambient fluid (gas or liq-
uid) undergoing time dependent and often turbulent
motion. Examples include liquid fuel atomization in
combustion chambers of propulsion systems, bubbly
flows and drag reduction, cavitation and bubble cap-
ture over ship propellers, among others. These ap-
plications involve disparate length and time scales
for common physical phenomena of mass, momen-
tum, and energy transport across the interface be-
tween the dispersed phase and a continuum fluid.
Numerical simulation of these flows requires mod-
eling of the physics of deformation, breakup, colli-
sion/coalescence and the multiscale nature of two-
phase turbulent flows with or without chemical re-
actions.

Numerical methods to accurately track/capture
the interface between two fluids have been an area of
research for decades. Tryggvason et al. [1] provide
a detailed review on various methods used for di-
rect simulation of multiphase flows. Broadly, these
schemes can be classified into two categories: (a)
Lagrangian and (b) Eulerian approach.

Lagrangian methods use marker-points con-
nected to each other representing the interface. The
front is tracked by advecting the marker points [2,
3, 4] and the Navier-Stokes equations are solved on
a fixed grid in an Eulerian frame. Although the ac-
curacy of the method is very promising the change
in topology of the droplets/bubbles is not handled
automatically, resulting in increased complexity of
the algorithm for three-dimensional reconstruction
of the interface from marker points [1]. Another
class of Lagrangian methods include mesh-free algo-
rithms such as moving particle-methods [5], vortex-
in cell methods [6, 7], and smoothed-particle hydro-
dynamics [8], where the interface is represented by
Lagrangian points (LPs) and the flowfield is also
evaluated on these points. Pure Lagrangian meth-
ods are promising as they avoid enormous memory
requirements for a three-dimensional mesh. These
methods automatically provide adaptive resolution
in the high-curvature region [6] and have been ap-
plied successfully to many two-phase flow prob-
lems [9, 10, 11]. However, they exhibit other dif-
ficulties such as high cost of finding nearest neigh-
bors in the zone of influence of a Lagrangian point,
true enforcement of continuity (or incompressibility)
conditions, and problems associated with accurate
one-sided interpolations near boundaries [6].

Eulerian approaches such as the volume-of-fluid

(VOF) [12, 13] or the level-set method [14, 15, 16] are
used extensively for two-phase flow computations.
Both approaches are straightforward to implement,
however, level-set approach does not preserve vol-
ume of the fluids on either side of the interface. The
VOF formulation on the other hand, conserves the
fluid volume but lacks in the sharpness of the in-
terface. Several improvements to these methods in-
volving combination of the two [17], adaptive mesh-
refinement [18, 19], particle-level sets [20], refined
level-set grid scheme [21, 22, 23] have been proposed
for improved accuracy.

In addition, a variety of methods with
boundary-fitted grids [24], and deforming grids [25]
and boundary element methods, Lattice Boltzmann
method [26, 27] have been developed, but are re-
stricted to simplified geometries and flows.

In the present work, some of the limitations
of the above schemes are addressed by combining
the two broad approaches mentioned above. The
basic idea is to merge the locally ‘adaptive’ mesh-
free particle-based methods with the relative ‘ease’
of Eulerian finite-volume formulation in order to
inherit the advantages offered by individual ap-
proaches. The interface between two fluids is rep-
resented and tracked using Lagrangian points or fic-
titious particles [11]. The motion of the interface is
determined by a velocity field (interpolated to the
particle locations) obtained by solving the Navier-
Stokes equations on a fixed background mesh in an
Eulerian frame. The interface location, once deter-
mined, identifies the region of the mesh to apply
jump-conditions in fluid properties. In this sense,
it is in the realm of Arbitrary Lagrangian-Eulerian
(ALE) [28] schemes, wherein the computational grid
deforms to conform to the shape of the dispersed
phase. The potential advantage of the present hy-
brid method is that the background mesh could be of
any kind: structured, body-fitted, or arbitrary shaped
unstructured (hex, pyramids, tetrahedrons, prisms)
and may be stationary or changing in time (adaptive
refinement). Here, we use a co-located grid, incom-
pressible flow solver based on the energy conserv-
ing finite-volume algorithm developed by Mahesh et
al. [29, 30].

