
Dynamic Preferences in Multi-Criteria Reinforcement Learning

Sriraam Natarajan NATARASR@EECS.ORST.EDU

Prasad Tadepalli TADEPALL@EECS.ORST.EDU

School of Electrical Engineering and Computer Science, Oregon State University, USA

Abstract

The current framework of reinforcement learn-
ing is based on maximizing the expected returns
based on scalar rewards. But in many real world
situations, tradeoffs must be made among mul-
tiple objectives. Moreover, the agent’s prefer-
ences between different objectives may vary with
time. In this paper, we consider the problem of
learning in the presence of time-varying prefer-
ences among multiple objectives, using numeric
weights to represent their importance. We pro-
pose a method that allows us to store a finite num-
ber of policies, choose an appropriate policy for
any weight vector and improve upon it. The idea
is that although there are infinitely many weight
vectors, they may be well-covered by a small
number of optimal policies. We show this empir-
ically in two domains: a version of the Buridan’s
ass problem and network routing.

1. Introduction

Reinforcement Learning (RL) is the process by which an
agent learns an approximately optimal behavior through
trial and error interactions with the environment. The
agent is not told explicitly what actions to take; instead
the agent must determine the most useful actions by exe-
cuting them. Each action would yield some reward and the
agent must try to maximize the rewards. In this work, we
consider average reward optimization, which aims to op-
timize the expected average reward per time step over an
infinite horizon. Traditional RL techniques are essentially
scalar-based, i.e., they aim to optimize an objective that is
expressed as a function of a scalar reinforcement. In many
real world domains, however, the reward may not be a sin-
gle scalar function. For example, in network routing the
goals might be to reduce the end-to-end delay in routing
packets as well as to reduce the power loss in the routers.

Appearing in Proceedings of the 22nd International Conference on
Machine Learning, Bonn, Germany, 2005. Copyright 2005 by the
author(s)/owner(s).

In inventory control, one might have the goal of minimiz-
ing the shortage costs while also keeping the inventory
costs low. A government may have to decide between how
much to spend on national defense vs social welfare. Also,
in manufacturing, there are competing goals: increase the
profits and improve the quality of the products.

The problem of conflicting goals is well-captured by the
Buridan’s ass problem. There is a donkey at equal distance
from two piles of food. The problem is that if it moves
towards one of the piles, the food in the other pile can be
stolen. If it stays in the center to guard the food, it might
eventually starve to death. It is clear that the agent has to
find a reasonable compromise between the two goals. Clas-
sical approaches to solving multi-objective Markov deci-
sion problems (MDPs) are based on vector-based gener-
alizations of successive approximation (e.g., see (White,
1982)). In more recent work on multi-criteria reinforce-
ment learning (MCRL), there is a fixed lexicographic or-
dering between different criteria, such as staying alive and
not losing food (Gabor et al., 1998). This approach is based
on abstract dynamic programming using component-wise
reinforcement learning operators. Mannor and Shimkin
take a geometric approach to MCRL and view the objec-
tive as approaching an increasingly smaller nested target
sets of states (Mannor & Shimkin, 2004). Their method is
applicable to the more general setting of stochastic games
as well as average-reward optimization in MDPs. In the
second, “weighted criterion” setting, the problem is formu-
lated as optimizing a weighted sum of the discounted total
rewards for multiple reward types (Feinberg & Schwartz,
1995). They adopt a constrained MDP framework in which
one criterion is optimized subject to some constraints on
other criteria and solve it using a linear programming for-
mulation (Altman, 1999).

