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Abstract

Many real-world domains exhibit rich relational structure and stochasticity and motivate
the development of models that combine predicate logic with probabilities. These models
describe probabilistic influences between attributes of objects that are related to each other
through known domain relationships. To keep these models succinct, each such influence
is considered independent of others, which is called the assumption of “independence of
causal influences” (ICI). In this paper, we describe a language that consists of quantified
conditional influence statements and captures most relational probabilistic models based
on directed graphs. The influences due to different statements are combined using a set of
combining rules such as Noisy-OR. We motivate and introduce multi-level combining rules,
where the lower level rules combine the influences due to different ground instances of the
same statement, and the upper level rules combine the influences due to different state-
ments. We present algorithms and empirical results for parameter learning in the presence
of such combining rules. Specifically, we derive and implement algorithms based on gradi-
ent descent and expectation maximization for different combining rules and evaluate them
on synthetic data and on a real-world task. The results demonstrate that the algorithms
are able to learn both the conditional probability distributions of the influence statements
and the parameters of the combining rules.

1. Introduction

New challenging application problems that involve rich relational data and probabilistic in-
fluences have led to the development of relational probabilistic models (Getoor and Taskar,
2007). The advantage of these models is that they can succinctly represent probabilistic
dependencies between the attributes of different related objects, leading to sample-efficient
learning. Models are succinct because parameters are shared between different instantia-
tions of the same “rule” applied to different objects. In many cases, inference is accom-
plished by instantiating the rules with all possible variable bindings yielding a propositional
Bayesian network. The nodes of the Bayesian network denote random variables that repre-
sent different attributes of objects or relationships between objects.
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In many cases, a single parameterized rule can result in multiple instantiated sets of
parents that influence a single ground target variable. More over, the number of these
parent variables might change from one instance to the other. Consider, for example, the
problem of modeling the spread of a disease such as West Nile virus. One might posit
that the spread depends on the mosquito population in a given location. The size of the
population of mosquitos in turn depends on the temperature and the rainfall of each day
since the last freeze. In one location, there might have been 19 days since the last freeze,
whereas in another location, there might have been only 3 days (see Figure 1(a)).

Temp1 Rain1 Rain3Temp3

Pop

Rain2Temp2

(a)

Temp1 Rain1 Rain3Temp3

Pop

Rain2Temp2

TotalTemp TotalRain

(b)
Temp1 Rain1 Rain3Temp3Rain2Temp2
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Figure 1: Three Bayesian networks describing the influence of daily temperature and rainfall
on the population of mosquitos. (a) a network with no aggregation or combination
rules leads to a very complex conditional probability distribution, (b) a network
with separate aggregation for temperature and rainfall, (c) a network with sepa-
rate prediction of the mosquito population each day followed by a combining rule
to predict the overall population.

There are two main approaches to deal with this “multiple-parent” problem: aggregators
and combining rules. An aggregator is a function that takes the values of the parent variables
and combines them to produce a single aggregate value which then becomes the parent of
the target variable. In the mosquito problem, we might define the average temperature and
the total rainfall as aggregate variables. These are well-defined for any number of parents,
and they can be computed deterministically (shown as dashed lines in Figure 1(b)). The
population node then has only two parents: AverageTemp and TotalRain.

The second approach to the multiple-parent problem is to assume “independence of
causal influence,” (ICI) where multiple causes on a target variable can be decomposed into
several independent causes whose effects are combined to yield a final value. In other words,
each parent or set of related parents produces a different value for the child variable, all
of which are combined using a deterministic or stochastic function. Depending on how
the causes are decomposed and the effects are combined, we can express the conditional
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distribution of the target variable given all the causes as a function of the conditional
distributions of the target variable given each independent cause using a “decomposable
combining rule.”

In the above mosquito example, the mosquito population of each day is a random func-
tion of the temperature-rain pair of that day and the populations of all days may be com-
bined into a single value by a deterministic (e.g., sum, average) or a stochastic (e.g., random
choice) function (Figure 1(c)). Thus the final population distribution given the data of all
days is a parameterized function of the day-wise distributions P (Pop | Temp, Rain) com-
puted by a combining rule such as Noisy-OR, Noisy-AND, or Mean.

The advantage of this method is that it can naturally capture the underlying fine-grained
structure of the causal mechanism while keeping the inference and learning tractable. In
our example, it captures the interactions between the Temp and Rain variables that are
lost when temperature and rain are aggregated separately.

There is, however, an additional complication. There can be multiple independent causal
influences on the same target variable which are captured by different kinds of influences.
For example, spraying of pesticides and the direction of the wind at that time might also
influence the mosquito population at a given place and time. The net effect of this rule and
that of the previous rule will have to be combined to get a final probability of the mosquito
population. This can be achieved by having another combining rule which combines the
different distributions of the target variable given the parent variables in each rule.

How can we learn in the presence of aggregators and combining rules? Most aggre-
gators are deterministic and have no adjustable parameters, so they pose no additional
problems for learning. However, some aggregators may have internal parameters. Sup-
pose, for example, that we aggregated the temperatures as “degree days above θ degrees”:
DD(θ) =

∑

i max(0, T empi−θ). The appropriate threshold temperature θ might be learned
from training data. See (Neville et al., 2003) for an approach to learn such parameters.

Learning with combining rules is more difficult, because the individual predicted target
variables (e.g., Pop1, Pop2, . . . ) are unobserved, so the probabilistic model becomes a
latent variable model. However, the latent variables are constrained to share the same
conditional probability distribution, so the total number of parameters remains small. In
previous work, Koller and Pfeffer developed an expectation maximization (EM) algorithm
for learning in the presence of combining rules and missing data in relational context (Koller
and Pfeffer, 1997). Kersting and DeRaedt implemented a gradient descent algorithm for
the same (Kersting and De Raedt, 2001).

In this paper, we generalize and extend the above work to multi-level combining rules.
The first level of combining rules combines the distributions of the target variable due to
different instantiations of the same parameterized influence rule. The second level of com-
bining rules operates on the results of the first level and combines the multiple distributions
due to different influence rules.

We derive algorithms for learning the parameters of the distributions and the combin-
ing rules based on the gradient descent and the EM algorithms. The gradient descent is
implemented using two different metrics: minimizing the mean squared error and maxi-
mizing the loglikelihood. We consider 3 types of combining rules, Mean, Weighted-Mean,
and Noisy-OR. The algorithms are tested on three tasks: a folder prediction task for an
intelligent desktop assistant and two synthetic tasks designed to evaluate the ability of the
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algorithms to recover the true conditional probabilities. This work extends and completes
our preliminary results reported in (Natarajan et al., 2005).

The rest of the paper is organized as follows. Section 2 introduces the necessary back-
ground on probabilistic relational languages and motivates the need for combining rules.
Section 3 presents the two gradient descent and EM algorithms that we have designed for
learning the parameters in the presence of combining rules. Section 4 explains the experi-
mental results on a real-world dataset and on the synthetic datasets. Section 5 concludes
the paper and points out a few directions for future research.

2. Probabilistic Relational Languages

In this section, we give a brief introduction to our first order conditional influence language
(FOCIL), which will serve as a concrete syntax for specifying and learning combining rules.
However, we note that our learning techniques are not tied to this particular language and
are applicable to other probabilistic modeling languages that share the same underlying
abstract model, e.g., Bayesian Logic Programs (BLPs). We give examples of such languages
and translation of their syntax to ours in the next section.

In the spirit of Probabilistic Relational Models (PRMs) (Getoor et al., 2001), we model
domains in terms of objects of various types. Each type of object has associated attributes.
The attributes have values of different primitive types, e.g., integers, enumerated type, etc.
There are also predicates that describe properties of objects or relationships between objects
of certain types. In this work, we assume that the domain of objects and relations among
the objects are known and that we are interested in modeling the probabilistic influences
between the attributes of the objects. The methods are extensible to probabilistic influences
between relations in a straightforward way.

2.1 Conditional Influence Statements

In this section, we summarize the syntax of our language, FOCIL. The core of FOCIL
consists of first-order conditional influence (FOCI) statements, which are used to specify
probabilistic influences between the attributes of objects in a given domain. Each FOCI
statement has the form:

If 〈condition〉 then 〈qualitative influence〉

where condition is a set of literals, each literal being a predicate symbol applied to
the appropriate number of variables. The set of literals is treated as a conjunction. A
〈qualitative influence〉 is of the form X1, . . . , Xk Qinf Y , where the Xi and Y are of the
form V.a, where V is a variable that occurs in condition and a is an object attribute. This
statement simply expresses a directional dependence of the resultant Y on the influents Xi.
Associated with each FOCI statement is a conditional probability function that specifies a
probability distribution of the resultant conditioned on the influents, e.g. P (Y |X1, . . . , Xk)
for the above statement. We will use Pi to denote the probability function of the i’th FOCI
statement. As an example, consider the statement,

If {Person(X)} then X.diettype Qinf X.fitness,
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which indicates that a person’s type of diet influences their fitness level1. The con-
ditional probability distribution P (X.fitness | X.diettype) associated with this statement
(partially) captures the quantitative relationships between the attributes. As another ex-
ample, consider the statement

If {Takes(Offering,Student,Course)} then Student.iq, Course.diff Qinf Offering.grade,
which indicates that a student’s IQ and a course’s difficulty influence the grade of the

student in the course. Note that since Takes is a many-to-many relation, we have introduced
an argument Offering to represent the instance of the student taking a course. It can be
interpreted as representing a student-course pair.