The Lagrangian points (LPs) in our interface
calculations, are particles1 distributed in a narrow
band around the interface [31]. These LPs are ini-
tially uniformly spaced and carry information such
as the signed distance to the interface (SDF) along
the characteristic paths. Variations in flow veloc-
ities leads to an irregular distribution of the ini-

1In this paper, the term ‘particles’ means Lagrangian
points that are used to represent the interface.



tially uniform LPs. Regularization of the particles
are performed by mapping the particles on a uni-
formly spaced lattice [11]. Values for particle prop-
erties at new LP locations are obtained through ker-
nel mollification as done in Smoothed Particle Hy-
drodynamics [8] and remeshed-SPH [10]. The nov-
elty in our approach is that this mesh-free inter-
face representation is integrated with a finite-volume
solver where the governing equations for flow evo-
lution are solved. The Lagrangian points provide
sub-grid resolution and in this respect the method
is similar to the Refined Level Set Grid (RLSG) ap-
proach [22, 23, 32]. However, here the LPs move
in space with the flow velocity as opposed to being
fixed in the RLSG scheme. Thus different discretiza-
tions are necessary and we use high-order schemes
based on mollification kernels.

The paper is arranged as follows. The gov-
erning equations and mathematical formulation are
described followed by description of the numerical
scheme. The numerical approach is then applied to
standard test cases to evaluate the accuracy of the
scheme compared to other approaches. Finally, some
preliminary results on rising bubble in a quiescent
fluid are presented.

Governing Equations

In the Level Set method [33, 31] the incompress-
ible, immiscible, two-fluid system is treated as a sin-
gle fluid with strong variations in density and vis-
cosity in the neighborhood of the interface. Let the
two fluids be labeled as ‘1’ and ‘2’ and represented
by a higher order signed distance function (SDF), Φ.
The sign of the function Φ identifies which fluid is
present whereas Φ = 0 represents the interface. The
evolution of the interface is given by the following
scalar transport equation:

∂Φ
∂t

+ u · ∇Φ =
DΦ
Dt

= 0 (1)

where D
Dt () is the material derivative. Then the

Navier-Stokes equations for the two-fluid system can
be written as,

∇ · u = 0 (2)
∂u
∂t

+u·∇u = −1
ρ
∇p+

1
ρ
∇·(µ(∇u+∇T u))+g+

1
ρ
Fσ

(3)
where u is velocity vector of fluid, p is pressure, ρ and
µ are fluid density and viscosity (uniform inside each
fluid), g body force, and Fσ is the surface tension
force which is non-zero only at the interface location
(Φ = 0). Density and viscosity are related to the Φ
value:

ρ(Φ) = ρ1 + (ρ2 − ρ1)H(Φ) (4)

µ(Φ) = µ1 + (µ2 − µ1)H(Φ) (5)

where subscripts 1 and 2 denote fluids with Φ <
0 and Φ > 0, respectively and H is the heaviside
function [17]. The interface normal and curvature
values are given as:

n =
∇Φ
|∇Φ|

, κ = ∇ · ∇Φ
|∇Φ|

(6)

Hybrid Lagrangian-Eulerian (hLE) Scheme

Figure 1: Uniformly distributed Lagrangian points
(LPs) in a thin band around the interface (solid line).
Each LP carries a signed distance Φ to the interface
which identifies the type of fluid.

As mentioned earlier, in the present work, the lo-
cally ‘adaptive’ particle-based method for interface
representation is merged with the Eulerian finite-
volume formulation in order to inherit the advan-
tages offered by individual approaches. Following
Hieber & Koumoutsakos [11], the interface between
two fluids is represented using uniformly spaced La-
grangian points (LPs) or fictitious particles in a nar-
row band around the interface as shown in Figure 1.
Each LP is associated with position xp, velocity up,
volume Vp and a scalar function Φp which repre-
sents the signed distance to the interface. The av-
erage spacing (h between the uniformly spaced LPs
is related to the volume Vp. In this work, we use
cubic elements (h = V1/3

p ). As the LPs move, they
carry the SDF value along the characteristic paths
and implicitly represent the motion of the interface.
The motion of the LPs is determined by a velocity
field obtained by solving the Navier Stokes equa-
tions on a fixed background mesh. The velocity of
each LP is obtained through interpolation from the
background mesh. The motion of the LPs, may dis-
tort the initially uniformly spaced particles and a re-
configuration step is necessary wherein the distorted
LPs are mapped to a uniformly spaced Cartesian lat-
tice. The important steps in this hybrid approach
are described below.



Lagrangian Particle Level Set
The evolution of the interface is calculated by

solving level set equations in the Lagrangian form:

DΦp

Dt
= 0;

DVp

Dt
= 〈∇ · u〉p Vp;

Dxp

Dt
= up, (7)

where p denotes the Lagrangian point or particle.
For incompressible fluids, the velocity field is diver-
gence free and theoretically, the change in volume of
the LPs (DVp/Dt) is zero.