To the best of our knowledge, none of these and other
methods in the literature handles the case of dynamic or
time-varying preferences, which is the subject of this pa-
per. This is what happens, for example, when a gov-
ernment changes in a country. The priorities and prefer-
ences change and so should the policies. We formulate
the dynamic multi-criterion RL problem using a weighted
average-reward framework. It is easy to see that with fixed
weights, the weighted average-reward criterion reduces to

Dynamic Preferences in Multi-Criteria Reinforcement Learning

the scalar case with the weights incorporated into the re-
ward function. However, time-varying criteria give us an
opportunity to exploit the structure of the MDPs to speed-
up learning by remembering a small number of previously
learned policies. When a change occurs in priorities as re-
flected by changes in the weights, the agent can start from
the best policy it learned so far and improve it further, rather
than starting from scratch for each new weight. Moreover,
as will be shown in our experimental results, after learn-
ing a relatively small number of policies, the agent may not
need to learn any more policies since they cover a large part
of the relevant weight space.

The rest of the paper is organized as follows. Section 2
provides the background on average-reward reinforcement
learning (ARL). Section 3 motivates and presents the dy-
namic MCRL algorithm schema, which can be used in con-
junction with any ARL algorithm. Section 4 presents the
results of applying our algorithm schema with model-free
R-learning and model-based H-learning in 2 domains: the
Buridan’s ass domain and network routing domain. Section
5 concludes this paper and outlines some areas for future
research.

2. Average Reward Reinforcement Learning

An MDP is described by a set of discrete states S, a set
of actions A, a reward function rs

�
a � that describes the ex-

pected immediate reward of action a in state s, and a state
transition function pa

ss � that describes the transition proba-
bility from state s to state s’ under action a. A policy is
defined as a mapping from states to actions, i.e., a policy
π specifies what action to execute in each state. An opti-
mal policy in average reward setting is one that maximizes
the expected long-term average reward per step from ev-
ery state. Unlike in discounted learning, here the utility of
the reward is the same for an agent regardless of when it
is received. The Bellman equation for average reward rein-
forcement learning for a fixed policy π is:

hπ � s ��� rs
�
π
�
s �����	�

s �
Pπ
 s �

ss � hπ � s ���� ρ (1)

where ρ is the average reward per time step of the policy
π. Under reasonable conditions on the MDP structure and
the policy π, ρ is constant over the entire state-space. The
idea behind the Bellman equation is that if the agent moves
from the state s to the next state s’ by executing an action
a, it has gained an immediate reward of rs

�
a � instead of

the average reward ρ. The difference between rs
�
a � and ρ

is called the average-adjusted reward of action a in state s.
hπ � s � is called the bias or the value function of state s for
policy π and represents the limit of the expected value of
the total average-adjusted reward over the infinite horizon
for starting from s and following π (Puterman, 1994).

H-Learning, is a model-based version of average reward re-

inforcement learning (Tadepalli & Ok, 1998). The optimal
policy chooses actions that maximize the right hand side
of the above Bellman equation. Hence, H-learning also
chooses greedy actions, which maximize the right hand
side, substituting the current value function for the optimal
one. It then updates the current value function as follows:

h
�
s ����� maxa � rs

�
a ��� ρ �

n

�
s � � 1

pss � � a � h � s ����� (2)

The state-transition models p and immediate rewards r are
learned by updating their running averages. The average
reward ρ is updated using the following equation over the
greedy steps.

ρ ��� ρ
�
1 � α ��� α

�
rs
�
a ��� h

�
s ��� h

�
s ����� (3)

R-Learning is a model-free version of H-learning that uses
the action-value representation and is an analogue of Q-
learning (Schwartz, 1993). The action value Rπ � s � a � rep-
resents the value of executing an action a in state s and
then following the policy π. Let us assume that the agent
chooses action a in state s. Let s’ be the next state and rimm
be the immediate reward obtained. The update equation for
R-Learning is:

R
�
s � a ����� R

�
s � a � � 1 � β ��� β

�
rimm � ρ � maxa � R �

s ��� a �����
(4)

Although, there is no proof of convergence of R-Learning
or H-Learning, they are experimentally found to converge
robustly to optimal policies on reasonably sized problems
with sufficient exploration (Tadepalli & Ok, 1998; Ma-
hadevan, 1996).