Given a fixed domain of objects and a database of facts about those objects, FOCI
statements define Bayesian network fragments over the object attributes. In particular, for
the above statement, the grounded Bayesian network includes a variable for the grade of each
student-course object, the IQ of each student, and the difficulty of each course. The parents
of each grade variable are the IQ and difficulty attributes corresponding to the appropriate
student and course. Each grade variable has an identical conditional probability table
P (Offering.grade|Student .iq ,Course.diff )—that is, the table associated with the above
rule.

In addition, our language supports qualitative constraints such as monotonicity (e.g., a
person’s consumption monotonically increases with income) and synergies (e.g., the lifestyle
of a family synergistically depends on the family members’ incomes). Although in this paper
we do not learn with these constraints, we have well-defined semantics of the constraints
in FOCIL and learning algorithms for propositional models with monotonicity constraints
(Altendorf et al., 2005).

2.2 Combining Rules

The following example illustrates the multiple-parent problem described in the introduction.
Consider an intelligent desktop assistant that must predict the folder of a document to be
saved. Assume that there are several tasks that a user can work on, such as proposals,
courses, budgets, etc. The following FOCI statement says that a task and the role the
document plays in that task influence its folder.

If {role(Doc,Role,Task)} then Task.id,Role.id Qinf Doc.folder.

where role(Doc, Role, Task) denotes that the document Doc plays the role specified by
Role in Task. Typically a document plays several roles in several tasks. For example, it may
be the main document of one task but only a reference in some other task. Thus there are
multiple task-role pairs (Task1, Role1), . . . , (Taskm, Rolem), each yielding a distinct folder
distribution P (Doc.folder | Taski.id, Rolei.id). We need to combine these distributions into
a single distribution for the folder variable. We could apply some kind of aggregator (e.g.,
the most frequently-occurring task-role pair) as in PRMs (Getoor et al., 2001). However,
there are usually some documents, e.g., bibliographies, that are accessed with low frequency
across many different tasks, but these individual accesses, when summed together, predict
that the document is stored in a convenient top-level folder rather than in the folder of the

1. For the ease of notation, we denote an object’s name to begin with uppercase, while the attribute of an

object to begin with lowercase
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most frequent single task-role pair. This kind of summing of evidence can be implemented
by a combining rule.

t1

d1.folder d1.folder

d1.folder

Weighted Mean

d1.folder d1.folder

f2

d1.folder d1.folder

Mean Mean

r1 t2 r2

f1

Figure 2: Use of Combining rules to combine the influences of task and role on the one
hand and the source folder on the other on the folder of the current document.

In the above example, a combining rule is applied to combine the distributions due
to different influent instances of a single FOCI statement. In addition, combining rules
can be employed to combine distributions arising from multiple FOCI statements with the
same resultant. The following example captures such a case (see Figure 2 for the grounded
network):

WeightedMean{

If {role(Doc,Role,Task)} then Task.id, Role.id Qinf (Mean) Doc.folder.

If {source(Src,Doc)} then Src.folder Qinf (Mean) Doc.folder.

}

Figure 3: Example of specifying combining rules in FOCIL.

The expression in Figure 3 includes two FOCI statements. One statement is the task-role
influence statement discussed above. The other says that the folder of the source document
of Doc influences Doc’s folder. The source of a document is another document that was
used to create the current document. There can be multiple sources for a document. The
distributions corresponding to different instances of the influents in the same statement
are combined via the “Mean” combining rule. The two resulting distributions are then
combined with the “Weighted-Mean” combining rule. The precise meanings of these rules
are described in Section 2.4 through the grounding process that leads to a Bayesian network.

Our language consists of a set of influence statements. Each influence statement has
a resultant, a set of influents, a logical condition and a combining rule to combine the
influences due to the different influent instances. The set of influence statements that have
the same resultant are grouped together and another combining rule is used to combine the
distributions arising due to different influence statements.

The logical conditions in the influence statements specify a set of logical variables that
denote objects and the relationship that must hold between the objects for the statement to
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be applicable. The influents and the resultant of the influence statement correspond to the
attributes of objects bound to the logical variables, and respectively represent the parents
and the child nodes in the grounded Bayesian network. For instance, in the statement in
Figure 3, the logical condition role serves to bind the logical variables Doc,Role, and Task
to objects such that the document bound to Doc plays the specified role in the given task.
The statement uses these bindings to declare the task and the role of the document as
influents of the folder of the document.

2.3 Relationship to Other Languages

We describe our learning algorithms using the FOCIL notation. However, our learning
algorithms and results are not specific to its concrete syntax. They can be applied to any
language that shares its abstract model and uses combining rules to combine the results of
multiple instantiated rules.

In this section, we represent several first order probabilistic models in FOCIL’s syntax
to show their commonalities and illustrate the generality of our learning algorithms.

Kersting and De Raedt introduced Bayesian Logic Programs (Kersting and De Raedt,
2000). BLPs combine Bayesian Networks with definite clause logic. Bayesian Logic Pro-
grams consist of two components: a qualitative component that captures the logical struc-
ture of the domain (similar to that of the Bayesian Network structure) and a quantitative
component that denotes the probability distributions. An example of a BLP clause is as
follows:

bt(X) | father(F,X), bt(F), mother(M,X), bt (M)

There is a CPT corresponding to this clause. In this case, the predicates mother(M, X)
and father(F, X) would have boolean values. One could then specify the ground facts like
father(John, Tom) etc. The function bt(F ) represents the blood type of F . The above
statement says that a person’s blood type is a function of his father’s and mother’s blood
types. The FOCI statement corresponding to the above BLP clause is:

If { mother(M,P), father(F,P)} then M.bt, F.bt Qinf P.bt

BLPs also use combining rules for combining the distributions due to multiple instanti-
ations of the parent predicates. The main difference between BLPs and FOCI statements is
that in the latter, the logical conditions are clearly separated from the influents. BLPs do
not make this distinction in the clauses, although they are semantically distinguished and
implemented by a separate declaration in the model.

Another representation that is closely related to both FOCIL and BLPs is Logical
Bayesian Networks Fierens et al. (2005). They consist of conditional dependency clauses
of the form X|Y1, ..., Yk ←− Z1, ..., Zm. This can be interpreted as “Y1, ..., Yk influence X
when 〈Z1, ...Zk〉 are true,” where Y1, ..., Yk and X are random variables and 〈Z1, ..., Zm〉 are
logical literals. The above example of the bloodtype can be represented in LBNs as:
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bt(X) | bt(M), bt(F) ←− Mother(M,X),Father(F,X)

More recently Getoor and Grant proposed the formalism of Probabilistic Relational Lan-
guage (PRL) (Getoor and Grant, 2006). The main motivation behind this work is to
represent the original work on probabilistic relational models (PRMs) (Getoor et al., 2001)
in logical notation. While PRMs exclusively use aggregators to combine the influences of
multiple parents, both aggregators and combining rules can be used in the PRL frame-
work. The entities and the relationships that are represented as predicates form the logical
structure of the domain. The probabilistic structure is composed of non-key attributes that
form the random variables in the domain. The general structure of the influence statement
is: DependsOn(X(α), Y1(α), ...Yn(α))←− Z(α) and can be interpreted as “〈Y1(α)....Yn(α)
influence X(α) when Z(α) is true.” Consider, our bloodtype example. In PRL, we can
represent it as follows:

DependsOn(bt(X),bt(M), bt(F)) ←− Mother(M,X), Father(F,X)

The main difference between the PRLs and LBNs lies in the fact that the PRLs allow
for aggregate functions explicitly. The aggregate functions do not pose special problems for
parameter learning because often they are deterministic and are given. However, inference
is much more complicated with aggregate functions. In this paper we ignore aggregation
and focus on combining rules. Also, in (Getoor and Grant, 2006) the authors show how
to represent several kinds of uncertainties like structure uncertainty, reference uncertainty,
and existence uncertainty in PRL. These extensions are out of the scope for the current
paper.

Heckerman et al. introduced directed acyclic probabilistic entity-relationship (DAPER)
models (Heckerman et al., 2004). DAPER models are to entity-relationship models what
PRMs are to relational schema. The arcs in the DAPER models are between the attributes
of the entities and relationships. The main difference with the PRMs is that the DAPER
models attach arbitrary first-order conditions to the Bayes net arcs. These conditions serve
to restrict the set of possible instantiations of the variables. For instance, to represent the
bloodtype example, there would be arcs to the bloodtype of a person X from the bloodtypes
of the person’s father F and mother M with the constraints on the arcs being Mother(M, X)
and Father(F, X). These conditions along with the arcs represent the fact that a person’s
bloodtype is influenced by the bloodtypes of his or her parents.