As is done in Smoothed Particle Hydrodynamics
(SPH) and mesh-free methods, smoothed approxi-
mation of the level set function and its derivatives
can be obtained by using a mollification operator
with LPs as quadrature points. The localized mol-
lification kernel ξε generates a smooth continuous
approximation of Φ around the particle at location
xp using SDF of other particles at locations xq:

Φq =
N∑

p=1

VpΦpξε(xq − xp) (8)

where Φq = Φ(xq) and
∑N

p=1 ξεVp = 1. Differ-
ent mollification kernels have been proposed such as
quartic spline and Mn splines [8]. In this paper, we
use the quartic spline function given as:

ξε(x) =


s4

4 − 5s2

8 + 115
192 , 0 ≤ s < 1

2

− s4

6 + 5s3

6 − 5s2

4 + 5s
24 + 55

96
1
2 ≤ s < 3

2
(2.5−s)4

24 , 3
2 ≤ s < 5

2
0 s ≥ 5

2

where s = |x|/ε. Here, ε is the radius of influ-
ence around the particle (or LP) and depends on
the spacing between the LPs and the width of the
mollification kernel. For all calculations in this work
ε is set equal to the uniform spacing between the
LPs. The surface normal and curvature calculations
require derivatives of the scalar function Φ on the
particles. These are approximated in a conservative
form by using derivatives of the mollification ker-
nel [34]:

〈∇Φ〉q =
∑

p

Vp (Φp − Φq)∇ξε(xq − xp), (9)

〈∇2Φ〉q =
∑

p

Vp (Φp − Φq)∇2ξε(xq − xp). (10)

In the above equations, kernel (ξε) and its first and
second derivatives should be properly normalized
such that corresponding non-zero moment condi-
tions are satisfied (details are given in [34]).

Figure 2: Reconfiguration procedure: (a) particle-
based interface tracking, (b) distorted particle map,
(c) reconfigured particles. The background grid, al-
though not necessary for LP advection, is shown to
elucidate the hLE approach.

Particle Map Distortion, Reconfiguration and Reini-
tialization

Figure 2 shows potential problems with particle-
based methods during simple advection of a spheri-
cal interface by a stationary vortical flow. This ex-
ample is investigated in detail later. Initially all
LPs are positioned with uniform spacings between
them (Fig. 1). A background vortical flow distorts
the initial spherical interface (Fig. 2a), and the LPs
may overlap or grow apart (Fig. 2b). This LP dis-
tortion leads to a problem similar to the develop-
ment of kinks when the level-set is evolved using a
non-dissipative central differencing [14], represent-
ing ‘crossing’ of particle trajectories in a hyperbolic
system. For the present particle-based method, the
LPs should overlap in order to obtain the correct
entropy solution. If the particle map gets highly
distorted, the level set function will no longer be
smooth and continuous. This is overcome by per-
forming a consistent re-configuration of the particle
locations, termed as remeshing, around the inter-
face (Fig. 2c). Here the Lagrangian points are redis-
tributed on a Cartesian lattice with uniform spac-
ing. After new sets of Lagrangian points are gener-
ated the values of the signed-distance function are
obtained from the old ones by using higher order
interpolations [6]. Remeshing removes any unphys-
ical kinks in the interface and gives the ‘entropy-
satisfying viscous solution’ [11]. It also eliminates
unnecessary points away from the interface. For
remeshing, we use the M ′

4 kernel to obtain the inter-
polated SDF values:

M ′
4 =

 1− 5/2s2 + 3/2s3

1/2(1− s)(2− s)2

0

0 ≤ s < 1
1 ≤ s < 2
2 ≤ s

(11)

where s = x in one-dimension. The higher-
dimensional interpolations are obtained by taking
tensorial products of their one-dimensional counter-



parts. Although the reconfiguration procedure pro-
vides the entropy solution, it does not guarantee
that Φ remains a signed-distance to the interface,
which is crucial to obtain accurate curvature and
interface normals. In this work, reinitialization is
implemented according to the method suggested by
Sussman et al. [35, 36] in which the following equa-
tion is solved on uniformly spaced LPs:

∂Φ
∂τ

= sign(Φ0)(1− |∇Φ|) (12)

where Φ(x, 0) = Φ0 and sign(Φ0) ≡ 2(Hε(Φ)− 1/2)
and Hε(Φ) is the Heaviside function. We apply re-
distancing in a two-layer narrow band around the in-
terface and using the procedure described in Gomez
et al. [32].
Coupling to the Flow Solver

As mentioned earlier, the signed distance func-
tion defined on the Lagrangian points implicitly rep-
resent the interface. The velocity at the Lagrangian
points is obtained from interpolation of the velocity
field computed on a fixed background mesh. The
coupling between the particle-based interface repre-
sentation and the finite-volume flow solver occurs
only through this interpolated velocity field. The
background mesh resolution is assumed to be coarser
than the particle resolution. Typically a factor of
(≥ 3) is used between the two resolutions to fit the
width of the quartic spline mollification kernel on
all LPs within the control volume and its immediate
neighbors.

