
Planning in Factored Action Spaces with Symbolic Dynamic Programming

Aswin Raghavan, Saket Joshi, Alan Fern, Prasad Tadepallia, Roni Khardonb

aSchool of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA
bDepartment of Computer Science, Tufts University, Medford, MA 02155, USA

Abstract

We consider symbolic dynamic programming (SDP) for
solving Markov Decision Processes (MDP) with fac-
tored state and action spaces, where both states and ac-
tions are described by sets of discrete variables. Prior
work on SDP has considered only the case of factored
states and ignored structure in the action space, causing
them to scale poorly in terms of the number of action
variables. Our main contribution is to present the first
SDP-based planning algorithm for leveraging both state
and action space structure in order to compute compactly
represented value functions and policies. Since our new
algorithm can potentially require more space than when
action structure is ignored, our second contribution is
to describe an approach for smoothly trading-off space
versus time via recursive conditioning. Finally, our third
contribution is to introduce a novel SDP approximation
that often significantly reduces planning time with little
loss in quality by exploiting action structure in weakly
coupled MDPs. We present empirical results in three
domains with factored action spaces that show that our
algorithms scale much better with the number of action
variables as compared to state-of-the-art SDP algorithms.

1 Introduction
Many planning domains involve exponentially large action
spaces, where actions can be described in terms of joint as-
signments to action variables. This can occur when agents
have multiple actuators that can act simultaneously, e.g., a
robot that navigates and operates equipment in parallel, or
when a single actuator inherently decomposes into compo-
nent factors, e.g. playing a set of three cards. This raises the
need for planning algorithms that can leverage the structure
of such factored actions in order to scale better than treat-
ing each of the exponentially many joint actions as atomic.
Our contribution is to address this issue by introducing the
first symbolic dynamic programming (SDP) approach for
planning in MDPs with factored action spaces.

SDP planners attempt to uncover regularities in a planning
domain in order to compute a compact representation (e.g.
using decision diagrams) of the optimal value function and
policy. Such planners have been shown to be competitive

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in calculating exact solutions to a variety of large MDPs.
However, all previous SDP planners (e.g. (Hoey et al. 1999;
Sanner, Uther, and Delgado 2010)) have focused on the case
of factored states and have assumed a small set of atomic
actions. Thus, these algorithms ignore any structure in the
action space, causing both planning and execution times to
scale at least linearly in the number of actions, which is
exponential in the number of action factors.

The bottleneck for existing SDP planners applied to fac-
tored actions is that they work by iteratively computing the
result of decision-theoretic regression (DTR) over each joint
action. One of our main contributions is the factored-action re-
gression (FAR) algorithm, which exploits a compact factored-
action MDP representation in order to compute value func-
tions in the form of algebraic decision diagrams over state
and action variables. The result is a symbolic value iteration
algorithm for factored states and actions.

Our factored action regression method comes at the cost
of potentially higher memory usage compared to prior meth-
ods, but with the benefit of potentially much faster running
times. Thus, our second contribution is the memory-bounded
factored-action regression (MBFAR) algorithm, which is pa-
rameterized by a memory bound, and adaptively performs
regression over subsets of actions, exploiting the structure
within each subset. MBFAR provides a space-time trade-off,
where at one extreme (minimal space) we get standard SDP
methods, and at the other extreme (unbounded space) we get
full factored regression.

Finally, to further improve efficiency, our third contribu-
tion is an approximation called “sequential hindsight”, that
can exploit the action structure in weakly coupled MDPs
and significantly improves planning time. Our approximation
takes advantage of the factorization over actions and employs
hindsight sequentially over the outcomes of actions chosen
by other subMDPs. The approximation is exact when the
MDP can be decomposed into fully independent subMDPs.
Our evaluation in three factored-action domains shows that
FAR and MBFAR can be significantly faster than current ap-
proaches while producing exactly the same solution, and that
the policies produced by the sequential hindsight heuristic
perform near optimally.