One problem with the DAPER models, however, is that they do not allow sharing of
variables between the incoming arcs at the same node, and thus prohibit interaction between
the influents. For instance, it is impossible to express the following rule in DAPER because
the condition role(Doc, Role, Task) involves both the Bayes net parents Task and Doc.

If {role(Doc,Role,Task)} then Task.id,Role.id Qinf Doc.folder.

This problem can be solved by attaching the conditions jointly to all parents of a node.
DAPER models allow us to specify how the distributions are combined if there are more
than one possible instantiation of the free variables that satisfy the conditions.

Although the different models differ from each other in syntactic details, they all share
the same underlying semantics for the core language, and express equivalent pieces of knowl-
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edge. All of them also suffer from the multiple-parent problem, which can be addressed
through combining rules. Thus, the algorithms discussed in this paper are relevant and
applicable to all these formalisms and a few others such as Relational Bayesian Networks
(RBNs) (Jaeger, 1997), Multi-Entity Bayesian Networks (MEBNs) (Laskey, 2008), and
Probabilistic Logic Programs (Ngo and Haddawy, 1995).

Not surprisingly, there are also some statistical relational models for which our algo-
rithms do not apply. For example, PRISM (Sato and Kameya, 2001) uses a representation
that consists of a set of probabilistic atoms called facts, and a set of deterministic non-unit
definite clauses called rules. A probability distribution is placed on the interpretations over
the facts, and is extended to all literals via the minimal model semantics of definite clause
programs. There is no straightforward mapping between the FOCIL representations and
PRISM programs. Stochastic Logic Programs (SLPs) are very different from all the above
languages since they place distributions on possible proofs of Horn programs rather than
on interpretations (Muggleton, 1996). Markov Logic Networks (Domingos and Richardson,
2004) and related Conditional Random Fields (Lafferty et al., 2001) are based on undirected
graphical models and significantly differ from models based on directed graphs. Markov
Logic Networks, for example, are more flexible in allowing knowledge to be expressed as
weighted first-order formulas, and have correspondingly harder learning and inference prob-
lems as functions of the size of the formulas.

2.4 Grounding FOCI Statements

In this section, we formally define the semantics of the FOCI statements by showing the
procedure to ground them into a Bayesian network.2 Consider a generic influence statement:

if 〈condition〉 then X1
i , . . . , Xk

i Qinf Y .

For notational simplicity, we assume that the ith influence statement, ‘rule i’ for short,
has k influents, X1

i through Xk
i (which we jointly denote as Xi), that influence the target

variable. When this rule is instantiated or “grounded” on a specific database, it generates
multiple, say mi, sets of influent instances, which we denote as X1

i . . .Xmi

i . This is shown
in Figure 4. In the figure, the instantiations of a particular statement are combined with
the Mean combining rule. The distributions resulting from the different FOCI statements
are combined via the Weighted-Mean combining rule.

x11

1

...
x1k

1
x

m11

1

...
x

m1k

1
x11

2

...
x1k

2
x

m21

2

...
x

m2k

2

P 1
. . .

Pm1 P 1
. . .

Pm2

Mean
. . .

Mean

Weighted-Mean

Figure 4: Grounding of FOCI statements

2. We prefer the word “grounding” to “unrolling” to describe this process, because unrolling is more fre-

quently used to refer to instantiating dynamic Baesian networks over multiple time steps.
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The role of the combining rule is to express the probability Pi(Y |X
1
i . . .Xmi

i ) as a func-

tion of the probabilities Pi(Y |X
j
i ), one for each j, where Pi is the CPT associated with rule

i. Since these instance tuples are unordered and can be arbitrary in number, our combining
rule should be symmetric, i.e., its value should not depend on the order of the arguments.
For example, with the mean combining rule, we obtain:

P (y|X1
i . . .Xmi

i ) =
1

mi

mi
∑

j=1

Pi(y|X
j
i ) (1)

If there are r such rules, we need to estimate the conditional probability P (Y |X1,1
1 ...Xmr,k

r ).
Since each rule is distinctly labeled and its instances can be identified, the combining rule
need not be symmetric, e.g., Weighted-Mean. If wi represents the weight of the ith combining
rule, the “Weighted-Mean” is defined as:

P (Y |X1,1
1 ...Xmr,k

r ) =

∑r
i=1 wiP (Y |X1

i . . .Xmi

i )
∑r

i=1 wi
(2)

We write xj,1
i , . . . , xj,k

i ≡ x
j
i to denote the values of X

j
i and y to denote the value of Y . We

write θy|xi
to denote Pi(y|xi). Note that in this case we omit the superscript j because the

parameters θ are shared across the different instantiations of the same rule. We typically
use l to index an example, and use yl and xl to denote the Y-value and the X-vector of the
lth example.

Note that the graph presented in Figure 4 is not a Bayesian Network, but is a tree
representation of the expression for the conditional probability of the target variable given
the inputs. The nodes labeled “Mean” compute the mean of the parent distributions repre-
sented by P 1

1 , . . . , Pm1

1 , etc., and the node labeled “Weighted-Mean” computes the weighted
mean of its parent distributions.

Consider the equivalent Bayesian Network presented in Figure 5. This network is very
similar to Figure 4. However, the nodes here represent random variables whose values
are from the domain of the target variable. This Bayesian network represents the same
distribution as that of Figure 4. In this Bayesian network, the values of the random variables
Y 1

1 ..Y m1

1 , etc. are sampled from distributions P 1
1 , . . . , Pm1

1 , etc. Then one of the parents of
Y1 is chosen randomly according to the uniform distribution and Y1 is set to its value. This
is repeated for Y2, . . . , Yr. This ensures that the values at each of Y1, . . . , Yr are distributed
according to the mean of the node’s parent distributions. Similarly the value of the variable
Y is inherited from one of Y1, . . . , Yr with probabilities given by the weights w1, . . . , wr. This
ensures that the final conditional distribution of Y is the weighted mean of the distributions
of its parents.

Similarly, the Noisy-OR combining rule can be implemented by setting the value of Y
to be a disjunction of Y ′

1 , . . . , Y
′
r , where each Y ′

j is a noisy version of Yj .
The key idea behind these “decomposable” combining rules is that they can be imple-

mented using deterministic or stochastic functions of the corresponding values of random
variables. Given such a value-based implementation of the combining rules, it is possible to
use the standard Bayesian network learning and inference methods on them to learn their
parameters. Our implementation of the EM algorithm, described in Section 3.6, can be
understood as doing exactly that.
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x11

1

...
x1k

1
x

m11

1

...
x

m1k

1
x11

r

...
x1k

r
xmr1

r

...
xmrk

r

Y 1

1

. . . Y m1

1 Y 1

r

. . . Y mr

r

Y1

. . . Yr

Y

Figure 5: Value based Bayesian Network for the FOCI statements. The mean combining
rule is replaced by a node that chooses a value using an uniform distribution. The
Weighted-Mean rule is replaced by a node that chooses one of its parent values
randomly using a biased distribution.

3. Learning Model Parameters

In this section, we present algorithms for learning the parameters of the combining rules
and the conditional probability tables (CPTs). As mentioned earlier, we are using two
levels of combining rules, the first to combine the multiple instances of the same rule and
the second to combine the distributions due to the different rules. In this work, we use
the Mean combining rule at the first level (i.e., to combine the influence due to multiple
instances of the same rule) and the Weighted-Mean and the Noisy-OR at the second level
(i.e., to combine the distributions due to the different rules). We present algorithms for
learning in the presence of all these combining rules.

3.1 Gradient Descent Learning

Two of our learning algorithms are based on gradient descent. The idea of gradient de-
scent training is to gradually change the parameters of the probability distributions in the
direction of improved performance. We consider two measures of performance and design
gradient descent algorithms for optimizing these two measures individually. The mean
squared error measures the square of the difference between the true probability of a label
of the example and the probability of that label predicted by the current model. Natu-
rally, we would like to minimize the squared error. In trying to predict probabilities, it is
more common to measure the performance by the loglikelihood, which is the logarithm of
the likelihood of the examples under the current model. We would like to maximize the
loglikelihood to improve the performance of the learner.

The generic gradient descent pseudocode for learning the parameters of the FOCI state-
ments in the presence of combining rules is given in Figure 1. We use different step-size
parameters (α and β) for the parameters and the weights respectively. It is important to
have much smaller learning rates for the combining rule weights compared to those of the
CPT parameters, i.e., β << α. This is because each iteration of each example only changes
a few of the large number of CPT parameters, whereas it changes many of the small num-
ber of weights. This is to say that for any CPT entry, the number of instances which are
effected by that entry is much smaller than the total number of instances. Hence, each rule
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1. Initialize the parameters θ and weights wi randomly

2. Parameter Gradient Step: for each value of y and for all parent
configurations of each rule i xi, compute the gradient −∂E

∂θy|x
i

consid-

ering each instantiation of the rule i where E is the error function
that is either the negative log-likelihood or the Mean squared Error
function

3. Weight Gradient Step: Compute the gradient of the weights −∂E
∂wi

for each of the rule

4. Parameter Update Step: Update each parameter θy|xi
by θy|xi

=

θy|xi
− α ∂E

∂θy|x
i

for each value of y

5. Gradient Update Step: Update each weight wi by wi = wi − β ∂E
∂wi

.
Normalize the weights so that the sum is preserved

6. Continue steps 2 through 5 until convergence.

Table 1: Gradient descent applied to learning parameters of FOCI statements

weight is updated much more frequently than each conditional probability and hence should
be updated by smaller amount in each iteration. The gradient descent methods presented
here can converge to a local optimum. In our experiments, we found that convergence to a
non-global optima was not serious problem. But, in general, the use of standard techniques
like random restarts would alleviate this problem. Also, the weights or the parameters could
become negative when the gradient is subtracted from the current value. In these cases, we
clip the values at 0.