Even though Lagrangian points provide sub-cell
characterization of the interface, the resolution of
the background mesh plays important role in cou-
pling the pressure and velocity fields; which depends
on the actual location of the interface and density
variations between the two phases.

For efficient implementation, each LP or particle
is first located on the background mesh and the cor-
responding control volume is identified. The back-
ground mesh connectivity is then used to identify
the immediate neighbors of each particle that influ-
ence the mollification operation used for interpola-
tions. Finding neighboring particles is the most time
consuming part of the scheme and advanced tech-
niques based on octree structures, Verlet lists [37]
and linked-lists are required for efficient implemen-
tation [7]. In the present work, focus is placed on
the feasibility of the hybrid approach and issues of
numerical efficiency are deferred to follow-on work.
For the cases considered here, use of the background
mesh connectivity to search for the nearest neigh-
bors is found sufficient. However, note that, LP

resolutions of more than five-times finer than the
background mesh results in significant slow-down in
finding all neighbors of LPs within the kernel width.
For present work we used a factor of three or four.

In order to solve the Navier Stokes equations on
the background mesh, the interface represented on
the LPs is used to evaluate a color function Ψ indi-
cating the volume of each fluid within the compu-
tational cell and and the surface tension force. Fol-
lowing the definition of color function, finding Ψ on
the LPs is straightforward: Ψ = 0 when Φ ≥ 0 and
Ψ = 1 for Φ < 0. Then the color function field can
also be obtained on the background mesh by interpo-
lating Ψ from the LPs. In order to obtain a smooth
function, the M ′

4 kernel interpolation (equation 11)
is used. Once the color function Ψ is obtained at
a control volume (cv), the density and viscosity are
given as:

ρcv = ρ1 + (ρ2 − ρ1)Ψcv (13)
µcv = µ1 + (µ2 − µ1)Ψcv (14)

The surface tension force in the Navier Stokes
equation also requires knowledge of the interface lo-
cation. Following Brackbill et al. [38], the surface
tension force is modeled as a continuum surface force
(CSF):

FCSF
σ = σκn̂δ(Φ) (15)

where σ is the surface tension coefficient (assumed
constant in the present work), κ is the curvature, n̂
the interface normal, and δ(Φ) a dirac-delta func-
tion. A common issue with numerical simulations
involving surface tension force, is the development of
spurious currents (unphysical velocity field) [1, 18]
due to inaccuracies in the discrete approximations to
the surface-tension forces (equation 3). In order to
obtain a consistent coupling of the surface tension
force with the pressure gradient forces in a finite-
volume approach, Francois et al. [39] indicated that
the surface tension force must be evaluated at the
faces of the control volumes as:

FCSF
σ,f = σκf (∇Ψ)f (16)

where the subscript f stands for the face of the
control volume. The surface tension force at the
cv-centers can be obtained through reconstruction
from the faces of each cv. This force reconstruction
should be consistent with the pressure-gradient re-
construction typically required in co-located mesh
algorithms. This procedure, termed as ‘balanced
force algorithm’, was also developed earlier by Ham
et al. [18] and recently by Herrmann [23] to obtain
considerably reduced magnitudes of spurious cur-
rents. In the present work, a similar approach is



followed. First the gradients of the color function at
the faces of the control volumes are obtained as:

∇Ψf =
Ψicv2 −Ψicv1

|sn|
(17)

where icv1 and icv2 are the control volumes associ-
ated with a face and |sn| is the distance between the
centroids of the two control volumes. With the bal-
anced force algorithm it was shown by Francois et al.
that any spurious velocity currents appear solely due
to errors in curvature evaluations. Herrmann [23]
later developed a procedure to compute the curva-
ture accurately in the level-set framework. Here we
follow a similar procedure for curvature evaluations
at the LPs:

• First the curvature is evaluated using equa-
tions 10 on the Lagrangian points with |Φ| ≤
2h, where h is the spacing between the LPs.

