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Abstract
The Eulerian-Lagrangian approach is commonly used in modeling two-phase flows wherein liquid droplets,
solid particles, or bubbles are dispersed in a continuum fluid of a different phase. Typically, the motion of the
dispersed phase is modeled by assuming spherical, point-particles with models for added mass effects, drag,
and lift forces. The effect of the dispersed phase on the fluid flow is modeled using reaction forces in the fluid
momentum equation. Such an approach is valid for dilute regions of the dispersed phase. For dense regions,
however, the point-particle approach does not capture the interactions between the fluid and the dispersed
phase accurately. In this work, the fluid volume displaced by the dispersed phase is taken into account to
model the dense regions. The motion of the dispersed phase results in local, spatio-temporal variations of the
volume fraction fields. The resultant divergence in the fluid velocity acts as a source or sink displacing the
flow due to dispersed phase and is termed as volumetric coupling. The size of the dispersed phase is assumed
smaller than the grid resolution and for the continuum phase. The variable–density, low–Mach number
equations based on mixture theory are solved using a co–located, finite volume scheme. The interphase
momentum exchange due to drag forces is treated implicitly to provide robustness in the dense regions.
The volumetric coupling approach is first validated with analytical studies for flow induced by oscillating
bubbles and gravitational settling of particles. Simulations of Rayleigh-Taylor instability, particle-laden jet
impingement on a flat plate, and particle-laden jet in a cross are performed to test the robustness of the
scheme.
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Introduction
Majority of spray systems in propulsion ap-

plications involve complex geometries and highly
unsteady, turbulent flows near the injector. The
numerical models for spray calculations should be
able to accurately represent droplet deformation,
breakup, collision/coalescence, and dispersion due
to turbulence. In the traditional approach for spray
computation, the Eulerian equations for gaseous
phase are solved along with a Lagrangian model for
particle transport with two-way coupling of mass,
momentum, and energy exchange between the two
phases [1]. Typically simulations of spray sys-
tems use DNS, LES or RANS for the carrier phase
whereas the motion of the dispersed phase is mod-
eled. The ‘point-particle’ (PP) assumption is com-
monly employed where forces on the dispersed phase
are computed through model coefficients. The effect
of the particles1 on the carrier phase is represented
by a force applied at the centroid of the particle.
The disperse phase equations are typically solved in
a Lagrangian frame by tracking a few set of com-
putational particles or parcels [2] with models for
droplet breakup, collision/coalescence, evaporation,
dispersion, and deformation. Fully resolved simula-
tions involving comprehensive modeling of interfa-
cial dynamics are being developed [3, 4], however,
are computationally expensive.

Several simulations of particle-laden flows have
been performed with the carrier fluid simulated us-
ing direct numerical simulation ([5, 6],[7],[8]), large-
eddy simulation ([9, 10, 11, 12]), or Reynolds-
averaged Navier Stokes equations [13], where the dis-
persed phase is assumed subgrid (so dp < LK , the
Kolmogorov length scale, for DNS whereas dp < ∆,
the grid size, in LES or RANS). However, modeling
the dispersed phase using point-particle approach
does not always provide the correct results. For
moderate loadings and wall-bounded flows [11] have
shown that the point-particle approximation fails to
predict the turbulence modulation compared to ex-
perimental values. In addition, if the particle size
is comparable to the Kolmogorov scale (for DNS)
or the grid size (for LES/RANS), simple drag/lift
laws typically employed in PP do not capture the
unsteady wake effects commonly observed in full
DNS studies ([14, 15]). These effects become even
more pronounced in dense particulate regions. In
many practical applications, the local particle size
and concentrations may vary substantially. In liq-
uid atomization process, e.g., the droplet sizes may

1In this paper, particle may mean solid particle, liquid
droplets, or bubbles depending upon the case being studied.

range from 1 mm to 1 µm with dense regions near
the injector nozzle. The point-particle assumption
is invalid under these conditions.