3.2 Gradient Derivation for the Mean Squared Error for Weighted-Mean

In this section, we derive the gradient equation for the mean-squared error function for
the prediction of the target variable, when multiple FOCI-statements are present and are
combined by the Weighted-Mean combining rule. Let the lth training example el be denoted

by (〈x1,1
l,1 , . . . , x

ml,rl
,k

l,rl
〉, yl), where xj,p

l,i is the pth input value of the jth instance of the ith rule

on the lth example. The predicted probability of class y on el is given by

P (y|el) =
1

∑

i wi

rl
∑

i

wi

ml,i

ml,i
∑

j

Pi(y|x
j
l,i). (3)

In the above equation, rl is the number of rules the example el satisfies, i is an index of
the applicable rule, and ml,i is the number of instances of rule i on the lth example. The

12
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squared error for each example el is given by

E =
1

2

n
∑

l=1

∑

y

(I(yl, y)− P (y|el))
2. (4)

Here l indexes the examples, y is a class label, and yl is the true label of el, the lth

example. I(yl, y) is an indicator variable that is 1 if yl = y and 0 otherwise. Taking the
derivative of negative squared error with respect to P (y|xi) = θy|xi

, we get

−∂E

∂θy|xi

=
n
∑

l=1

∑

y′

[

(I(yl, y
′)− P (y′|el))

(

−∂

∂θy|xi

P (y′|el)

)]

=
n
∑

l=1

(I(yl, y)− P (y|el))

[

1
∑

i′ wi′

wi

ml,i
#(xi|el)

]

(5)

The value of P (y|el) is given in Equation 3. Here #(xi|el) represents the number of
occurrences of the tuple xi in the x-instances of the ith rule of example el. In the second
step, we assumed that the parameters for a class y only impact the probability of that class.
Although this seems to ignore the fact that the conditional probabilities for all classes must
add to 1, in fact this condition will be preserved by the updates as they are based on all
classes. In particular, the increments for all conditional probabilities for different classes
given the same evidence add up to 0 as we show below.

∑

y

−∂E

∂θy|xi

=
n
∑

l=1

∑

y

(I(yl, y)− P (y|el))

[

1
∑

i′ wi′

wi

ml,i
#(xi|el)

]

=

n
∑

l=1

[

1
∑

i′ wi′

wi

ml,i
#(xi|el)

]

∑

y

(I(yl, y)− P (y|el))

=
n
∑

l=1

[

1
∑

i′ wi′

wi

ml,i
#(xi|el)

]

(

∑

y

I(yl, y)−
∑

y

P (y|el)

)

=
n
∑

l=1

[

1
∑

i′ wi′

wi

ml,i
#(xi|el)

]

(1− 1) = 0 (6)

(7)

Hence each parameter will be updated as follows, leaving a proper conditional distribu-
tion as a result.

θy|xi
:= θy|xi

+ α
n
∑

l=1

(I(yl, y)− P (y|el))

[

1
∑

i′ wi′

wi

ml,i
#(xi|el)

]

(8)
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The gradient with respect to rule weights is derived as follows:

∂E

∂wi
=

n
∑

l=1

∑

y

[

(I(yl, y)− P (y|el))

(

−∂

∂wi
P (y|el)

)

]

=
n
∑

l=1

∑

y

[

(I(yl, y)− P (y|el))
−∂

∂wi





1
∑rl

i′ wi′

rl
∑

i′

wi′

ml,i′

ml,i′
∑

j

Pi′(y|x
j
l,i)





]

=
n
∑

l=1

∑

y

[

(I(yl, y)− P (y|el))

(

(

−∂

∂wi

1
∑rl

i′ wi′

) rl
∑

i′

wi′

ml,i′

ml,i′
∑

j

Pi′(y|x
j
l,i)

+
1

∑rl

i′ wi′





−∂

∂wi

rl
∑

i′

wi′

ml,i′

ml,i′
∑

j

Pi(y|x
j
l,i)





)]

=

n
∑

l=1

∑

y

[

I(yl, y)− P (y|el)
∑rl

i′ wi′

(

1
∑rl

i′ wi′

rl
∑

i′

wi′

ml,i′

ml,i′
∑

j

Pi′(y|x
j
l,i′)

−
1

ml,i

ml,i
∑

j

Pi(y|x
j
l,i)

)]

=

n
∑

l=1

[(

1
∑rl

i′ wi′

rl
∑

i′

wi′δ(el, i
′)

)

− δ(el, i)

]

, (9)

where

δ(el, r) ≡
∑

y

I(yl, y)− P (y|el)

ml,r

∑

i′ wi′

ml,r
∑

j

Pr(y|x
j
l,r) (10)

Recall that rl is the number of applicable rules for example l. Let us define C as,
C = 1

∑rl
i′

wi′

∑rl

i′ wi′δ(el, i
′). Since we need to reduce the error, we need to increment the

weight wi in proportion to − ∂E
∂wi

. Hence, we need to increment each rule weight wi by
δ(el, i) − C. When we update the weights, to make sure that the sum of the weights
is preserved, we subtract the mean of the increments of all weights from each weight.
This is the same as the “projection” procedure used by Binder et al. (1997), where, after
incrementing each probability, the updated vector is projected back onto the constraint
surface, where the probabilities add up to 1. This gives us the following update equation
where β is the learning rate.

wi := wi +
n
∑

l=1

β(δ(el, i)− C)− β
1

rl

rl
∑

i′

(

δ(el, i
′)− C

)

:= wi +
n
∑

l=1

β(δ(el, i)− C + C)− β
1

rl

rl
∑

i′

δ(el, i
′)

:= wi +
n
∑

l=1

β(δ(el, i)−
1

rl

rl
∑

i′

δ(el, i
′)) (11)
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3.3 Gradient Derivation for Loglikelihood for Weighted-Mean

As commented earlier, in the context of probabilistic modeling, it is more common to
maximize the loglikelihood of the data given the hypothesis (Binder et al., 1997). Hence
we turn to gradient derivation for the loglikelihood in the presence of the Weighted-Mean
combining rule.

¿From the definition of P (yl|el), we can see that this is

LL =
n
∑

l=1

log P (yl|el). (12)

Taking the derivative of L with respect to P (y|xi) = θy|xi
, gives

∂L

∂θy|xi

=
n
∑

l=1

1

P (yl|el)

1
∑

i′ wi′

rl
∑

i

wi

ml,i
#(xi|el). (13)

The parameters are updated by adding the gradient multiplied by a learning rate. After
the update, we use the projection approach previously described to subtract the mean
increment from each conditional probability, so that they add up to 1 for any distribution.
The partial derivative of L with respect to the weights at each example can be derived as
follows:

−∂LL

∂wi
=

n
∑

l=1

∂ log P (yl|el)

∂wi

=
n
∑

l=1

1

P (yl|el)

∂

∂wi

[

1
∑rl

i′ wi′

rl
∑

i′=1

wi′

ml,i′

ml,i′
∑

j

Pi′(yl|x
j
l,i′)

]

=
n
∑

l=1

1

P (yl|el)

[

−1
(
∑rl

i′ wi′
)2





rl
∑

i′=1

wi′

ml,i′

ml,i′
∑

j

Pi′(yl|x
j
l,i′)



+
1

∑rl

i′ wi′

1

ml,i

ml,i
∑

j

Pi(yl|x
j
l,i)

]

=

n
∑

l=1

1

P (yl|el)

1
∑rl

i′ wi′

[

1

ml,i

ml,i
∑

j

Pi(yl|x
j
l,i)−

1
∑rl

i′ wi′





rl
∑

i′=1

wi′

ml,i′

ml,i′
∑

j

Pi′(yl|x
j
l,i′)





]

=
n
∑

l=1

[

δ(el, i)−
1

∑rl

i′ wi′

rl
∑

i′

wi′δ(el, i
′)

]

(14)

where,

δ(el, r) =
1

P (yl|el)

1
∑rl

i′ wi′

1

ml,r

ml,r
∑

j

Pr(yl|x
j
l,r) (15)

Once again, the sum of the new weights is preserved by the projection method. Letting
C = 1

∑rl
i′

wi′

∑rl

i′ wi′δ(el, i
′), Equation 11 and its justification applies exactly for the new

definition of δ(el, r).
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Figure 6: Value based Bayesian Network for the Noisy-OR combining rule. The nodes
Z1...Zr are distributed according to the mean of their parent distributions. P (Yi =
1|Zi = 1) = qi and P (Yi = 1|Zi = 0) = 0. Y is a deterministic OR function of
Y1, ..., Yr.