• For each of these LPs (with |Φ| ≤ 2h) , a point
on the interface is obtained by projecting nor-
mals onto the interface [23]:

xinterface = xLP − Φ
|∇Φ|

n̂ (18)

• Curvature on the interface point xinterface is
evaluated by using curvature values on LPs in
its neighborhood through M ′

4-kernel based in-
terpolation (equation 11).

• Once curvatures on all interface points are eval-
uated, these values are assigned to the corre-
sponding LPs from which these interface points
were obtained.

• Curvature at the background control volume cv
is then computed by simply adding the curva-
tures of LPs that lie inside the control volume.

• Curvature at the faces of the control volume
are evaluated by arithmetic average of the two
control volumes associated with the face. Here,
the average is taken only if the both cvs contain
the interface, i.e. color function 0 < Ψcv < 1,
else κf is assigned the value of κcv containing
the interface.

With the above procedure, it will be shown later
that accurate estimate of interface curvatures can
be obtained. Below we briefly summarize the steps
involved in the hybrid approach.

Numerical Algorithm
The governing equations are solved using a co-

located grid finite-volume algorithm [29, 30]. Ac-
cordingly, all variables are stored at the control vol-
ume (cv) centers with the exception of a face-normal
velocity, located at the face centers, and used to en-
force the divergence-free constraint. The variables
are staggered in time so that they are located most
conveniently for the time advancement scheme. De-
noting the time level by a superscript index, the ve-
locities are located at time level tn and tn+1, and
pressure, density, viscosity, the signed distance func-
tion, and the color function at time levels tn−1/2

and tn+1/2. The basic steps are summarized be-
low [18, 23]:

1. Advance the LPs (from tn−1/2 to tn+1/2)
according to equations (7) and using a velocity
field interpolated to the LP location from the back-
ground mesh. In this work, we use the M ′

4-kernel
based interpolation. We use third-order Runge-
Kutta scheme to solve the ordinary differential equa-
tions for each LP.

2. Remesh and reinitialize the particle-map if
necessary. Remeshing of LPs is necessary only if
the particles cease to overlap as they adapt to the
flow map. This is indicated by the distortion index
(DI) [11]:

DI =
1
N

∑
p

|Hp(t)−Hp(0)|
Hp(0)

, (19)

where Hp(t) =
∑

q vq(t)ξε(xp(t) − xq(t)), N is the
number of Lagrangian points, vq the volume of each
LP, and ξε the quartic spline mollification kernel. By
selecting a proper threshold for DI the remeshing
procedure can be triggered. Reinitialization is only
necessary after a few remeshing steps, thus making
the hybrid approach attractive. Reinitialization is
done on remeshed LPs so that standard 5th-order
WENO scheme [40] can be used.

3. Once the LPs are advanced, curvature κLP

is evaluated using the procedure outlined in the pre-
vious section. M ′

4-kernel based interpolations are
performed from the LPs to the background mesh
to obtain curvature (κn+1/2

cv ). Similarly, Ψn+1/2
cv

is obtained through interpolations and ρ
n+1/2
cv , and

µ
n+1/2
cv are calculated from equations (14). The face-

based surface tension force is then obtained as:

F
n+1/2
σ,f = σκ

n+1/2
f

Ψn+1/2
icv2 −Ψn+1/2

icv1

|sn|
(20)

where sn is the vector joining the control volumes
icv1 to icv2.



4. The remaining steps are a variant of the co-
located fractional step method as described by Ham
& Young [18]. We present the semi-descretization
here for completeness. First, a projected velocity
field ûi at the cv-centers is calculated:

ûi − un
i

∆t
= gi +

1

ρ
n+1/2
cv

(− ∂p

∂xi

n−1/2

+

F
n+1/2
v,i + F

n+1/2
σ,i )

where Fv,i represents the viscous, Fσ,i the surface
tension, and gi the gravitational forces at the cv cen-
troids. The viscous terms are treated implicitly us-
ing second order symmetric discretizations and the
surface tension force is treated explicitly. The cv-
based surface tension force is obtained from Fσ,f us-
ing area weighted least-squares interpolation consis-
tent with the pressure reconstruction scheme devel-
oped by Mahesh et al. [29]. This is the essence of
the balanced force algorithm [18, 39, 23].

5. Subtract the old pressure gradient:

u∗n+1
i = ûi + ∆t

1

ρ
n+1/2
cv

δp

δxi

n−1/2

(21)

6. Obtain an approximation for the face-based
velocity:

U∗n+1
f = u∗n+1

i −∆t

F
n+1/2
i

ρ
n+1/2
cv

−
F

n+1/2
σ,f

ρ
n+1/2
f

 (22)

where ρ
n+1/2
f = (ρn+1/2

icv1 + ρ
n+1/2
icv2 )/2 and the inter-

polation operator, η = ni,f [ηicv1 + ηicv2]/2, yields a
face-normal component from the adjacent cvs asso-
ciated with the face and the normal ni,f .