In the present work, we extend the point-particle
approach by accounting for the volumetric displace-
ments of the carried phase due to the motion of par-
ticles or droplets. The disperse phase also affects the
carrier phase through mass, momentum, and energy
coupling. The combined effect is termed as ‘volu-
metric coupling’. This approach is based on the the
original formulation by Duckowicz [1] and later mod-
ified by Joseph & Lundgren [16]. The approach is
derived based on mixture theory that account for
the droplet (or particle) volume fraction in a given
computational cell. This effect is important in dense
spray regimes, however, are typically ignored in the
context of LES or DNS simulations [17, 12]. A sim-
ilar formulation has been applied to bubbly flows at
low bubble concentrations (up to 0.02) to investigate
the effect of bubbles on drag reduction in turbulent
flows [8, 18]. Several studies on laminar dense gran-
ular flows [19, 20, 21] also use this approach. Re-
cently, Apte etal. [22] have shown the effect of vol-
umetric displacements on the carrier fluid in dense
particle-laden flows. They compared the solutions
for the carrier phase and the particle dispersion ob-
tained from the point-particle assumption and ac-
counting for volumetric displacements to show large
differences. If the volume displaced by the disperse
phase is taken into account, thte velocity field is no
longer divergence free in the regions of variations
in volume fractions. This has a direct effect on the
pressure Poisson equation, altering the pressure field
through a local source term. These effects may be-
come important in dense regions of spray system.

However, computing dense spray systems by ac-
counting for volume displacements due to droplet
motion could be numerically challenging. The tem-
poral and spatial variations in fluid volume fractions
could be locally large and make the computation nu-
merically unstable. This is specifically true if the in-
terphase coupling of mass, momentum, and energy
is treated explicitly. In the present work, we focus
on non-reacting flows and only momentum exchange
between the two-phases is considered. A numeri-
cal approach based on co-located grid finite-volume
method is developed with part of the momentum
exchange terms treated implicitly. The approach is
similar to the fractional step algorithms for particle-
in cell methods on staggered grids [19, 21, 20]. Im-
plementation in co-located finite-volume formulation
is discussed and is applicable to unstructured grids.



Governing Equations
The formulation described below consists of the

Eulerian fluid and Lagrangian particle equations,
and accounts for the displacement of the fluid by the
particles as well as the momentum exchange between
them ([16]). An Eulerian-Lagrangian framework is
used to solve the coupled two-phase flow equations.
The disperse phase equations are solved in a La-
grangian frame with models for for drag, buoyancy,
and inter-particle collision forces.

Continuum-phase equations
In the present formulation, both continuity and

momentum equations account for the local concen-
tration of particles in the continuum phase. The
fluid mass for unit volume satisfies a continuity equa-
tion,

∂

∂t
(ρfΘf ) +5 · (ρfΘfuf ) = 0 (1)

where ρf , Θf , and uf are density, concentration,
and velocity of the fluid phase respectively. Local
spatio-temporal variations of particle concentration,
generate a non-divergence free velocity field in the
flow. The non-zero velocity divergence can be shown
by rearranging the equation 1.

∇ · uf = − 1
Θf

DΘf

Dt
(2)

where D
Dt is the material derivative with respect to

fluid velocity.
Fluid concentration is calculated as Θf = 1−Θp,

where Θp is particle concentration. Lagrangian
quantities, such as particle concentration, are inter-
polated to the Eulerian control volumes effectively,
using the following interpolation function,

Θp (xcv) =
Np∑
p=1

VpG∆ (xcv,xp) (3)

where xcv and xp are control volume and particle
positions, respectively, Vp is the particle volume, G∆

is the interpolation function, Np is the total number
of particles, and the summation is over all particles.