3. Dynamic Multi-Criteria Average Reward
Reinforcement Learning

In many real world situations, it is natural to express the
objective as making appropriate tradeoffs between differ-
ent kinds of rewards. As a motivating example, consider a
modified version of the Buridan’s ass problem (Figure 1).
In our version of this example, there is a 3x3 grid. The ani-
mal is originally in the center square and is hungry. Food is
present at the two diagonally opposite squares as indicated
in the figure. But if it moves towards one of the piles, the
food in the other pile can be stolen. It has to compromise
between the two competing goals of eating and guarding
the food. We introduced the third criterion, which is to
minimize the number of steps it walks.

As discussed before, static versions of the multi-criterion
RL problems are studied in the literature (Gabor et al.,
1998; Altman, 1999; Feinberg & Schwartz, 1995; Mannor
& Shimkin, 2004). In particular, (Feinberg & Schwartz,
1995) uses a weighted optimization criterion, which we
will be adopting. We divide the rewards into k reward

Dynamic Preferences in Multi-Criteria Reinforcement Learning

Figure 1. Buridan’s ass problem in a 3 x 3 grid. The donkey needs
to eat to survive while gurding the food and not walking too much.

types, and associate a weight with each reward type, which
represents the importance of that reward. Given a weight
vector ��w � �

w1 ������� � wk � and an MDP as defined in the
previous section, a new “weighted MDP” is defined where
each reward rs

�
a � of type i is multiplied by the correspond-

ing weight wi. We call the average-reward per time step of
the new weighted MDP for a policy, its “weighted gain.”
We want to find a policy that optimizes the weighted gain.

If the weights never change, the problem reduces to that of
solving the weighted MDP and can be done using scalar re-
inforcement learning. But we are interested in the dynamic
case, where the weights change in a hard-to-predict fashion
and modeling the weights as part of the state is not realis-
tic, e.g., this might require predicting an election result to
decide which cereal to buy. In this case, we show that us-
ing vector-valued representations of average rewards and
value functions would help in exploiting the structure of
the MDP, and achieve faster learning.

Before we describe our approach, consider a few alterna-
tives. Learning the best policy from scratch for each weight
vector is possible but too inefficient. Another solution is
to store all the policies learned so far with their weighted
gains, initialize the policy to the one, say π, with the high-
est weighted gain, and to improve upon it. Unfortunately,
the current weight vector could be very different from the
weight vector of π. Hence π may not be the best for the
current weight vector among all the stored policies.

To solve the problem, we need to understand how the
weights affect the average rewards of policies. With a
fixed policy, an MDP gives rise to a fixed distribution of
sequences of rewards of each type. Hence the average re-
ward of the weighted MDP under that policy is a weighted
sum of the average rewards of the component MDPs, each
corresponding to a single reward type. If we represent the
average rewards of the component MDPs as an average-
reward vector �� ρ , the weighted gain of a fixed policy is��w � �� ρ . Similarly, the value function or bias of the weighted
MDP under the given policy is a weighted sum of the value
functions of component MDPs under that policy and can be

Weight

Weighted Reward

Figure 2. The weighted gains for a few policies for a weight vec-
tor with 2 components. The weighted gain of each policy is repre-
sented by a single straight line. The dark line segments represent
the best weighted gains for any given weight. The dotted lines
represent the weighted gains of the dominated policies.

expressed as ��w � �� h � � � .
Let us, for simplicity, consider a weight vector ��w with
two components such that the sum of the individual com-
ponents is 1. Now the weighted gain of a given policy
varies linearly with either weight (Figure 2). For each
weight vector, the optimal policy is the one that maxi-
mizes the weighted gain. In the figure, the weighted gain of
the optimal policy for any given weight is shown in dark.
A policy which is optimal for some weight is called an
“un-dominated” policy; the others are “dominated.” The
un-dominated policies trace a weighted gain function that
is convex and piecewise linear. This would be a convex
(bowl-shaped) piecewise planar surface in multiple dimen-
sions1.