7. Solve the variable coefficient Poisson equa-
tion to obtain pressure:

1
∆t

∑
faces of cv

U∗n+1
f Af =

∑
faces of cv

1

ρ
n+1/2
f

Af
δp

δn

n+1/2

(23)
where Af is the face area.

8. Update the face-normal velocities by impos-
ing a divergence free constraint and update the cv-
based velocities from the reconstructed pressure gra-
dient at the cv-centers:

Un+1
f − U∗n+1

f

∆t
= − 1

ρ
n+1/2
f

∂p

∂n

n+1/2

un+1
i − u∗n+1

i

∆t
= − 1

ρ
n+1/2
cv

∂p

∂xi

n+1/2

where the pressure gradient at the cv-centers
(∂p/∂xi)n+1/2is obtained from the face-normal gra-
dient using the same area-weighted least-squares

minimization approach [29] used for the surface ten-
sion force above.

9. Interpolate the velocity field u
n+1/2
i,cv to the

LP locations and advance the LPs to the next time
level.

Results
In this section, some numerical examples of stan-

dard test cases using the hLE scheme are presented.
First, we verify our implementation of the particle-
based interface representation scheme [11] wherein
the velocity field is specified and not computed.
Next, we test the balanced-force algorithm and cur-
vature evaluations on a stationary bubble in a qui-
escent, zero-gravity environment to investigate the
level of spurious currents obtained due to errors in
surface tension force representation. A systematic
grid-refinement study is performed. Finally, a pre-
liminary calculation of a rising bubble against grav-
ity is performed and compared with other results
published in literature.

Zalesak’s Slotted Disk
The first test case is rigid body rotation of a

slotted disk. The slotted disk is initially located at
(0.5,0.75) in a [1x1] domain and completes one rev-
olution after 628 time steps with a specified velocity
field:

v(x) =
π

314

[
0.5 −y
x −0.5

]
(24)

Since the flow velocity represents a rigid-body ro-
tation, the interface shape should remain unaltered.
Any error in the area bounded by the interface will
be related to the interface capturing scheme includ-
ing time integration and calculation of the color
function using mollification kernel. Table 1 shows
the relative errors in area after one revolution with
different particle spacings. The relative error in the
area (A) bounded by the interface is computed as:
Error = (Aθ=0 −Aθ=360)/Aθ=0 × 100. Fig. 3 shows

Table 1: Relative error of area calculation on slotted
disk after one revolution.

Particle spacing Error (%) Particles
1/200 2 3109
1/400 0.2 12382
1/500 0.02 19387

the zero level set at different stages during one rev-
olution. As expected, the particle-based interface
representation is exact for rigid-body motion. Any



errors obtained are due to the Runge-Kutta time-
integration scheme and converge rapidly with refine-
ment in the particle mesh. These results are consis-
tent with those presented by Hieber and Koumout-
sakos [11].

Figure 3: Zero level set (SDF) of the slotted disk in
different angles.

Two-Dimensional Single Vortex Flow
The second test case involves advection of cir-

cular interface in a specified and steady deformation
field introduced by Bell et al. [41] and is used as
a benchmark in most of the interface tracking and
capturing methods. The velocity field in this case
causes extreme elongation of the circular region and
usually is used to show the ability of methods on
capturing narrow regions. Equation 25 shows the
velocity field in 2D.

v(x) = 2
[
− sin2(πx) sin(πy) cos(πy)
− sin2(πy) sin(πx) cos(πx)

]
(25)

We calculate the error related to our implementation
of remeshing and reinitialization methods based on
the area inside the region with time. In the first part,
the interface is evolved by the above velocity field up
to t = 3 units with a time-step of ∆t = 1/30 units
(90 iterations). The distortion index (DI) defined
by equation (19) is set to 10−7 resulting in remesh-
ing at every time-step. The time evolution of the
interface at different particle resolutions is shown in
Figure 4. As the interface gets elongated, the tail of
the interface becomes under resolved and some por-
tions of the interface are lost. The relative error in
the volume of the initially circular interface is shown

Figure 4: Time evolution of the interface at different
particle-resolutions. Column 1: h = 1/128, Column
2: h = 1/256, Column 3: h = 1/512. Each row
corresponds to a specific time: (a) t = 0, (b) t = 1,
(c) t = 2, (d) t = 3.

in Table 2. With increased resolution, the interface
is well resolved and the loss in volume is less than
2%. The results are consistent with those reported
in the literature [11].