3.4 Gradient Derivation for the Mean Squared Error for Noisy-OR

Intuitively, Noisy-OR models the case where there are multiple causes, any one of which
can cause the target effect. However, this effect is disabled with some probability (1 − qi)
independently of each other (see Figure 6). Thus, it is modeled by the following function,
where all variables are binary. Zi are the parent variables and Y is the child variable.

P (Y = 1 | Z1, . . . , Zn) = 1−
∏

i

(1− qi)
Zi (16)

Here qi is defined as P (Y = 1|Zi = 1,∀j 6= i, Zj = 0). If all Zi’s are 0, Y is zero.
Otherwise, Y is 0 if all its 1-inputs are disabled, and 1 otherwise. Noisy-OR is equivalent
to a network where the inputs Z1, . . . , Zr are transformed to Y1, . . . , Yr, such that P (Yi =
1 | Zi = 1) = qi, P (Yi = 1 | Zi = 0) = 0, and Y is a deterministic OR function of Yi’s.
The distribution of the value at each Zi is the mean of the distributions of the values of its
parent nodes, Y 1

i , . . . , Y k
i .

We now derive the gradient equations for the mean-squared error function for the predic-
tion of the target variable, when multiple FOCI-statements are combined by the Noisy-OR
combining rule. Let the lth training example el be denoted by (〈x1,1

l,1 , . . . , xl,rl

ml,rl
,k〉, yl). Recall

that xj,p
l,i is the pth input value of the jth instance of the ith rule of el. Here we exploit the

Independence of Causal Influence (ICI) of noisy-OR. Since the output variable Y is 0 only
when all its immediate inputs Y1, . . . , Yr are 0’s, and their influences on Y are independent
of each other, the predicted probability of class y on el can be decomposed as follows:

P (y = 1|el) = 1−
∏rl

i
1

ml,i

∑ml,i

j

[

Pi(y = 0|xj
l,i) + (1− qi)Pi(y = 1|xj

l,i)

]

= 1−
∏rl

i
1

ml,i

∑ml,i

j

[

1− qi + qiPi(y = 0|xj
l,i)

]

(17)
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Here rl is the number of rules the example satisfies, i is an index of the applicable rule,
and ml,i is the number of instances of rule i on the lth example. The squared error is given
by

E =
1

2

n
∑

l=1

∑

y

(I(yl, y)− P (y|el))
2

=
1

2

n
∑

l=1

[

(I(yl, y = 0)− P (y = 0|el))
2 + (I(yl, y = 1)− P (y = 1|el))

2
]

=
1

2

n
∑

l=1

[

(I(yl, y = 0)− P (y = 0|el))
2 + (I(yl, y = 1)− (1− P (y = 0|el)))

2
]

(18)

Here y is a class label, and yl is the true label of lth example. I(yl, y) is an indicator
variable that is 1 if yl = y and 0 otherwise. Taking the derivative of negative squared error
with respect to P (y|xi) = θy|xi

, we get

−∂E

∂θy|xi

=

n
∑

l=1

[

(1 + (I(yl, y = 0)− I(yl, y = 1))− 2P (y = 0|el))δ(el)

]

(19)

where,

δ(el) =



qi
#(xi|el)

ml,i

∏

i′ 6=i

[

1

ml,i′

∑

j

[

1− qi + qiPi′(y = 0 | xj
l,i′)
]

]





We present the gradients for the success probabilities qi in the Appendix section.

3.5 Gradient Derivation for LogLikelihood for Noisy-OR

We now give the derivation of the gradient for loglikelihood with Noisy-OR as the combining
rule. The loglikelihood LL is given by,

LL =
∑

l

log P (yl|el). (20)

where P (yl = 1|el) is given by,

P (y = 1|el) = 1−

rl
∏

i

1

ml,i

ml,i
∑

j

Pi(y = 0|xj
l,i) + (1− qi)Pi(y = 1|xj

l,i)

P (y = 1|el) = 1−

rl
∏

i

1

ml,i

ml,i
∑

j

1− qi + qiPi(y = 0|xj
l,i). (21)

Taking the derivative of the likelihood with respect to P (y|xi) = θy|xi
we get,

∂L

∂θy|xi

=
∑

l

1

P (yl|el)

∂P (yl|el)

∂θy|xi

=
∑

l

[

1

P (yl|el)
(−1)yδ(el)

]

(22)
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where,

δ(el) =



qi
#(xi|el)

ml,i

∏

i′ 6=i

[

1

ml,i′

∑

j

[

1− qi + qiPi′(y = 0 | xj
l,i′)
]

]





The gradient in the above equation will have different signs corresponding to whether
the final value of y is a 0 or an 1.

3.6 Expectation-Maximization for Weighted Mean

Expectation-Maximization (EM) is a popular method to compute maximum likelihood es-
timates given incomplete data (Dempster et al., 1977). EM iteratively performs two steps:
the Expectation step, where the algorithm computes the expected values of the missing data
based on the current parameters, and the Maximization step, where the maximum likeli-
hood of the parameters are computed based on the current expected values of the data.
Expectation-Maximization avoids the slow update step of the gradient-based methods by
directly maximizing the likelihood in each iteration. We first explain the EM algorithm for
the case where we use the Weighted-Mean rule to combine the distributions due to different
rules. Consider n rules with the same resultant. Accordingly, there will be n distributions
that need to be combined via the Weighted-Mean. Let wi be the weight for rule i, such
that

∑

i wi = 1.

The EM algorithm for parameter learning with mean and weighted mean combining
rules is presented in Table 2. It is convenient to think of EM from the point of view of
a value-based representation. Consider a random variable R which takes values from the
indices of rules and instances, i and j. The interpretation of this random variable is that
R = (i, j) in example el, if the jth instance of the ith rule is responsible to generate the final
yl. In essence, R can be considered as a “multiplexer” node. Following (Hastie et al., 2001),
we use call the probability P (R = {i, j}|el) the “responsibility” γj

l,i. This would mean that

the set of γj
l,i over all (i, j) pairs for a given example el sum to 1.

In the expectation step, we compute the responsibilities, which reflect the distribution
of the sources of the final value of Y . As we discussed in the value-based interpretation of
the Bayesian network, we can think of the intermediate nodes in this network as channeling
the value of one of the root (i, j) pairs to Y . The numerator represents the chances that
the value of Y j

i matches that of yl on input xi, and the denominator represents the chances

that the value of some Y j′

i′ matches that of yl. Their ratio represents the probability that
the value yl has originated at (i, j).

The goal of M-step is to find the maximum likelihood parameters that result in the
expectations computed in the E-step. We do this by treating the expectations of the number
of times the variable Y j

i is inherited by the target variable Y when its corresponding input

x
j
i takes the value xi

j,i, as a pseudocount denoted by n(R = (i, j), Yi,j = y,xj
i = v). The

maximum likelihood estimates then correspond to the probability P (Yi,j = y|xj
i = xi

j,i)
being the n(.) vector normalized over different values of y. The numerator of the equation
in M-Step of Table 2 is the above expected count: n(R = (i, j), Yi,j = y,xj

i = xi
j,i). The

denominator is the normalizing constant.
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Table 2: EM Algorithm for parameter learning in FOCIL

1. Initialize parameters θ and weights wi arbitrarily.

2. Count Nsi
for each rule i over the training set.

3. Repeat until convergence

• E Step: ∀i and for each instantiation of each rule, compute the
responsibilities

γj
l,i =

(wi)
1

ml,i
θ
yl|x

j
l,i

∑

l,i′,j(wi′ )
1

m
l,i′

θ
yl|x

j

l,i′

n[i] :=
∑

l,j γj
l,i, where el has at least two applicable rules

including i .

• M Step: Compute the new parameters:

∀i,xi θy|v =

∑

l:yl=y,j:x
j
i
=v

γ
j
l,i

∑

l,j′:x
j
i
=v

γ
j′

l,i

• Weight update:

t := 0;
Initialize w0

i randomly for all i.
Repeat

For all rules i, wt+1
i := n[i]

∑

Si

nSi
∑

j∈Si
wt

j

t := t + 1;
until the weights converge

We have not found an analytical solution for the weights that maximize the likelihood.
Hence, we resort to an iterative method to solve the search for weights that maximize
likelihood. Let n{i,j} be the number of times rules i and j were applicable and ni

{i,j} be

the number of times rule i was actually selected. Let the weights be 〈w1, w2, ..., wn〉. For
example, let the number of rules be 3. We will later generalize this. Let L denote the
likelihood of the data. Then L is given by,

L = (w1/(w1 + w2))
n1

{1,2} ∗ (w2/(w1 + w2))
n2

{1,2
}
∗ .... ∗ (w3/(w1 + w2 + w3))

n3

{1,2,3}

The loglikelihood (LL) is now given by,

LL = n1
{1,2}(lnw1 − ln(w1 + w2)) + n2

{1,2}(lnw2 − ln(w1 + w2)) + . . . + n2
{2,3}(lnw2 − ln(w2 + w3)) +

n3
{2,3}(lnw3 − ln(w2 + w3)) + n1

{1,2,3}(lnw1 − ln(w1 + w2 + w3)) +

19



Natarajan and Tadepalli and Dietterich and Fern

n2
{1,2,3}(lnw2 − ln(w1 + w2 + w3)) + n3

{1,2,3}(lnw3 − ln(w1 + w2 + w3))

= n[1] lnw1 + n[2] lnw2 + n[3] lnw3 − n{1,2} ln(w1 + w2)

−n{1,3} ln(w1 + w3)− n{2,3} ln(w2 + w3)− n{1,2,3} ln(w1 + w2 + w3) (23)

(24)

where n[i] is the expected number of times rule i was selected over at least one other
rule. Setting the partial derivative of LL with respect to w1, w2, and w3 to 0’s gives,

n[1]

w1
=

n{1,2}

w1 + w2
+

n{1,3}

w1 + w3
+

n{1,2,3}

w1 + w2 + w3

etc. It is convenient to rewrite these equations as follows:

w1 =
n[1]

n{1,2}

w1+w2
+

n{1,3}

w1+w3
+

n{1,2,3}

w1+w2+w3

(25)

Note that n[1] is the number of times rule 1 was selected when there was at least one
other rule that was instantiated for the current example. Hence, n[1] =

∑

l,j γ1
l,j(yl), where

l is indexed over all examples where there is at least one more rule applicable other than 1.