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

1802

2 Related Work
There are several approaches addressing factored action
MDPs, but unlike our work most of these works do not at-
tempt to compute an exact optimal policy or value function
over all states. For example, prior work for goal-based prob-
lems with specified initial states (Little and Thiebaux 2006;
Younes and Simmons 2004), does not deal with arbitrary
rewards, and does not compute the policy over all states, or
guarantee optimality. The work of Mausam and Weld (2004)
extends to general rewards but still assumes an initial state
and does not compute a policy over the entire space or guar-
antee optimality. The approach of Guestrin, Koller, and Parr
(2001) considers general MDPs and computes policies over
the entire space, but is based on function approximation rel-
ative to a set of hand-engineered features, which requires
additional knowledge and does not guarantee optimality.

Our work is most closely related to work on model-
minimization for factored action spaces (Kim and Dean
2002). Like our work, that approach leverages decision di-
agrams in order to compactly represent policies and value
functions, but in a very different way. The approach pre-
processes the MDP description in order to compute a “ho-
mogeneous” partition of the state-action space that makes
all distinctions necessary for representing the value func-
tion of any policy. These partitions are then provided to an
explicit MDP solver to find a policy. In contrast, SDP inter-
leaves partitioning with steps of planning (i.e., regression)
and thus only needs to make distinctions necessary for the
value functions encountered during planning. For this reason,
the model-minimization approach, by its very nature, is less
efficient than SDP in general (Givan, Dean, and Greig 2003).

3 Background
3.1 Factored Markov Decision Processes
MDPs (Puterman 1994) and factored MDPs (Boutilier, Dean,
and Hanks 1995) have been used successfully to solve sequen-
tial decision problems under uncertainty. An MDP is a tuple
(S,A, T,R, γ) where S is a finite state-space, A is a finite
action space, T : S× A× S→ [0, 1] denotes the transition
function such that T (s, a, s′) = Pr(s′|s, a), R : S×A→ R
denotes the immediate reward of taking action a in state s,
and the parameter γ ≤ 1 is used to discount future rewards.

A policy π : S → A indicates the action to choose in
a state. The value function V π : S → R is the expected
discounted accumulated reward E[

∑n
i=0 γ

ir(si, π(si)) | π]
where si is the i’th state visited when following π. An optimal
policy π∗ is a policy that maximizes the value for all states
simultaneously. The action-value function Qπ : S × A →
R indicates the expected reward accumulated by executing
action a in state s and following policy π thereafter. For every
MDP, there is a deterministic optimal policy π∗ and unique
optimal value function V ∗ such that V ∗(s) = maxaQ

∗(s, a)
and π∗(s) = argmaxaQ

∗(s, a). The Value Iteration (VI)
algorithm identifies V ∗ and π∗ by the fixed point of iteration:

Vn+1(s)=max
a

[
R(s, a) + γ

∑
s′

Pr(s′|s, a)Vn(s′)

]
. (1)

In a factored MDP, the state space S is specified by a finite
set of binary variables X = (X1, . . . , Xl) so that |S| = 2l.
In contrast with previous work on SDP where |A| is assumed
to be small, in this work the action space A is specified by a
finite number of binary variables A1, . . . , Am and |A| = 2m.
In what follows we use a ∈ A to represent a ground action
where action variables A1, . . . , Am are instantiated to partic-
ular binary values. T is specified using a Dynamic Bayesian
Network (DBN) or Influence Diagram (ID) representation
for each action such that the next state variables X ′ depend
on a small subset of the current state variables X denoted
by parents(X ′), and hence the model can be described com-
pactly. In addition, as in previous work, we assume that there
are no “synchronic arcs”, i.e. the X ′ variables are condition-
ally independent and Pr(s′|s, a) =

∏
i Pr(X

′
i|parents(X ′i))

and parents(X ′i) ⊆ X . This assumption is easy to remove to
handle the general case.

The conditional probability tables (CPTs) of the DBN
or ID are captured using a structured representation, such
as a decision tree or algebraic decision diagrams (ADDs)
(Bahar et al. 1997). Figure 1 shows an example influence
diagram for an MDP in the SysAdmin domain (Section 7)
with factored actions. The influence diagram captures the fact
that the computers c1, c2 and c3 are arranged in a directed
ring so that the status of each computer is influenced by its
reboot action and the status of its predecessor in the ring.
The right part of Figure 1 shows the ADD that implements
the CPT of running′(c1) representing the probability that
running′(c1) is true after the current action.