The algorithm schema for dynamic multi-criteria reinforce-
ment learning (DMCRL) is presented in Table 1. A key
idea behind our approach is that we only need to learn and
store the un-dominated policies, which are in general far
fewer than all possible policies. We represent a policy π
indirectly as a value function vector and an average reward
vector �� ρ π, both of dimension k, the number of different re-
ward types. Note that the value function vector is a function
of states

��
hπ

�
s � in the case of model-based learning and a

function of state-action pairs � �
Rπ

�
s � a � in the case of model-

free learning, while �� ρ π is a constant. The policy π repre-
sented by the value functions is a greedy policy with respect
to the weighted value function, and can be computed if we
also store the weight vector � �wπ from which the value func-

1The reasoning here is similar to that of policies over belief
states in POMDPs (Kaelbling et al., 1998).

Dynamic Preferences in Multi-Criteria Reinforcement Learning

tion has been learned (and the action models in the case of
the model-based learning).

Suppose that Π represents the set of all stored policies. The
question is how to choose an appropriate policy for a new
weight vector ��w new. Here we exploit the fact that each
policy π also stores its average reward vector �� ρ π. Inner
product of these two vectors gives the weighted gain of π
under the new weight vector. To maximize the weighted
gain, we need to pick the policy πinit that maximizes the
inner product.

πinit � Argmaxπ � Π � ��w new � �� ρ π �
The value function and average reward vectors are initial-
ized to those of πinit and are further improved with respect
to the new weights ��w through vector-based reinforcement
learning. Note that during this process, the greedy actions
are taken with respect to ��w new, and not with respect to��w πinit , the weights for which πinit may have been learned.
Indeed, our algorithm actually does not store ��w πinit , as
there is no need for it and the current weight vector ��w new
is the only one that matters. Thus, the trajectories, reward
sequences, and value function vectors could deviate from
those of πinit towards a policy that is better suited for the
new weights. We only store the new value function and av-
erage reward vectors in Π if the weighted gain of the new
policy with respect to ��w new improves by more than a tun-
able parameter δ. The idea is that the optimal polices are
going to be the same for many weight vectors and hence
they have identical average reward vectors and weighted
gains with respect to ��w new. Thus, they will not be dupli-
cated. If each weight is given sufficient time to converge
to the optimal policy, then only the un-dominated policies
will be stored. Hence, although there are an infinite number
of weight vectors, and an exponential number of policies,
the number of stored policies may be small.

We could use any vector-based average reward reinforce-
ment learning algorithm in step 2c of the algorithm. We
verify our result empirically by using vectorized versions of
R-learning and H-learning. In both the versions, the value
functions, immediate rewards and the average rewards are
vectors. In vector R-Learning, the agent chooses an action
that maximizes the value of ��w � ��R �

s � � a � � and executes it and
obtains the immediate reward �� r imm. The update equation
is:

��
R
�
s � a � � � ��

R
�
s � a � � 1 � β ��� β

� �� r imm � �� ρ � ��
R
�
s � � a � ���

(5)
where

a � � argmax �a � ��w � ��R �
s � � a � ��� (6)

and �� ρ is the average reward vector which is updated using
the equation:

�� ρ � � �� ρ �
1 � α ��� α

� �� r imm � ��R �
s � � a � ��� ��R �

s � a ��� (7)

Table 1. Algorithm schema for Dynamic Multi-Criteria Rein-
forcement Learning

1. Obtain the current weight vector ��w new

2. For the current weight compute, πinit �
argmaxπ � Π � �

�
w new 	 �

�
ρ π

(a) Initialize the value function vectors of the states to
those of πinit

(b) Initialize the average reward vector to that of πinit

(c) Learn the new policy π � through vector-based rein-
forcement learning

3. If (��w new 	 �
�
ρ π � � ��w new 	 �

�
ρ πinit δ ,add π � to the set of

stored policies.