Momentum conservation is also satisfied by solv-
ing

∂

∂t
(ρfΘfuf ) +∇ · (ρfΘfufuf ) =

−∇ (Θfp) +∇ · (µfDc) + F (4)

where p is dynamic pressure, µf is the fluid viscos-
ity, Dc = ∇uc + ∇uT

c is the deformation tensor of
the mixture, uc = Θfuf + Θpus is the composite
velocity of mixture, and F is the reaction force from

the particle phase on the fluid phase per unit mass
of fluid. Average particle velocity in control volume,
us is calculated using the interpolation function

Θpus =
Np∑
p=1

VpG∆ (xcv,xp) up (5)

where up is the particle velocity.

Particle-phase equations
Position and velocity of particles are calculated

by solving the ordinary differential equations of mo-
tion in Lagrangian form,

d
dt

(xp) = up (6)

mp
d
dt

(up) =
∑

Fp (7)

where xp and up are particle position and velocity,
mp is the mass of particle, and

∑
Fp = mpAp is the

total force acting on particle, and Ap is the particle
acceleration. In this study, only the effect of drag,
gravitational force, and the inter-particle collisions
are considered. For high density ratios between the
disperse phase and the carrier phase (typical of spray
systems), the lift forces, added mass, and history
forces are much smaller than the drag force and are
neglected in this study. The total particle accelera-
tion is given as:

Ap = Dp (uf,p − up)︸ ︷︷ ︸Adrag

+
(

1− ρf
ρp

)
g︸ ︷︷ ︸Agravity

+Acp

(8)
where uf,p is the fluid velocity at the particle po-
sition and Acp is the particle acceleration due to
inter-particle collisions. The inter-particle force is
modeled by the discrete-element method of Cundall
& Strack as described by [20]. The drag force is
caused by the motion of a particle through the gas.
In the drag model Dp is defined as

Dp =
3
8
Cd
ρf
ρp

| uf,p − up |
rp

(9)

where Cd is given by [23]

Cd =
24

Rep

(
1 + aRebp

)
Θ−2.65
f , Rep < 1000

Cd = 0.44Θ−2.65
f , Rep > 1000(10)

where the particle Reynolds number is defined as

Rep =
2ρfΘf | uf,p − up | rp

µf
(11)
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Figure 1: Staggering of variables of each phase

and

rp =
(

3Vp
4π

)1/3

(12)

is the particle radius.

Numerical Scheme
The numerical scheme is based on a co-located

grid, fractional step finite-volume approach. The
fluid flow is solved on a structured grid (generaliza-
tion to unstructured grids are feasible [24] For the
present volumetric coupling, fluid flow equations be-
come similar to the variable-density low-Mach num-
ber formulation [12]. The numerical scheme pre-
sented here have the following important features:
(i) a time-staggered, co-located grid based fractional
step scheme, (ii) low-Mach number variable den-
sity flow solver, (iii) accounting for volume displace-
ment effect of the Lagrangian particles on the fluid
flow, (iv) implicit coupling of particle-fluid momen-
tum exchange in the numerical solution, and (v) us-
ing Gaussian kernel for interpolation of Lagrangian
quantities to the Eulerian grid.

In many particle-laden flow regimes, where the
particle loading is high, the effect of particle reac-
tion force on the flow is important. In regions of
very dense loading, the momentum coupling force
could be very large, and its explicit treatment affects
the robustness of the flow solver. An implicit treat-
ment of the reaction force is thus necessary. In sim-
ulations considered here only the inter-phase drag
force is treated implicitly. Numerical solution of the
governing equations of continuum phase and parti-
cle phase are staggered in time to maintain time-
centered, second-order advection of the particle and
fluid equations. Figure 1 shows staggering of vari-
ables of each phase in time. Denoting the time level
by a superscript index, the velocities are located at
time level tn and tn+1, and pressure, density, vis-

cosity, the signed distance function, and the color
function at time levels tn−1/2 and tn+1/2. Particle
velocity (up) and inter-phase coupling force (F) are
treated at times n and n + 1, whereas particle po-
sition (xp) and concentration (Θp) are calculated at
times n+ 1/2 and n+ 3/2.