3.2 Symbolic Dynamic Programming

The VI algorithm specified by Eq (1) requires that the value of
every state be updated in every iteration and this is prohibitive
with 2l states. SDP (Boutilier, Dean, and Hanks 1995) uses
state aggregation to avoid this cost. The structured canon-
ical representation of CPTs and reward makes it possible
to perform value function updates efficiently by employing
symbolic operations. Consider arbitrary functions over a set
of propositional variables X1, . . . , Xn. A binary operation
between two functions (denoted by f1 op©f2 or f1 op f2) is
defined as the pointwise application of the operator op on
the two functions. For example, f1 +© f2 = f such that for
all z ∈ Rn, f(z) = f1(z) + f2(z), where z is an instantia-
tion of X1, . . . , Xn. The restriction of f to a particular value
xi ∈ {0, 1} of the variable Xi, fixes the value Xi = xi, and
removesXi from the domain of f . We denote this by fXi=xi .
For example (x + y)x=0 = y and (x + y)x=1 = 1 + y.
Similarly, a marginalization operation (e.g., using sum or
max) is defined as op©xf = opxi∈{0,1}f

x=xi . For example∑©x(x+ y) = y + (1 + y) = 1 + 2y. These operations suf-
fice so that dynamic programming operations over all states
can be performed efficiently by specifying them as symbolic
operations. The SPUDD algorithm is described in Figure (2a)
where the main loop implements Eq (1) over the factored
space. This algorithm implements the following equations

1803

Figure 1: Left: Influence Diagram for an unidirectional ring with three computers in the SysAdmin domain; Right: CPT for
running′(c1) as an ADD.

Qa
n+1 = Ra⊕γ∑©

X
′
1
Pra(X

′
1 | X) · · ·∑©

X
′
l
Pra(X

′
l | X)⊗(V ′

n)

Vn+1 = max
a
{Qa

n+1}.

In these equations V ′n is the value function Vn expressed
over next state variables X ′, Pra(X ′i|X) specifies the proba-
bilistic dependence of X ′i on X under a, and the summation
leaves us with a value function over the current state variables
X . Note that Ra and Pra represent the immediate reward
and transition dynamics of the ground action a, and Qa rep-
resents the Q-value of action a as a function of the state. The
equations use the conditional independence of X ′ variables
to push the sum over next state variables into the product.
Partitions of the state space with similar values can be rep-
resented compactly and they capture state aggregation as in
(Givan, Dean, and Greig 2003).

The current standard SDP planner, SPUDD (Hoey et al.
1999), uses ADDs as the representation. This has been re-
cently extended by using Affine ADDs (AADDs) to com-
pactly represent additive and multiplicative structure (Sanner,
Uther, and Delgado 2010). The algorithms we present are
independent of the representation used and hence the details
of ADDs and AADDs are omitted here.

To conclude this section, we note that the symbolic rep-
resentation of the value function allows us to represent con-
straints over state variables, and over state and action vari-
ables. Constraints can be applied symbolically by simply
masking the value function to have a large negative value for
states that violate a constraint.

4 Factored Action Regression
As mentioned in the previous section, while SPUDD takes
advantage of structure in the state space, it enumerates the
ground actions a, leading to 2m iterations of regression. We
address this high time complexity by modifying the represen-
tation of the domain dynamics which in turn allows for faster
value iteration. Instead of specifying the transition model for
each ground action separately as in SPUDD, we specify the
transition model jointly as a function Pr(X ′|X,A) that de-
pends on state variables {X1, . . . , Xn} and action variables
{A1, . . . , Am}. If the action space has structure then this
yields some space saving even in model specification. More

importantly it allows us to perform VI in a factored manner
over actions as well. Our factored-action regression (FAR)
algorithm is presented in Figure (2b). In the algorithm, lines
3-7 include representations of V and Q that explicitly refer
to action variables, and lines 8 and 9 explicitly marginalize
action variables one at a time and in this way compute the
optimal policy and value function. Thus we have replaced
the expensive maximization step of SPUDD with a faster
step of variable elimination. A side effect of factored action
regression is that the Conditional Probability Tables (CPTs)
of exogenous events are not repeated across action models.
Expectation over exogenous next state variables is computed
only once in FAR, whereas SPUDD recomputes it for each
action. This yields additional savings in run time.