The other counts such as n{1,2} can be obtained from the data by looking at the number
of examples in which rules 1 and 2 had at least one instantiation each.

We solve these equations by turning them into assignments and then updating all the
weights through synchronous iteration. Generalizing the notation for arbitrary number
of rules, let us use Si to denote a subset of rules {1..r} that includes i and at least one
more rule. Then nSi

denotes the number of instances in which exactly the rules in Si are
applicable with at least one instantiation. If we denote the weight for rule i at iteration t as
wt

i , we synchronously update the weights for all rules i at iteration t + 1 using the weights
at time t as in the following update equation.

wt+1
i :=

n[i]
∑

Si

nSi
∑

j∈Si
wt

j

(26)

Though it might appear that the synchronous update would make EM converge slower,
we have verified through experiments that it is not the case. The M-step update typically
converges in a few iterations.

The responsibilities can be thought of as conditional probabilities of the hidden node
values given the target variable and the inputs in the corresponding value-based Bayesian
network. Note that in our problem formulation, there are two levels of combining rules. As
we discussed earlier, we can think of the Mean combining rule as resulting from randomly
inheriting a value of the parent node as its own value. The responsibility of a particular
influent instance can be thought of as the probability of choosing that instance to transmit
its value to the final target node. Similarly, the weight of each rule can be thought of as
representing the probability of choosing its target value as the final value.
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3.7 Expectation Maximization for Noisy-OR

Since Noisy-OR is asymmetric with respect to its values, and all its inputs are responsible
for the output, we directly estimate the expectations of values of random variables of in-
terest without using auxiliary random variables such as responsibilities. Previous work on
implementing EM for Noisy-OR models includes Vomlel (2006) for propositional networks
and Koller and Pfeffer (1997) for PRMs. Since our formulation involves multiple levels of
combining rules, our approach is different from the prior work and is derived from first
principles using the value-based network of Figure 6.

We now describe the EM procedure to learn the CPTs for Y j
i ’s. In the expectation step

of EM, we seek to estimate the value of Y j
i for each i, j pair and each value of the target

variable Y . First, let us consider the easy case of Y = 0. Since Y is a result of OR’ing its
parents, each of Y ’s parents including Yi must be 0.

P (Y j
i = 1 | Y = 0,x) = P (Y j

i = 1 | Yi = 0,x) = αP (Y j
i = 1 | x)P (Yi = 0 | Y j

i = 1,x)

= αP (Y j
i = 1 | x)

(

P (Yi = 0 | Zi = 0)P (Zi = 0 | Y j
i = 1,x) + P (Yi = 0 | Zi = 1)P (Zi = 1 | Y j

i = 1,x)
)

= αP (Y j
i = 1 | x)

1

mi



(1− qi) +

mi
∑

1≤j′ 6=j

[

P (Y j′

i = 0 | x) + (1− qi)P (Y j′

i = 1 | x)

]



(27)

The last line follows from expanding the Mean combining rule, noting that P (Yi = 0 |
Zi = 0) = 1, P (Yi = 0 | Zi = 1) = (1 − qi), and Y j

i = 1, and simplifying. Similarly, for

Y j
i = 0, we have:

P (Y j
i = 0 | Y = 0,x) = P (Y j

i = 0 | Yi = 0,x) = αP (yj
i = 0 | x)P (Yi = 0 | Y j

i = 0, x)

= αP (Y j
i = 0 | x)

1

mi



1 +

mi
∑

1≤j′ 6=j

[

P (Y j′

i = 0 | x) + (1− qi)P (Y j′

i = 1 | x)

]



 (28)

We can determine α by normalizing Equations 27 and 28. Now we proceed to Y = 1,
which is only slightly more complicated.

P (Y j
i = 1 | x, Y = 1) = αP (Y j

i = 1, Y = 1 | x) = αP (Y j
i = 1 | x)P (Y = 1 | Y j

i = 1,x)

= αP (Y j
i = 1 | x)

(

1− P (Y = 0 | Y j
i = 1,x)

)

= αP (Y j
i = 1 | x)



1−
r
∏

1≤i′

P (Yi′ = 0 | Y j
i = 1,x)





= αP (Y j
i = 1 | x)



1−
1

mi



(1− qi) +

mi
∑

1≤j′ 6=j

[

P (Y j′

i = 0 | x) + (1− qi)P (Y j′

i = 1 | x)

]





r
∏

1≤i′ 6=i

P (Yi′ = 0 | x)





(29)

21



Natarajan and Tadepalli and Dietterich and Fern

The last but one step follows from the fact that the only way Y = 0 is if all its parents
are 0′s, and that they are all independent of each other given 〈x, Y j

i 〉. The last step then

expands P (Yi = 0 | Y j
i = 1,x) by marginalizing over Zi, expanding the Mean combining

rule, and using the fact that Yi′ is independent of Y j
i for all i′ 6= i.

Similarly, we estimate P (Y j
i = 0 | Y = 1,x) as follows:

P (Y j
i = 0 | x, Y = 1) = αP (Y j

i = 0, Y = 1 | x) = αP (Y j
i = 0 | x)P (Y = 1 | Y j

i = 0,x)

= αP (Y j
i = 0 | x)

(

1− P (Y = 0 | Y j
i = 0,x)

)

= αP (Y j
i = 0 | x)



1−
1

mi



1 +

mi
∑

1≤j′ 6=j

[

P (Y j′

i = 0 | x) + (1− qi)P (Y j′

i = 1 | x)

]





r
∏

1≤i′ 6=i

P (yi′ = 0 | x)





(30)

We determine α by normalizing as usual. Given the distributions of all P (Y j
i | x, Y ),

for all i, j over all examples, the maximization step is straightforward. First, we treat these
probabilities as fractional counts and estimate the expected number of groundings j of rule
i in which X

j
i = v over all examples and out of these the number in which Y j

i = 1. In

other words, we estimate n(Y j
i = 1,xj

i = v) =
∑

l

∑

j:xj
l,i

=v
P (Y j

i = 1 | xl, yl). Here the

first index l is over the examples, and the second index j is over different instances of rule i
whose influents are grounded to the values v. xl and yl respectively denote the input vector
and the output label of the lth example. Similarly, n(xj

i = v) =
∑

l

∑

j:xj
l,i

=v
1. We then

estimate P (Y j
i = 1 | xi

j = v) as
n(Y j

i =1,xi
j=v)

n(xi
j=v)

for any instance j.

In the Appendix, we describe how to learn the parameters qi’s of noisy-OR using EM
and the gradient descent.

4. Experiments and Results

In this section, we describe results on the data sets that we employed to test the learning
algorithms. The first is based on the folder prediction task, where we applied two rules to
predict the folder of a document. The second data set is a synthetic one that permits us to
test how well the learned distribution matches the true distribution. We present the results
for the experiments and compare them with propositional classifiers such as decision-tree
learner and Naive Bayes. We do not evaluate the Noisy-OR algorithms in the folder data
set as the target variable is not binary. Instead, we evaluate the Noisy-OR algorithms on a
synthetic data set and present the results for the same. In this section, we first present the
results on the synthetic data set for Noisy-OR and then follow it up with our experiments
with the Weighted-Mean combining rule.

4.1 Synthetic Data set for Noisy-OR

To estimate the accuracy of the learned model using Noisy-OR, we constructed a syn-
thetic data set. The data are generated using a synthetic target as defined by two FOCI
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statements, each of which has two influents and the same target attribute. The different
instances of the same rule are combined using mean and the different rules are combined
using the Noisy-OR combining rule. The two influents in each rule have a range of 10 and
2 values respectively. The target attribute can take 2 values. The probability values in
the distribution of the synthetic target are randomly generated to be either between 0.9
and 1.0 or between 0.0 and 0.1. This is to make sure that the probabilities are hard to
predict and not too close to the default probability of 1

2 each. Each example matches a rule
with probability 0.5, and when it does match, it generates a number of instances randomly
chosen between 3 and 10. This makes it imperative that the learning algorithm does a good
job of inferring the hidden distributions both at the instance level and the rule level.