The continuity equation of the fluid phase is dis-
cretized as

ρn+3/2 − ρn+1/2

∆t
+

1
Vcv

∑
faces of cv

(gN )n+1Aface = 0

(13)
where N stands for face-normal, face for face of a
control volume (cv), and gn+1

N = ρn+1un+1
N and ρ =

ρfΘf .
Particle velocity in the implicit formulation is

written as

un+1
p − unp

∆t
= −

(
un+1
p − un+1

f,p

τr

)

+An+1
cp +

(
1− ρf

ρp

)
g (14)

where un+1
f,p is the interpolated velocity of fluid phase

at time n+1 to the particle location. From the above
formulation, one can obtain

un+1
p =

1
1 + ∆t

τr

[
unp +

(
∆t
τr

)
un+1
f,p +

∆tAn+1
cp + ∆t

(
1− ρf

ρp

)
g
]

(15)

Note that for an isolated particle, in the absence
of any external forces, for an extremely heavy par-
ticle τr → ∞ and we get un+1

p → unp . Whereas
for a massless particle, τr → 0 and we obtain
un+1
p → un+1

f,p . The numerical algorithm consists
of the following steps:

Step 1

First obtain drag and collision forces at time n
then update the particle position explicitly:

x∗p = xn+1/2
p + ∆tun+1

p

= xn+1/2
p + ∆t

(
unp + ∆tAn

p

)
where Ap is the total particle acceleration from 8.
Based on the new particle positions, the inter-
particle acceleration due to collision is computed
at the new position. Then set An+1

cp = (An+1/2
cp +

An+3/2
cp )/2.

Step 2

Compute the particle and fluid volume fractions
at xn+3/2 by interpolating from the Lagrangian par-
ticle positions to the Eulerian grid cv centers. Set



predictors for fluid phase density and face-normal
velocity (uN ), then advance scalars.

ρ∗ = ρn+3/2Θn+3/2
f

u∗N = un+1
N

Step 3

Advance the gas-phase momentum equation us-
ing the fractional step method [25]

ρ∗ui
∗

∆t
+

1
2V

∑
faces of cv

[
uni,face + u∗i,face

]
g
n+1/2
N Aface =

ρnui
n

∆t
− ∂pn

∂xi

+
1

2V

∑
faces of cv

µface

(
∂u∗i,face

∂xj
+
∂uni,face

∂xj

)
Aface

−2
3
∂

∂xj

(
µ
∂unk
∂xk

δij

)
+ F ∗

i

where gn+1/2
N = (g∗N +gnN )/2 and g∗N = ρ∗u∗N . Using

the particle momentum equation (14), gives the im-
plicit formula for the fluid phase advancement. In a
fractional step scheme, the reaction force F ∗

i is writ-
ten as

F ∗
i = −T (u∗i ) + T

(
unp,i
)

+ ∆tT
(
An+1
cp,i +An+1

gravity,i

)
where the operator T is

T =
∑
p

[
G∆(xn+1

p )
mp/τr

1 + ∆t
τr

]
. (16)

The first term on the right hand side of F ∗
i is an

implicit in terms of u∗i .

Step 4

Remove the old pressure gradient to obtain

ĝi = g∗i + ∆t
∂p

∂xi

n

(17)

Step 5

Interpolate the velocity field to the control vol-
ume faces and solve the Poisson’s equations is solved
for pressure,

52(p∆t) =
1
V

∑
faces of cv

̂gi,faceAface+
ρn+3/2 − ρn+1/2

∆t
(18)

Step 6

Compute the new face-velocities satisfying con-
tinuity equation 13

gn+1
N − ĝN

∆t
= − ∂p

∂N

n+1

(19)

Step 7
Reconstruct the pressure gradient,

∂pn+1

∂xi
=
(
∂pn+1

∂N

)LS
(20)

where ( )
LS

stands for least-squares interpolation
used by [24]. Now update the cv center velocities

gn+1,∗
i − ĝi

∆t
= −∂p

n+1

∂xi
(21)