The explicit use of action variables allows us to take advan-
tage of structure in state-action space and leads to efficiency.
On the other hand, the intermediate diagrams capturing the
Q-function depend on all actions simultaneously and can be
more complex and require more space. Basically, we have
traded the exponential time complexity of SPUDD for higher
memory usage. This cost, too, can become prohibitive. In
the next section we show how one can strike a more refined
trade-off between SPUDD and FAR.

5 Memory-Bounded FAR
SPUDD and FAR are two extremes of handling factored ac-
tions in SDP - we either enumerate all actions or none at
all, yielding extreme points w.r.t. time and space complex-
ity. Roughly speaking we expect FAR to be faster unless it
exceeds the space available on the computer. In such cases
we can obtain a more refined trade-off by controlling the
space explicitly. We develop this idea by analogy to recursive
conditioning in Bayesian Networks (BN) (Darwiche 2001).
There, a set of cutset variables are chosen and instantiated in
all possible ways, giving a set of simpler BNs. Each simpler
BN can be solved exactly and the results can be combined.
The total time cost is exponential in the size of the cutset. In
our context, the relevant variables are action variables and
they need not form a cutset of any graph. The variables are
grounded in all possible ways, to form restrictions of the
value function for the corresponding action choices. The re-
maining variables are handled symbolically as in FAR. The
grounded restrictions of the value function are maximized

1804

Require: DBN action representation Pra, Ra for all ac-
tions a ∈ A
V ′ ←Swap each Xi variable in Vn with X ′i
for each action a ∈ A do

3: Qa ←Apply constraints to V ′ under a
for each X ′i do
Qa ← Qa ⊗ Pra(X ′i|X)

6: Qa ← ∑©X′
i
Qa

end for
Qa ← Ra ⊕ γQa

9: Vn+1 ← max(Vn+1, Q
a)

update πn+1 to a in states where Qa = Vn+1

end for
12: return (Vn+1, πn+1)

(a) SPUDD

Require: Pr,R as ADDs of state and action variables
V ′ ←Swap each Xi variable in Vn with X ′i
Apply constraints to V’

3: for each X ′i do
V ′ ← V ′ ⊗ Pr(X ′i|X,A)
V ′ ← ∑©X′

i
V ′

6: end for
Qn+1 ← R⊕ γV ′
πn+1 ← arg max

A1,...,Am
(Qn+1)

9: Vn+1 ← max
A1,...,Am

Qn+1

return (Vn+1, πn+1)

(b) Factored-Action Regression (FAR)

Figure 2: Comparison of FAR and SPUDD

MBFAR (Value function ADD V ′, Constraints on action
variables Z)

Apply action variable constraints Z to V ′
for each X ′i in V ′ do

3: if size(V ′) > C then
ap ← pick action variable
Qap=T , πap=T ← MBFAR(V ′, Z ∪ {ap = T})

6: Qap=F , πap=F ←MBFAR(V ′, Z ∪ {ap = F})
QZ ← max(Qap=T , Qap=F)
πZ ← πap=T in states where Qap=T ≥ Qap=F

9: ← πap=F in others
return (QZ , πZ)

else
12: V ′ ← V ′ ⊗ PrZ(X ′i|X,A− Z)

V ′ ← ∑©X′
i
V ′

end if
15: end for

QZ ← max
A1...Am

(R⊕ γV ′)
πZ ← arg max

A1,...,Am
QZ

18: return (QZ , πZ)

Figure 3: The MBFAR Algorithm

over explicitly. Importantly, the set of variables to ground
are decided dynamically in a recursive manner. The MBFAR
algorithm is shown in Figure 3. The algorithm takes as inputs
the current value function V ′ in the form of an ADD and Z
specifying the set of constraints on action variables i.e. a par-
tially instantiated joint action. Line 1 restricts action variables
in V ′ to their assignments in Z. Then, as long as the value
functions calculated are small our algorithm behaves exactly
as FAR (lines 11-14). If any intermediate stage of regres-
sion exceeds the prespecified space bound C, the algorithm
picks an action variable ap to ground, and calls the function
recursively twice by adding the constraints {ap = T} and
{ap = F} respectively. It then finds the max of the two
ADDs returned by the recursive calls and updates the policy
(lines 3-11).