Table 2: Ratio of area calculation at t = 2 and t = 3
for different particle spacings.

Particle spacing t = 2 t = 3
1/64 0.3133 0.0428
1/128 0.8796 0.5210
1/256 0.9750 0.9162
1/512 0.9931 0.9887

As a second test, the circular interface is evolved
by a modified velocity field which reverses direction
after t = 4. The velocity field v(x) in equation 25
is multiplied by cos(πt/T ), with the period T = 8.
Accordingly, the circular interface should elongate
and deform up to t = 4 and then contract back to the
original circular shape (at t = 8). The calculation is
then performed up to t = 8 and the area under the
interface is compared with the original area at t = 0
as shown in Table 3. The results are consistent with



those reported in the literature [11].

Table 3: Ratio of area for the reverse vortex case at
t = 8 and different particle resolutions.

Particle spacing t = 8
1/96 0.0831
1/128 0.5651
1/256 0.9796
1/320 0.9892

Estimation of Curvature on a Circular Interface
To test the accuracy of the curvature calcula-

tion by using the procedure described before we cal-
culated curvature for a circular interface. The La-
grangian points (LPs) are uniformly distributed in
a narrow band around the interface and initialized
by exact signed distance function. The surface nor-
mals and curvatures are first calculated on the LPs
using the equations (10). Only those LPs are con-
sidered where |Φ| ≤ 2h, where h is the LP-spacing.
For all these LPs, corresponding points on the in-
terface are calculated using the normals and signed
distance function (Φ) (equation 18). The curvature
values at the interface points are evaluated using the
M ′

4-kernel based interpolation from the neighboring
LP values. These curvatures are then compared
with the exact curvature κexact = 1/R for a two-
dimensional interface. The corresponding L1-errors
are plotted at different LP-resolutions in Fig. 5a,
showing second order convergence similar to Her-
rmann [23].

Error calculations based on the κ values at the
LPs are also shown, indicating only a first-order
convergence. Since the LPs are located in a band
around the interface, the κ values at their locations
are far from 1/R, the exact value, indicating the
importance of finding the point on the interface for
each LP value. Also the actual error distribution is
shown along the circumference of the circle as a scat-
ter plot in Fig. 5b, indicating relatively small scatter
in kappa values.

Static Drop in Equilibrium
To validate the curvature and surface tension

force calculation in hLE, we consider the test of
static drop in a quiescent media with zero gravity.
The pressure gradient across the interface balances
the surface tension force resulting a zero velocity
and static drop at all times. Errors in represen-
tation of the surface tension and curvature at the
interface, however, lead to non-zero velocity, or the

Figure 5: L1-error in curvature for a circular in-
terface: (a) convergence with refinement in LP-
resolution. Circles indicate error based on κ at LP
location, and squares indicate error based on κ on
the interface, (b) distribution of error around the
circumference.

so called ‘spurious currents’. The exact solution for
the pressure jump across the interface for a circular
two-dimensional drop is: ∆Pexact = σκexact where
κexact = 1/R and R is the radius of the drop. We
consider a square domain having sides of eight units.
A drop of radius R = 2 is placed at the center of the
domain. The surface tension coefficient σ is taken
to be 73, the drop density is 1 and the surrounding
fluid density is 0.1. Accordingly, the pressure jump
across the interface should be ∆P = 36.5 units. All
parameters are in SI units and correspond to the test
case simulated by Francois et al. [39].

The background grid consists of uniform Carte-
sian elements with resolution of R/∆ = 10. The
resolution of the Lagrangian points is refined suc-
cessively to have R/h = 45, 60, 75. Figure 6a shows
the variation of the pressure drop across the center-
line of the droplet after one time-step of ∆t = 10−3

for the particle resolution of R/h = 45. The pressure
drop is very well predicted and is smeared across the
interface over one background mesh resolution. The



Figure 6: Variation of pressure difference (a) and
velocity fields (b) along the x-axis passing through
the center of the bubble.

Figure 7: Streamlines showing symmetric pattern of
spurious currents for the static bubble case: (a) after
one time-step, (b) at t = 0.5.