Step 8
Now advance the particle velocity field using

equation 14 and the interpolated carrier-phase ve-
locity field un+1,∗

f = gn+1,∗
i /ρn+1.

mp

(
un+1
p − unp

)
dt

= Fn+1
p

= mpAn+1
p

= mp

(
un+1,∗
f,p − un+1

p

τr
+ An+1

cp +
(

1− ρg
ρp

)
g

)

Step 9
In general (on non-uniform grids), the interpo-

lation operator from the grid CVs to the particle
location and the inverse operator (from the parti-
cle location to the grid CVs) may not commute.
To obtain discrete momentum conservation between
the two-phases, any residual force is applied to the
carrier-phase velocity field in an explicit form,

ρn+1un+1
i = ρn+1un+1,∗

i

−∆t

(∑
p

[
un+1,∗
i,fp

G∆(xn+1
p )mp/τr

1 + ∆t/τr

]
−

un+1,∗
i

∑
p

[
G∆(xn+1

p )mp/τr

1 + ∆t/τr

])
(22)

The above correction is usually small and does not
introduce time-step restrictions comparable to fully
explicit interphase coupling.

Results
The above numerical scheme is applied to differ-

ent test cases in order to evaluate its accuracy and
robustness. These test cases are described below.

Oscillating bubble
First we show the importance of volumetric dis-

placement effect on the flow filed, caused by change
in local concentration of particles. The variable den-
sity formulation used in these simulations accounts



for changes in the density of mixture. This can be
the result of particle accumulation/scattering in the
flow field due to inter-phase momentum exchanges,
or size variation in a cavitating bubble due to hydro-
dynamic pressure of the flow, etc. Here we set up
a very simple case of imposed oscillation on the ra-
dius of a bubble which causes a potential flow filed
around itself. This phenomenon can not be simu-
lated by only inter-phase momentum coupling and
here we show that only through the variations in
density in momentum and continuity equation, the
potential flow is expressed.

We put a single air bubble in a cube of water and
impose sinusoidal perturbation on the bubble radius.
Bubble radius changes in time as R = R0 +e sin(ωt),
where R and R0 are the instantaneous and the ini-
tial radius, respectively, e is the perturbation mag-
nitude, ω is frequency and t is time. In this simula-
tion, R0 = 0.01 ×D, where D is the cube size, and
gives overall concentration of 4×10−6, e = 0.1×R0,
ω = 50[Hz]. Figure 2 shows the radial distribution
of hydrodynamic pressure around the bubble created
by the size variation at t∗ = 0.3 where t∗ = t/T and
T = 2π/ω. We compare the pressure with analytical
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Figure 2: Pressure distribution caused by volume
displacement around the bubble, from two-way cou-
pling (dashed line), volumetric coupling (solid line),
and analytical solution (dots).

solution (dots), given by [26] and result with two-
way coupling and no volumetric effect (dashed line).
The two-way coupling did not show any effect on the
pressure, however the volumetric coupling result is
in good agreement with the analytical solution.

In another similar example we consider two bub-
bles oscillating in tandem. Two similar bubbles are
put in a box and their radius changes sinusoidally
with π [rad] phase shift. All properties are similar
to the case of single bubble case, except they are
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Figure 3: Velocity vectors around the bubble caused
by radius variations

both located D/6 away from the box center. The
result is a doublet-like flow which is shown in fig-
ure 4. Again in this case we did not observe any
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Figure 4: Doublet generated by bubbles oscillating
in tandem

effect on the flow in two-way coupling results.

Gravitational Settling
We simulate sedimentation of solid particles un-

der gravity in a rectangular box. Details of this case
are given in Table 1. The initial parcel positions
are generated randomly over the entire length of the
box. A parcel consists of a group of particles of
equal diameter which move together. These parcels
are then allowed to settle through the gas-medium
under gravity. The dominant forces on the particles
include gravity and inter-particle/particle-wall col-
lision. As the particles hit the bottom wall of the
box, they bounce back and stop the incoming layer
of particles, and finally settle to a close pack limit
(∼ 0.6). Figures 5(a-c) show the time evolution of



Table 1: Parameter description for gravity-
dominated sedimentation.