With some abuse of notation, PrZ(Xi|X,A − Z) repre-

sents the conditional probability of Xi as a function of the
state variables X and action variables A except those that are
grounded in Z. QZ denotes the generalized Q-function over
all actions that satisfy the constraints in Z. These functions
are similar to the generalized X-value functions over subsets
of actions introduced by Pazis and Parr (2011). However,
unlike in their work where these subsets are hand-crafted, we
provide a method for constructing the subsets incrementally.
In particular, the grounded variable ap is dynamically chosen
to be the action variable with the highest out-degree in the
influence diagram. Hence the action subsets can be different
for different groundings of previous variables which makes
the approach more flexible.

The top level function is called with the current value func-
tion ADD Vn where all the variables X are replaced by their
primed variants X ′ having already applied the state-action
constraints, and with the empty set of constraints. MBFAR
returns the next level value function Vn+1 and the correspond-
ing policy ADDs.

6 Sequential Hindsight Approximation
Our final contribution is a new approximate SDP approach we
call “sequential hindsight” that yields a significant speedup
when the states and actions can be decomposed into several
weakly coupled subMDPs. The method yields an exact value
function for Compositional MDPs where the dynamics are a
cross product composition of independent subMDPs, and the
reward function is an additive combination of the subMDPs.
This is the situation for a system with full concurrency and no
interaction, where we can solve each subMDP separately. We
illustrate the idea with a simple example with two subMDPs.
In this case, regression requires us to calculate

Vn+1 = max
A1,A2

R(X1, X2, A1, A2)⊕
(
EX′

1,X′
2|X1,A1,X2,A2

γV
′
n

)
but because of the decomposition this is equivalent to
Vn+1 = max

A1
R(X1, A1)⊕ EX′

1|X1,A1(
max

A2
R(X2, A2)⊕ EX′

2|X2,A2
γV

′
n

)
.

1805

The key idea is to interchange the expectation EX′
1

and maximization maxA2 which is correct for composi-
tional MDPs, and yields computational savings. For non-
compositional MDPs, the resulting value function is an upper
bound on the optimal value function. Our algorithm applies
the same idea at the level of individual action variables in-
stead of subMDPs. We next describe the modifications to
the FAR algorithm (space constraints preclude inclusion of
the pseudocode). Comparing to the pseudocode for FAR the
maximization at line 9 is moved inside the summation loop
after line 5. The approximation algorithm checks for any
action variables ap such that all X ′j variables associated with
ap have already been summed out (cf. A2 when X ′2 has been
summed out). The heuristic assumes that these action vari-
ables are “independent of” X ′ variables in V ′ and therefore
eliminates them (taking the max over their values) at this
stage. When the assumption does not hold then the choice of
a2 in maxa2∈A2

EX′
2|X2,X1,X′

1,a2,a1
V ′n is done with “hind-

sight” of the value of a1 and X ′1 (which is the outcome of
action A1) for every a1, X ′1 pair, and hence the name sequen-
tial hindsight. For the example shown in Figure 1, reboot(c1)
is maximized for each value of running′(c2) after expection
is computed over running′(c1), . In contrast with previous
work on hindsight optimization (Yoon et al. 2008) we do not
use sampling, nor do we assume the knowledge of the com-
plete next state having only instantiated some of the variables
(X ′1 but not X ′2 in our example).

Next we give an example that this algorithm can fail if
the transition or reward functions of subMDPs are correlated.
Consider a lottery ticket domain, with two tickets and where
at most one ticket wins, each with a low probability. Assume
that buying a ticket has a small cost and the optimal action is
to buy both tickets. Under the assumption that the first ticket
does not win (X ′1 = 0), maxa2∈A2 EX′

2|X2,X1,X′
1,a2,a1

V ′n
picks the action of buying the second ticket. Under the as-
sumption that the first ticket wins (X ′1 = 1) and a1 = 1,
the second ticket is not bought. Thus the value calculated
by this method never chooses to buy both tickets, and yet
assumes that the reward can be collected, and is therefore an
overestimate.

None of the domains in our experiments is completely com-
positional although they are all weakly coupled. Nonetheless
our experiments demonstrate that sequential hindsight ap-
proximation is very effective in terms of the quality of the
policies generated.

7 Experiments
In this section we investigate the performance of the methods
proposed and compare them to the de facto standard SDP
algorithm, SPUDD, in multiple domains. As our focus is on
factored action spaces, in most experiments we fix the size
of the state space and increase the number of factors in the
action space. This shows scaling purely as a function of the
size of action space.