Since the transition probability models do not depend on
the weights, they are not vectorized in H-Learning. The
update equation for vector-based H-Learning is:

��
h
�
s � � � �� r �

s � a ���
n

�
s � � 1

ps � s � � a � �
�
h
�
s ����� �� ρ (8)

where

a � argmax � ��w � � �� r �
s � a ���

n

�
s � � 1

ps � s � � a � �
�
h
�
s ���� (9)

and �� ρ is updated using

�� ρ ��� �� ρ �
1 � α ��� α

� �� r �
s � a ��� ��

h
�
s ��� ��

h
�
s ����� (10)

4. Implementation and Results

Having proposed the algorithm for DMCRL, we provide
the empirical verification of its performance. We tested our
algorithms on the modified version of Buridan’s ass prob-
lem and a network routing domain. We explain the experi-
mental setup and the results.

4.1. Buridan’s ass domain

This modified version of the Buridan’s ass domain is shown
in Figure 1. As can be seen, the donkey is in the center
square of the 3 x 3 grid. There are food piles on the diag-
onally opposite squares. The food is visible only from the
neighboring squares in the eight directions. If the donkey
moves away from the neighboring square of a food pile,
there is a certain probability pstolen with which the food is
stolen. Food is regenerated once every Nappear time-steps.
The donkey has to strike a compromise between minimiz-
ing the three different costs: hunger, lost food, and walking.

Dynamic Preferences in Multi-Criteria Reinforcement Learning

4.1.1. EXPERIMENTAL SETUP

A state is a tuple
�
s � f � t � , where s stands for the square in

which the donkey is present, f for food in the two piles, and
t for the time since the donkey last ate food. If t � 9, it is
not incremented and the donkey incurs a penalty of � 1 per
time step till it eats the food when t is reset to 0. The actions
are move up, down, left, right, and stay. It is assumed that
if the donkey chooses to stay at a square with food, then it
eats the food. pstolen is set to 0 � 9. Nappear is set to 10. The
stolen penalty is � 0 � 5 per plate and walking penalty is � 1
per step.

The dynamic multi-criteria versions of R-Learning and the
H-Learning presented in the previous sections were imple-
mented. The weights were generated at random and the
three components were normalized so that they add up to
1. For each weight, the programs were run for 100,000
time-steps. The agent learns for 1000 steps and is evaluated
for the next 1000 steps. While the agent was learning, an
ε-greedy policy was followed, and during evaluation, the
agent was allowed to choose only greedy actions and ac-
cumulate the rewards. As stated earlier, we predicted that
after a small number of weights, the agent need not learn
for a new weight vector, and instead can use a previously
stored policy.

The correctness of the policies learned by both the agents
were verified manually for the extreme cases of weights.
The weight vector contains the following components:�
whunger � wstolen � wwalking � . So if the weight vector ��w ��
1 � 0 � 0 � , it means that hunger is the most important crite-

rion. Hence, the donkey would walk to one of the food
piles and stand there. Whenever the food is re-generated,
the donkey would eat it. For the vector

�
0 � 1 � 0 � , the don-

key would not move out of the square. The set of policies
learned for different weights are presented in Figure 3.

Figure 3. Policies for R and H Learning corresponding to different
weights

4.1.2. EXPERIMENTAL RESULTS

In this section, we present two graphs for each version of
the algorithm, one showing the learning curve for a few
weights and the other showing the number of steps required
for convergence vs the number of weights. Figures [4, 5]
present the learning curves for three weight vectors for dy-
namic multi-criteria R-learning and dynamic multi-criteria
H-learning. The three weight vectors in Figures [4, 5] are�
1 � 0 � 0 � , � 0 � 1 � 0 � and

� � 33 ��� 33 ��� 33 � . It can be seen that the
weighted gain ��w � �� ρ converges to zero in the first two cases
for both the versions. In the third case, the agent chooses to
guard one food pile and keeps eating it. The agent cannot
alternate between piles, as it obtains a penalty of � 1 for
every step that it walks.