The goal is to evaluate the different versions of the Noisy-OR learning algorithms on
this dataset to determine the accuracy of the learned distributions. We trained the learning
algorithms on 15 sets of 2000 training examples and tested them on a set of 1000 test exam-
ples. The average absolute difference between corresponding entries in the true distribution
of the test examples and the predicted distribution was averaged over all the test examples.
Since the gradient descent methods optimize the mean-squared error and the loglikelihood
while the EM optimizes the loglikelihood, there is a need for comparing the different algo-
rithms using the same performance metric. We have chosen the average absolute error for
this purpose. We obtain the distribution over the target variable and present the results.
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Figure 7: Learning curves for algorithms that use Noisy-OR on the synthetic data. EM:
Expectation Maximization; MS: Gradient descent for mean squared error; LL:
Gradient descent for log likelihood

The results are presented in Figure 7. The x-axis has the number of examples and y-axis
has the average absolute error for the examples. As can be seen, all the algorithms eventually
converge to almost the same error rate (there is no statistically significant difference in
error rates). Initially, EM seems to perform worse, but with more training data achieves
comparable performance to the gradient descent methods. We flattened the data set by
using the counts of the instances of the parents as features and used Weka to run Naive
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Bayes on this modified data set. The Naive Bayes algorithm had a very poor performance
and a very high error rate of close to 0.42 even with about 2000 training examples. Since
the performance is very poor, we omit the propositional classifier from the learning curves.

4.2 Folder prediction

We employed the two rules that were presented earlier.

WeightedMean{

If {role(Doc,Role,Task)} then Task.id, Role.id Qinf (Mean) Doc.folder.

If {source(Src,Doc)} then Src.folder Qinf (Mean) Doc.folder.

}

As part of the Task Tracer project (Dragunov et al., 2005), we collected data for 500
documents and 6 tasks. The documents were stored in 11 different folders. Each document
was manually assigned to a role with respect to each task with which it was associated. A
document was assigned the main role if it was modified as part of the task. Otherwise, the
document was assigned the reference role, since it was opened but not edited. A document
is a source document if it was opened, edited, and then saved to create a new document
or if large parts of it were copied and pasted into the new document. Since the documents
could play several roles in several tasks, the number of 〈Task, Role〉 pairs vary3.

We applied Gradient Descent and EM algorithms to learn both the parameters of the
CPTs and the weights of the Weighted-Mean combining rule. We employed 10-fold cross-
validation to evaluate the results. Within each fold, the learned network was applied to rank
the folders of the current document and the position of the correct folder in this ranking was
computed (counting from 1). The results are shown in Table 3, where the counts report the
total number of times (out of 500) that the correct folder was ranked 1st, 2nd, etc. The final
row of the table reports the mean reciprocal rank (MRR) of the correct folder (the average
of the reciprocals of the ranks). MRR is a standard performance metric used in information
retrieval literature and it is the higher the better. It is 1 if the true folder is always ranked
as the top choice. If the true folder is always ranked second, the mean reciprocal rank falls
to 1/2. If it is always ranked n, the mean reciprocal rank is 1/n. Thus the score decreases
monotonically with the amount of misranking, but suffers more towards the top of the list
than at the bottom.

It is clear from the table that all the three relational algorithms performed very well:
almost 90% of the documents had their correct folders ranked as 1 or 2 by all three algo-
rithms4. There is no statistically significant difference in the performance of the relational
algorithms. To compare these results with propositional learners, we flattened the data
using as features the numbers of times each task-role pair and each source folder appears
in each example. We then used Weka to run J48 (the decision tree algorithm in weka) and
Naive Bayes algorithms on this new dataset to predict the class probabilities. J48 on the
flattened data also performs as well as the relational classifiers while Naive Bayes does a
little worse on the same data set. All the relational algorithms attributed high weights to
the second rule compared to the first (see Table 4).
3. On average, each document participated in 2 〈Task, Role〉 pairs, although a few documents participated

in 5 to 6 〈Task, Role〉 pairs.

4. If the algorithm were to rank the folders at random, the score would be around 0.2745.
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Rank EM GD-MS GD-LL J48 NB

1 349 354 346 351 326
2 107 98 113 100 110
3 22 26 18 28 34
4 15 12 15 6 19
5 6 4 4 6 4
6 0 0 3 0 0
7 1 4 1 2 0
8 0 2 0 0 1
9 0 0 0 6 1
10 0 0 0 0 0
11 0 0 0 0 5

MRR 0.8299 0.8325 0.8274 0.8279 0.7970

Table 3: Results of the learning algorithms on the folder prediction task. GD-MS: Gradient
descent for Mean Square error; GD-LL: Gradient descent for log-likelihood; J48:
Decision Tree; NB: Naive Bayes for loglikelihood.

To test the importance of learning the weights in the case with the Weighted-Mean,
we altered the data set so that the folder names of all the sources were randomly chosen.
As can be seen in Table 4, with this change, the source document rule is assigned low
weight by the learning algorithms with a small loss in the score. In particular, the learning
algorithms for the Weighted-Mean combining rule assigned a weight of 0.1 to the source
rule and a weight of 0.9 to the task-role rule. The table shows that the three relational
learning algorithms were able to recover from the irrelevant inputs. We then repeated the
learning process on this data set, but we held the weights on the two rules fixed at 0.5. The
results were much worse, because the algorithms were forced to combine the useless source
probability distribution with the informative task-role distribution. The mean reciprocal
rank had decreased to around 0.55 for all the learning algorithms.

EM GD-MS GD-LL

Original Weights 〈.15, .85〉 〈.22, .78〉 〈.05, .95〉
data set MRR .8299 .8325 .8274

Modified Weights 〈.9, .1〉 〈.84, .16〉 〈1, 0〉
data set MRR .7934 .8021 .7939

Table 4: Results of learning the weights in the original data set and the modified data set.

4.3 Synthetic data set experiment for weighted mean

The folder prediction experiment demonstrates good performance on an interesting real-
world task, but it does not tell us how close the predicted probability distribution is to the
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Figure 8: Learning curves for the synthetic data. EM: Expectation Maximization; GDMS:
Gradient descent for mean squared error; GDLL: Gradient descent for log likeli-
hood; J48: Decision tree; NB: Naive Bayes.

true distribution on the test set. To realistically model a complex real-world domain, it is
not enough to have a good classification accuracy on a single task. To use these predictions
in complex inferences, it is important to accurately model the probability distributions.
To estimate the accuracy of the learned model, we constructed a synthetic data set very
similar to the one that was presented earlier. The data are generated using a synthetic
target as defined by two FOCI statements, each of which has two influents and the same
target attribute. The different instances of the same rule are combined using mean and the
different rules are combined using the Weighted-Mean combining rule. The two influents in
each rule have a range of 10 and 3 values respectively. The target attribute can take 3 values.
The probability values in the distribution of the synthetic target are randomly generated
to be either between 0.9 and 1.0 or between 0.0 and 0.1. As with previous experiment, this
is to make sure that the probabilistic predictions on examples are hard to predict and not
too close to the default probability of 1

3 each. The rule weights are fixed to be 0.1 and 0.9
to make them far from the default, 0.5. Each example matches a rule with probability 0.5,
and when it does match, it generates a number of instances randomly chosen between 3 and
10.

We trained the learning algorithms on 30 sets of 2000 training examples and tested them
on a set of 1000 test examples. The average absolute difference between corresponding
entries in the true distribution and the predicted distribution was averaged over all the test
examples. Like the folder data set, we flattened the data set by using the counts of the
instances of the parents as features and used Weka to run J48 and Naive Bayes on this
modified data set. We obtained the distribution over the target variable from Weka for
these two algorithms.

The results are presented in Table 8. All three relational algorithms that use the correct
model have a very low average absolute error between the true and the predicted distri-
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Figure 9: Learning curves for mean squared gradient descent on the synthetic data. GDMS:
learning the weights; GDMS-True: gradient descent with true weights; GDMS-
Fixed: gradient descent with weights fixed as 〈0.5, 0.5〉.

bution. The overlapping of the error bars suggests that there is no statistically significant
difference between the algorithms’ performances. On the other hand, the propositional
classifiers perform poorly on this measure compared to the relational algorithms. The per-
formance of the relational algorithms is significantly better than the propositional classifiers.
This demonstrates that though the propositional algorithms can perform reasonably well
on a classification task, it is harder for them to learn the true distribution in a relational
setting.

As with the folder data set, we wanted to understand the importance of learning the
weights. Hence, for each learning algorithm, we compared three settings. The first setting
is the normal situation in which the algorithm learns the weights. In the second setting,
the weights were fixed at 〈0.5, 0.5〉. In the third setting, the weights were fixed to be their
true values.

The results are presented in Figures 9, 10, and 11. There are three curves in each
figure corresponding to the three settings. In all three algorithms, the first setting (weights
are learned) gave significantly better error rates than the second setting (weights fixed
at 〈0.5, 0.5〉) (Figures 9,10,11). This clearly demonstrates the importance of learning the
weights. There was no significant difference between learning the weights and knowing the
true weights. This shows that our algorithms effectively learn the weights of the combining
rules with no additional cost.