We use the Relational Dynamic Influence Diagram Lan-
guage (RDDL) introduced in the International Planning Com-
petition (IPC) 2011 (Sanner 2011) for input specification
of our domains. RDDL allows for easy specification of

parametrized models, provides a compact influence diagram
specification for problems with exogenous events, and allows
to specify state and action constraints (e.g., action precon-
ditions, or inconsistent combinations of state or action vari-
ables). For our algorithms, we translate the RDDL model
into a compact propositional model using algebraic decision
diagrams (ADD) as used in SDP.

To complete the details of the algorithms we must spec-
ify the ordering of variables in ADDs and the ordering of
sum and max operations. In our experiments the ordering of
variables within ADDs puts parents(X ′i) above X ′i, where
the X ′is are ordered by the number of parents that are action
variables. The order of expectations is done top-down with
respect to variable ordering (we regress exogenous events
first), and maximization operations are done in a bottom-up
order with respect to the variable ordering. Unless a specific
iteration bound is given below, in all experiments we stop VI
upon convergence (bellman error smaller than 0.01) or after
40 iterations. Our experiments are performed on a single core
of a Intel Core 2 Quad 2.83GHz with a memory limit of 4GB.
Inventory Control: We first consider a simple inventory
control domain. The domain consists of n independent shops
each being full or empty, where all shops are empty in the
initial state. Each shop has an associated deterministic action
of filling the shop (in one time step) and total number of
shops that can be filled in one time step is bounded by the
number of available “trucks” m. Thus we can take at most
m parallel actions among the n possible parallel actions. The
cost of filling a shop is -0.1. The shops become empty via
exogenous events: a nonempty shop that is not being filled
becomes empty with a probability p = 0.15. The reward is
additive, and at every time step a reward of -1 is given per
empty shop. Note that if m ≥ n then the domain (for the
above parameters) is very simple because all empty shops
can be filled at every time step. When m < n the complexity
of the policy increases from m = 1 to n/2 and decreases for
larger values for the same reason.

The results are shown in Figure 4 and they confirm the
expected dependence on the number of parallel actions. MB-
FAR is parameterized by C that represents the total number
of nodes in its ADDs. We see that SPUDD and MBFAR(200)
are significantly slower than the other algorithms. MBFAR’s
run time varies, and in intermediate settings of C it is faster
than FAR demonstrating the need for space-time trade-off.
The sequential hindsight method VH is the fastest. To eval-
uate the quality of the policies produced by this method we
measure the accumulated discounted reward for 30 random
initial states using 30 episodes from each state. We tested the
hypothesis that VH and the optimal policy (obtained using
FAR) have the same mean reward using a welch’s test with a
one sided significance level of 0.10. The mean rewards are
statistically indistinguishable and for all states the returns are
within one standard deviation.

Figure 5 further explores the space-time trade-off. In this
case FAR has similar run time to MBFAR on the first two
iterations (the lines are overlapping in the figure) but it ex-
ceeds memory limit on the third iteration. SPUDD is slower
than MBFAR and it exceeds the 120 minute time limit in the
6th iteration. MBFAR scales to run more iterations.

1806

Figure 4: Time for solution using ADDs
- 11 shops

Figure 5: Time for solution - 15 shops
and 3 trucks

Figure 6: Time for solution using
AADDs - trucks/shops = 0.5

The linear plots show that the structure of the value func-
tion has converged in a small number of iterations while the
bellman error has not. In fact, this turns out to be the case in
all our domains, which shows the power of SDP. However,
we have also observed that the ADD size grows exponentially
with n in this domain mainly because the additive reward and
value function are not easily captured by ADDs. This was the
motivation for the introduction of Affine ADDs (AADDs)
(Sanner and McAllester 2005). Figure 6 shows the scaling
with size of state space using AADDs. We see that in this
case too FAR scales better than SPUDD.