Figure 8: L1-error in total kinetic energy for the
stationary bubble case on a fixed background grid of
[40×40]: (a) time evolution of error for particle reso-
lutions of h = 0.044 (squares),h = 0.033 (triangles),
and h = 0.0266 (circles), (b) the convergence of er-
ror at t = 0.5 with particle resolutions. Also shown
are lines of second (dashed) and third (dashed-dot)
order convergence.

corresponding spurious currents are also shown in
Figure 6b, indicating a very low magnitude. Fig-
ure 7a-b show the streamlines obtained at t = 10−3

and t = 0.5, respectively. Figure 7a is for parti-
cle resolution of R/h = 45 whereas figure 7b is for
R/h = 60. Both figures show a symmetric pattern
of vortical structures around the interface. Similar
patterns have been reported in the literature [18, 39].
The interface remains a perfect circle after t = 0.5
with low magnitudes of spurious currents. Figure 8a
shows the time evolution of the total kinetic energy
in this calculation for the three particle resolutions.
The corresponding convergence of the L1-error at
t = 0.5 is shown in Fig. 8b, indicating larger than
second order convergence. However, the oscillatory



behavior of the kinetic energy as shown by Fran-
cois et al. [39] and Herrmann [23] is not observed in
our calculations. This is probably because, here the
particle distribution, although uniform, is not sym-
metric with respect to the background mesh. Also
the particle distribution changes with time as they
are moved by the spurious currents. Remeshing and
reinitialization are suppressed in the above calcula-
tions, yet the overall spurious current magnitudes
are similar to those reported by Herrmann [23].

Rising Bubble
Lastly, we consider the rise of an air bubble col-

umn in water by buoyancy forces. The characteristic
non-dimensional numbers for this situation are the
Bond number, or the ratio of gravitational to surface
tension forces, and the Reynolds number:

Bo =
ρ`gD2

σ
; Re∗ =

ρ`g
1/2D3/2

µ`
, (26)

where ρ` is the density of liquid, µ` dynamic viscos-
ity of the liquid, σ the surface tension coefficient,
and D is the initial diameter of the bubble column.
For the present simulations, we use the small-bubble
problem of Kang et al. [42]. Accordingly, a bubble
column of non-dimensional diameter D/Lref = 2/3
is placed in a domain of non-dimensional lengths
[−1, 1]× [0, 3]. Here the reference length scale (Lref )
is taken as 0.01 m. No-slip condition is used on all
sides of the domain. The bubble is initially placed
at (0, 1). The background mesh is uniform Cartesian
with 60× 90 grid points. Uniformly spaced sub-cell
Lagrangian points are used with 1/4th resolution of
the background mesh. The fluid properties of air and
water are: ρa = 1.226, ρ` = 1000, µa = 1.78× 10−5,
µ` = 1.137 × 10−3, σ = 0.0728 and g = 9.81 in SI
units. The Bond and Reynolds numbers are 5.736
and 1500, respectively.

Figure 9 shows the time evolution of the initially
circular bubble. The area loss at t = 0.05 s is less
than 2% of the initial area for the resolution used.
The results qualitative agree with those of Kang et
al. [42]. A systematic grid-refinement study needs
to be performed to estimate the convergence of the
hLE scheme applied to the rising bubble problem.

Summary
A new hybrid Lagrangian-Eulerian (hLE)

scheme, combining a particle-based, mesh-free tech-
nique with a finite-volume flow solver, has been de-
veloped for direct simulations of two-phase flows
with fully resolved interfaces. This approach merges
the naturally adaptive nature of particle-based
schemes, for efficient representation of the interface

Figure 9: A cylindrical air-bubble rising against
gravity in water: (a) t=0.02, (b) t=0.035, (c)
t=0.049 s

between two media, with the relative flexibility of-
fered by grid-based solvers for complex flows. In
hLE, a mesh-free, particle-based scheme for inter-
face tracking [11] is integrated with a co-located
grid based finite volume solver. The potential ad-
vantage of the hLE method is that the background
mesh could be of any kind: structured, body-fitted, or
arbitrary shaped unstructured (hex, pyramids, tetra-
hedrons, prisms) and may be stationary or changing
in time (adaptive refinement). In this work, we used
uniform Cartesian grids for the background mesh. A
balanced force algorithm [23, 39] for accurate repre-
sentation of surface tension forces and considerably
reduced magnitudes of spurious currents, is used to
solve the two-phase flow equations. The accuracy
of the hLE scheme is first verified for standard test
cases on interface tracking including passive advec-
tion by a specified velocity field (Zalesak’s disk, vor-
tex in a box) and coupled simulations for stationary
drop and rising buoyant bubble with encouraging
results. The efficiency of the scheme can be consid-
erably enhanced by using dynamic-load balancing of
the Lagrangian particles and advanced methods for
finding the nearest neighbors within the mollifica-
tion kernels [7].
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