In order to evaluate our algorithms on datasets with more than 2 rules, we created a
synthetic dataset that is the extension of the earlier synthetic dataset. In this dataset,
we used 3 rules with 2 influents each taking 10 and 3 values respectively. The weights
were generated at random. Similar to the other dataset, each example matches a rule with
probability 0.5, and when it does match, it generates a number of instances randomly chosen
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Figure 10: Learning curves for log-likelihood gradient descent on the synthetic data. GDLL:
learning the weights; GDLL-True: gradient descent with true weights; GDLL-
Fixed: gradient descent with weights fixed as 〈0.5, 0.5〉.
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Figure 11: Learning curves for EM on the synthetic data. EM: learning the weights; EM-
True: EM with true weights; EM-Fixed: EM with weights fixed as 〈0.5, 0.5〉.

between 3 and 10. We trained the algorithms on 30 training sets of 2000 examples each and
tested them on a test set of 1000 examples.

The results of the experiment are presented in Figure 5. The absolute average error over
all the test examples are averaged over the 30 datasets and presented. The results indicate
that all the three algorithms have a very low average absolute error and are comparable
in their performance. This demonstrates that the algorithms can be generalized to more
than 2 rules effectively. The propositional classifiers have an average absolute error rate of
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Algorithm Avg Abs Error

EM 0.06985
GD-LL 0.07350

GD-MSE 0.07259

Table 5: Results of different algorithms on the 3-rule dataset.

0.32 in this domain. In our experiments, typically EM needs more iterations to converge
but the gradient descent methods took more time to converge. There was no statistically
significant difference in the performance of the relational algorithms.

5. Discussion and Future Work

Combining rules help exploit the independence of causal influences in Bayesian networks
and make learning and inference more tractable in the propositional case (Heckerman and
Breese, 1994). In first order languages, they allow succinct representation and learning
of the parameters of networks where the number of parents of a variable varies from one
instantiation to another. Rather than thinking of combining rules as an alternative to
aggregators, one could think of decomposable combining rules as a way of adding special
structure to the aggregation problem that allows us to develop specialized methods that
exploit the structure. While our gradient descent algorithms are derived directly from
the combining rules perspective, our approach to the EM algorithm can be understood
as aggregation-based, since it is explained in terms of the value-based network, where the
aggregator function is deterministic, e.g., OR, or stochastic, e.g., random choice. Thus
decomposable combining rules allow us to view the target distribution, both as a function
of the input conditional distributions, and also as a consequence of decomposable causal
structure in the corresponding value network. It is our hope that a wide variety of practical
real world problems can be captured by a small number of simple decomposable combining
rules, thus making arbitrarily complex aggregators unnecessary.

We showed that we can employ classic algorithm schemes such as gradient descent and
EM to learn the parameters of the conditional influence statements as well as the weights
of the combining rules. The performances of the three algorithms with the Weighted-
Mean combining rule were quite similar on the folder data set. In the folder data set, the
propositional classifiers performed as well as the relational ones. This is partly because
the examples in this dataset often have only one or two task-role pairs, which makes it an
easier problem to solve. In the synthetic domain, all examples have at least 3 task-role
pairs, and the propositional algorithms performed poorly. The experiments also show that
learning the probability model is much more difficult than learning to classify. It would be
interesting to extend this work to search over a set of combining rules to determine the one
that best fits the data.

The combining rules are also well-explored in other relational probabilistic settings such
as Probabilistic Horn Abduction (Poole, 1993) and Bayesian logic programs (Kersting and
De Raedt, 2000). Indeed, the ability to tractably compose different influence statements or
rules is necessary to build compact models. What is different in our work is that we learn
the parameters in the presence of multiple influence statements each of which may have
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multiple instantiations. We show that both gradient descent and EM can not only learn
the CPTs of the rules but also their parameters.

There has been work on developing an EM-based learning algorithm for Noisy-OR in
the propositional case (Vomlel, 2006). Diez and Galan provided a factorization for the more
generalized Noisy-Max function and developed learning algorithms based on the factoriza-
tion (Dı́ez and Galán, 2003). Learning the parameters of the first-order clauses has been
explored by previous researchers. Koller and Pfeffer (1997) investigated the use of EM algo-
rithm to learn the parameters of the first-order clauses in the presence of combining rules.
They use Knowledge-Based Model Construction (KBMC) to construct a ground network
for each data case and employ the EM algorithm to learn the parameters of the rules.

More recently Jaeger considered a weighted combination or a nested combination of the
combining rules and used a gradient ascent algorithm for optimizing the objective function
(Jaeger, 2007). This technique has been applied to his formalism of Relational Bayesian
Networks(RBNs)(Jaeger, 1997). The RBN is compiled into a likelihood graph that is then
used for the various computations that are needed for the gradient ascent equation. The use
of the likelihood graph greatly reduces the number of computations needed for the gradient
computation.

This work can be naturally further extended to more general classes of combining rules
and aggregators including tree-structured CPTs and noisy versions of other symmetric
functions. The relationship between the aggregators and combining rules must be better
understood and formalized. Efficient inference algorithms must be developed that take
advantage of the decomposability of the combining rules as well as the flexibility of the
first-order notation. Finally, it is important to develop more compelling applications in
knowledge-rich and structured domains that can benefit from the richness of the first-order
probabilistic languages. Extending the SRL languages to dynamic domains with actions and
utility makes them much more appropriate for compelling real-world applications. Some
work has already begun in this direction (Natarajan et al., 2007).
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Appendix

In this section, we show the equations for estimating the noisy-OR parameters, qi. We now
present the estimation through EM. First, we show the estimation step for P (Yi, Zi = 1 |
x, Y ) for different values of Y and Yi. We first note the following:

P (Yi, Zi = 1 | x, Y ) =
P (Y | Yi,x)P (Yi | Zi)P (Zi = 1 | x)

P (Y | x)
(31)

P (Y = 0|x) =
∏

i

1

mi

mi
∑

j=1

P (Y j
i = 0 | x) + (1− qi)P (Yi = 1 | x) (32)

P (Y = 1|x) = 1− P (Y = 0|x) (33)

Now we estimate the desired conditional distributions using the first equation above.
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P (Yi = 1, Zi = 1 | x, Y = 0) = 0 (34)

P (Yi = 1, Zi = 1 | x, Y = 1) =
qi

P (Y = 1 | x)

qi

mi

mi
∑

j=1

P (Y j
i = 1 | x) (35)

P (Yi = 0, Zi = 1 | x, Y = 0) =
1− qi

P (Y = 0 | x)

1

mi

mi
∑

j=1

P (Y j
i = 1 | x)

∏

1≤i′ 6=i

1

mi′

mi′
∑

j=1

P (Y j
i′ = 0 | x) + (1− qi)P (Yi′ = 1 | x) (36)

P (Yi = 0, Zi = 1 | x, Y = 1) =
1− qi

P (Y = 1 | x)

1

mi

mi
∑

j=1

P (Y j
i = 1 | x)



1−
∏

1≤i′ 6=i

1

mi′

mi′
∑

j=1

P (Y j
i′ = 0 | x) + (1− qi)P (Yi′ = 1 | x)



 (37)

In the maximization step, we assign qi to n(Yi=1,Zi=1)
n(Zi=1) , where n(Yi = 1, Zi = 1) is the

expected number of examples where both Yi and Zi are 1 and n(Zi = 1) is the expected
number of examples where Zi = 1. These numbers are estimated as follows. Let xl be the
input vector of the lth example and yl be its Y -label.

n(Yi = 1, Zi = 1) =
n
∑

l=1

P (Yi = 1, Zi = 1 | xl, yl) (38)

n(Zi = 1) =
n
∑

l=1

P (Yi = 1, Zi = 1 | xl, yl) + P (Yi = 0, Zi = 1 | xl, yl) (39)

(40)

Now, we present the gradients for the mean-squared error and loglikelihood with respect
to qi.

For the mean-squared error case, taking the derivative of Equation 18 with respect to
qi we get,

−∂E

∂qi
=

n
∑

l=1

[

(1 + (I(yl, y = 0)− I(yl, y = 1))− 2P (y = 0|el))δqi
(el)

]

(41)

δqi
(el) is given by

δqi
(el) =





∑ml,i

j

[

Pi(y = 0|xj
l,i)− 1

]

ml,i
Πi′ 6=i

[

1

ml,i′

∑

j

[

1− qi + qiPi′(y = 0 | xj
l,i′)
]

]




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For the loglikelihood, taking the derivative of Equation 21 with respect to qi we get,

∂L

∂qi
=

∑

l

1

P (yl|el)

∂P (yl|el)

∂θy|xi

=
∑

l

[

(−1)y

P (yl|el)





∑ml,i

j

[

Pi(y = 0|xj
l,i)− 1

]

ml,i
Πi′ 6=i

[

1

ml,i′

∑

j

[

1− qi + qiPi′(y = 0 | xj
l,i′)
]

]





]
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