Computational domain, 0.2× 0.6× 0.0275 m
Grid 10× 30× 5
Fluid density 1.25 kg/m3

Particle Density 2500 kg/m3

Number of Parcels 1000
Particles per parcel 3375
Diameter of particles 500 µm
Initial concentration 0.2
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Figure 5: Temporal evolution of particle distribution
during gravity-dominated sedimentation: a) t = 0,
b) t =, c) t =, d) Height from bottom wall compared
with theory (H = H0 − 0.5gt2)

particle positions in the rectangular box. The parti-
cles eventually settle down with close-packing near
the bottom wall. Figure 5d shows the temporal evo-
lution of the interface. The numerical formulation
for volumetric coupling predict the interface evolu-
tion similar to the analytical estimate h = gt2/2.
As the particles settle, they accelerate the fluid in
the upward direction, however, the effect of the drag
force on the particle motion was found to be small.
The volume fraction of the particles reaches the the-
oretical maximum (0.6 is the close pack limit) as
they accumulate near the bottom wall. The numer-
ical scheme was stable and able to handle strong
variations in the volume fraction.

Rayleigh-Taylor instability
We consider the sedimentation case generating

Rayleigh-Taylor instability similar to that studied
by Snider [21]. A set of heavy particles are initially
arranged uniformly above a light fluid and the initial
concentration is approximately 0.038. The interface
between the particles and the fluid is perturbed by
a cosine wave initially which causes an exponential
growth in the mixture. The parameters in this study
are presented in table 2. The computational domain
is [1 4] and the grid resolution used is 64× 256. Slip

wall conditions are used for the top and bottom walls
and periodic conditions are used in the x direction.

Particle radius [µm] 3250
Fluid density [kg/m3] 0.1694
Particle density [kg/m3] 1.225
Initial particle volume fraction 3.77 ×10−2

Number of particles 131,000
Gravity in y direction [m/s2] -9.81

Table 2: Fluid and particle properties in Rayleigh-
Taylor instability.

t = 4 t = 8 t = 12t = 0

Figure shows the time evolution of the parti-
cle volume fraction. The initial perturbation grows
as the particles are accelerated downward by grav-
ity. In the central region, the falling particles push
the fluid downward which rises from the edges of
the computational domain pushing the particles up-
ward in Rayleigh-Taylor instability. Particles fall
at a higher rate than their terminal velocity. This
is due to the effect of upward flow generated by
this motion near the edges of the computational
domain. The circulation caused by this motion is
shown in figure 6. As presented by [21], this height
(H) is a function of Atwood number, defined as
A = (ρp−ρf )/(ρp+ρf ), gravity, and time. Initially,
it grows exponentially in time until the interface de-
forms.

Particle-laden jet impingement
This test case is similar to that studied by

Snider [21] and evaluates the robustness of the cur-
rent numerical approach for dense particle systems.
A jet of particles from a 1.5 cm tube is directed onto
a flat plate at high velocity. Particles are fed at an
initial volume fraction of 0.3 at a velocity of 25 m/s.
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Table 3 shows the flow parameters used. At the top
and bottom boundaries of the domain, no-slip condi-
tions are applied. The left and right boundaries are
considered outflow. A stable solution is obtained for
large variations in the particle volume fractions in
this dynamic problem. An explicit drag force re-
sulted in blow-up of the flow solver.