In our experiments we have observed that although
AADDs are more compact, their normalization operations
introduce numerical rounding errors that compromise the
quality of the policies. Hence we report only results with
ADDs on the rest of the domains. However, we note that this
issue is orthogonal to our approach which can work with any
compact representation that can support SDP operations.
System Administration: The “SysAdmin” domain was part
of the IPC 2011 benchmark and was introduced in earlier
work (Guestrin, Koller, and Parr 2001; Sanner and McAllester
2005). It consists of a network of n computers connected in a
given topology. Each computer is either running or failed so
that |S| = 2n where all computers are running in the initial
state. Each computer has an associated deterministic action
of rebooting the computer and there is an action cost of -
0.75 for each reboot action. In our experiments we allow for
reboot of a bounded number of computers in one time step.
Unlike the previous domain, here the exogenous events for
computers are not independent. A running computer that is
not being rebooted is running in the next state with probability
p proportional to the number of its running neighbors, where
p = 0.45+0.5∗ 1+nr

1+nc
, nr is the number of running neighbors

and nc is the number of neighbors. The reward is additive
and a reward of +1 is given for each running computer.

We test this domain on three topologies, a unidirectional
ring (Figure 7), a bidirectional ring (Figure 8) and a star topol-
ogy (Figure 9). In the unidirectional ring, we fix the number
of computers and split them into independent rings. Action
parallelism is controlled by allowing only one action per ring.
In the bidirectional ring, we use a fixed number of computers
and increase the number of allowed simultaneous reboots.
Concurrent actions are important in this network since it is
better to reboot pairs of adjacent computers as they influence
each other. In the star network computers are connected in a
breadth first fashion, with each computer connected to up to

three other computers. Computers near the center of the star
are more important. Here too we fix the number of computers
and increase the number of simultaneous reboots.

The figures show that SPUDD requires exponential time
across network topology and fails to scale beyond the small-
est concurrent problems. In spite of its high memory usage
FAR scales well with the concurrency. MBFAR lines show
the interpolation between SPUDD and FAR and MBFAR
with an intermediate bound is sometimes faster than FAR.
The sequential hindsight method is the fastest on this domain.
Using the same method to evaluate VH as in IC, we found
that the mean return is not distinguishable from the return of
the optimal policy.
Elevator Control: The elevators domain is a challenging
domain for probabilistic planners, and was part of the IPC
2011 benchmark. Here we simplify the domain to be solvable
by SDP. A building with n floors is serviced by m elevators,
where each elevator is assigned a subset of the floors. The
floors are divided uniformly between elevators with some
common floors. For each floor a fluent denotes whether a
person is waiting. People only wait to go up. For each elevator
the fluents denote whether a person is in the elevator and the
current direction of the elevator. For each elevator-floor pair a
fluent denotes whether the elevator is at that floor. Therefore
the size of the state space is |S| = 2n+2m+mn. Each elevator
moves independently and has 3 actions: move-up, move-
down and change direction, so that |A| = 3m. The dynamics
implicitly imply that a person waiting at a floor moves into the
elevator if the direction of the elevator is also up. A person in
an elevator exits if the elevator cannot move up anymore. In
this domain the exogenous events describe arrival of people,
where a person arrives at a floor with probability p = 0.15.
The reward function is additive. At each time step, each
person waiting at a floor gives a reward of -1. Each person
in an elevator gives a reward of -0.75 if the elevator is going
in her desired direction and -3.0 otherwise. Note that unlike
previous domains, in this domain increasing the action space,
i.e., the number of elevators, also increases the state space.

In the one elevator case (Figure 10), we see that MB-
FAR(200) is faster than SPUDD. The only difference between
these algorithms is that exogenous events are regressed only
once by MBFAR while they are regressed once for each joint
action in SPUDD. When increasing the number of elevators,
the gap between FAR and SPUDD widens and FAR is an
order of magnitude faster than SPUDD for three elevators
(Figure 12). The sequential hindsight method is the fastest on
this domain too. Using the same method to evaluate VH as in

1807

Figure 7: Time for solution - 12 comput-
ers Unidirectional ring

Figure 8: Time for solution - 11 comput-
ers Bidirectional ring

Figure 9: Time for solution - 12 comput-
ers star network

Figure 10: Time for solution - 1 elevator Figure 11: Time for solution - 2 eleva-
tors

Figure 12: Time for solution - 3 eleva-
tors

IC, we found that the mean return is not distinguishable from
the return of the optimal policy.