Particle radius [µm] 100
Fluid density [kg/m3] 1
Particle density [kg/m3] 2760
Initial particle volume fraction 0.3
Gravity in y direction [m/s2] -9.81
Time step [s] 5× 10−5

Computational Domain [cm] 27× 27× 17
Grid 24× 24× 14

Table 3: Fluid and particle properties in particle-
laden jet impingement case

Particle-laden jet in cross flow
Finally, we simulate the effect of particle-laden

jet on a laminar channel flow. The inlet flow is a
plane Poiseuille flow and the particles are injected at
x = 0.01[m] away from the inlet. Table 4 shows the
parameters of this simulation. Particles are added
continuously in the form of a round circular jet. The
maximum particle volume fraction inside the jet is
approximately 0.2. Figure 8 shows the velocity vec-
tors of the channel flow under the influence of the
particle jet. The velocity vectors show a circulation
region generated behind the jet. Figure 9 also shows
evolution of vorticity contours due to presence of the
particle jet. Both figures show that the combined ef-
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Figure 7: Time evolution of particle-laden jet im-
pinging on a flat plate: (i) particle evolution, (ii)
fluid volume fraction, (iii) fluid velocity magnitude,
and (iv) pressure.

fect of upward momentum from particles to the the
continuum phase and volumetric displacement effect
due particles, generate a strong circulation in the
flow field.

Summary and Conclusion
A numerical formulation based on time-

staggered, co-located grid, finite volume approach
is developed for simulation of dense particle-laden
flows. The original formulation for spray systems
by Duckowiz [1] was used to discretize the governing
equations for a non-reacting, incompressible fluid-
laden with particles on structured grids. This for-
mulation takes into account for the fluid displaced by
the particle motion (‘volumetric coupling’) in terms
of a fluid volume fraction . In addition, the inter-
phase momentum coupling is modeled through a re-



Channel height [m] 0.02
Channle length [m] 0.05
Maxium flow velocity at inlet [m/s] 5
Particle vertical velocity component
at injection [m/s] 1.25
Fluid density [kg/m3] 1
Particle density [kg/m3] 1000
Particle diameter [µm] 40
Maximum particle volume fraction 0.2
Number of particles 106

Table 4: Simulation settings for particle jet in cross
flow
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Figure 8: Velocity vectors generated by jet in cross
flow at different times

action force exerted by the disperse phase on the
carrier fluid. For dense regions of particle concentra-
tions, the interphase drag force is treated implicitly
in a fractional step method to improve robustness of
the approach. Several test cases are considered to
evaluate the accuracy and robustness of the numer-
ical scheme for dense loadings. First, the effect of a
single bubble undergoing forced periodic oscillations
is computed by considering the present approach as
well as the standard ‘two-way’ coupling based point-
particle method to show large variations in the pre-
dicted flow field. The results are compared with an-
alytical solutions to validate the numerical approach
for volumetric coupling. A test case with two bub-
bles undergoing forced oscillations in tandem is also
investigated. The doublet-like flow pattern is well
predicted by the present approach. Next, standard
test cases of (i) gravitational settling, (ii) Rayleigh-
Talor instability, (iii) particle-laden jet impingement
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Figure 9: Vorticity contours generated by jet in cross
flow at different times

on a flat plate, and (iv) particle-laden jet in a cross
flow are simulated to test the robustness of the nu-
merical scheme under dense loading. The numerical
approach is fully three-dimensional and applicable
to structured or unstructured grids.

The present numerical approach is capable of
simulated dense regions of spray systems near the
injector. Two issues that need further investigation
are: (i) This approach, however, requires that the
grid used for fluid flow solver be coarser than the
size of the particles (or droplets). As the computa-
tional grid becomes completely occupied by the dis-
perse phase, a continuum formulation should be used
for the dispersed phase. A hybrid approach combin-
ing discrete and continuum approaches is necessary
to model the different regimes of dense spray sys-
tems. (ii) Equations, closure models, and numer-
ical techniques for volumetric coupling in the con-
text of large-eddy simulation are needed for dense
particle/droplet-laden systems. The fluid volume
fraction (Θf ) together with the fluid density ρf can
be used to define an effective fluid density (ρ =
ρfΘf ) and density-weighted Favre-averaging can be
used to derive filtered equations for the resolved
scales in LES. Models for closure of the subgrid-scale
terms involving fluid volume fraction need to be de-
veloped.
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