8 Discussion and future work
In this paper we presented the first symbolic dynamic pro-
gramming algorithms for planning in MDPs with large action
spaces. Our methods have fundamental advantages due to
explicitly representing action variables within ADDs thus
capturing state-action structure. Extension to existing deci-
sion diagram (DD) techniques e.g. APRICODD (St-Aubin,
Hoey, and Boutilier 2001) and Multi-value DDs is straight-
forward. Extension to first order diagrams (Wang, Joshi, and
Khardon 2008) is a possible future direction. This work can
also be applied to cooperative multi-agent MDPs where the
state is globally known. The MBFAR algorithm inspired by
recursive conditioning provides a principled way of trading
memory for time. We also presented a new heuristic SDP
approach which is near optimal in the domains we tested.
Analyzing the error in sequential hindsight approximation is
also future work.

Acknowledgments
The authors would like to thank Scott Sanner for making
available an ADDs library. This work is supported by NSF
under grants IIS-0964457 and IIS-0964705, and the CI fel-
lows award for Saket Joshi.

References
Bahar, R.; Frohm, E.; Gaona, C.; Hachtel, G.; Macii, E.; Pardo, A.; and
Somenzi, F. 1997. Algebric decision diagrams and their applications.
Formal methods in system design 10(2):171–206.
Boutilier, C.; Dean, T.; and Hanks, S. 1995. Planning under uncertainty:
Structural assumptions and computational leverage. In Proceedings of
the Second European Workshop on Planning, 157–171.
Darwiche, A. 2001. Recursive conditioning. Artif. Intell. 126:5–41.
Givan, R.; Dean, T.; and Greig, M. 2003. Equivalence notions and
model minimization in Markov decision processes. Artificial Intelli-
gence 147(12):163 – 223.

Guestrin, C.; Koller, D.; and Parr, R. 2001. Multiagent planning with
factored MDPs. Advances in neural information processing systems
14:1523–1530.
Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999. Spudd: Stochas-
tic planning using decision diagrams. In Proceedings of the Fifteenth
Conference on Uncertainty in Artificial Intelligence, 279–288.
Kim, K.-E., and Dean, T. 2002. Solving factored MDPs with large
action space using algebraic decision diagrams. In Proceedings of
the 7th Pacific Rim International Conference on Artificial Intelligence:
Trends in Artificial Intelligence, PRICAI ’02, 80–89. London, UK, UK:
Springer-Verlag.
Little, I., and Thiebaux, S. 2006. Concurrent probabilistic planning in
the graphplan framework. In Proc. ICAPS, volume 6, 263–272.
Mausam, M., and Weld, D. 2004. Solving concurrent Markov decision
processes. In Proceedings of the 19th national conference on Artifical
intelligence, 716–722. AAAI Press.
Pazis, J., and Parr, R. 2011. Generalized value functions for large action
sets. In Proceedings of the Twenty Eighth International Conference on
Machine Learning(ICML), 1185–1193.
Puterman, M. 1994. Markov decision processes: Discrete stochastic
dynamic programming. John Wiley & Sons, Inc.
Sanner, S., and McAllester, D. 2005. Affine algebraic decision di-
agrams (AADDs) and their application to structured probabilistic in-
ference. In International Joint Conference on Artificial Intelligence,
volume 19, 1384.
Sanner, S.; Uther, W.; and Delgado, K. 2010. Approximate dynamic
programming with affine ADDs. In Proceedings of the 9th Interna-
tional Conference on Autonomous Agents and Multiagent Systems: Vol-
ume 1, 1349–1356.
Sanner, S. 2011. Relational dynamic influence diagram language
(rddl): Language description. NICTA, Australia.
St-Aubin, R.; Hoey, J.; and Boutilier, C. 2001. Apricodd: Approxi-
mate policy construction using decision diagrams. Advances in Neural
Information Processing Systems 1089–1096.
Wang, C.; Joshi, S.; and Khardon, R. 2008. First order decision dia-
grams for relational MDPs. Journal of Artificial Intelligence Research
31(1):431–472.
Yoon, S.; Fern, A.; Givan, R.; and Kambhampati, S. 2008. Probabilistic
planning via determinization in hindsight. In Proceedings of the 23rd
national conference on Artificial intelligence, volume 2.
Younes, H., and Simmons, R. 2004. Policy generation for continuous-
time stochastic domains with concurrency. In ICAPS04, volume 325.

1808

	AAAI12
	Contents
	Index
	Help
	Terms
	AAAI