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Time-steps (*1000)

W
ei

gh
te

d
A

ve
ra

ge
 R

ew
ar

d
Weight Vector1

Weight Vector2

Weight Vector3

Figure 4. Learning curves for 3 weights using R-Learning

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Time steps (*1000)

W
ei

gh
te

d
A

ve
ra

ge
 R

ew
ar

d

Weight Vector1

Weight Vector2

Weight Vector3

Figure 5. Learning curves for 3 weights using H-Learning

The second set of graphs for the model-free and model-
based versions of the algorithms are shown in Figures [6,7].
Each of these figures compares our agent with one that
learns from scratch for every weight. Each plot presents

Dynamic Preferences in Multi-Criteria Reinforcement Learning

the number of time-steps required to converge to the opti-
mal policy against the number of weight vectors. For each
weight vector, we record the weighted gain after every 1000
time-steps. We determine the convergence by looking at a
window of 20 consecutive recordings. If their weighted
gains lie within δ of each other in the 20 recordings, the
algorithm is assumed to have converged. The plots show
averages over 15 different runs of 100 random weight vec-
tors each.

As can be observed, the number of steps to converge for
the DMCRL agent drops down quickly in both H-Learning
and R-Learning. The total number of policies learned was
between 15 and 20 in both cases. In many cases, these are
learned within the first 50 weight vectors. In contrast, the
plots for the learning-from-scratch agents wander about at
a much higher value of average number of steps for conver-
gence.

0

2000

4000

6000

8000

10000

12000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Number of weight Vectors

N
um

be
r o

f t
im

e
st

ep
s

Learning from prior
policies

Learning from
scratch

Figure 6. Convergence graph for R-Learning

Though previous work showed that the model-based learn-
ing performed better than the model-free learning (Tade-
palli & Ok, 1998), the results were not significantly differ-
ent for the two versions in our experiments. This is because
the domain is almost deterministic and one sample of ex-
ecution is as good as many. Hence explicit learning and
using of models did not have a significant impact on the
speed of learning.

4.2. Network Routing Domain

In this section, we describe the application of distributed
versions of our algorithms to network routing. In order to
transfer packets from a source host to a destination host,
the network layer must determine the path or route that the
packets are to follow. At the heart of any routing protocol
is the routing algorithm that determines the path of a packet
from the source to the destination (Kurose & Ross, 2003).
The problem of network routing was studied earlier in the
reinforcement learning paradigm (e.g., (Tao et al., 2001;

0

2000

4000

6000

8000

10000

12000

14000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Number of weight Vectors

N
um

be
r o

f s
te

ps

Learning from prior
policies

Learning from
scratch

Figure 7. Convergence graph for H-Learning

Stone, 2000)). These approaches, however, focussed on a
single criterion.

There are multiple criteria to evaluate the routing algo-
rithms (Lu et al., 2003). We consider three of them. The
end-to-end delay is the time required for a packet to travel
from the source to the destination. The other two crite-
ria are the loss of packets due to congestion or router/link
failure and the power level associated with a node. Each
criterion has a weight associated with it and the goal is to
optimize the weighted gain.

4.2.1. IMPLEMENTATION DETAILS

The network that we used to test our algorithms is shown
in Figure 8.

L F

A

M

D C

B

E

G

K H

IJ

NOP

Q R

Figure 8. Network Model

The weights are generated uniformly at random. Each node
generates some packets for random destinations. Every
node sends a control packet that contains the value func-
tions to its neighbors once every Tcontrol seconds. Upon re-
ceiving the packet, each node processes the packet. If it is

Dynamic Preferences in Multi-Criteria Reinforcement Learning

a data packet, it sends an acknowledgment to the source. If
it is an acknowledgment, it updates the values and rewards.
Each node would send the information about its power to
its neighbors every Tpower seconds. The power level of each
node decreases with the increase in the number of packets
it processes. The nodes explore for Tlearn seconds and eval-
uate the policy for the next Tevaluate seconds.

The immediate reward components, rete, rpl , rpow corre-
spond to the end-to-end delay, packet loss and power re-
spectively. The immediate reward values were between 0
and � 1. The end-to-end delay was brought between 1 and
0 by a linear transformation of the simulated time. Also for
every packet that is lost, the immediate reward was � 1. A
node would wait for a certain time period Tpl to determine
if the packet is lost. The power value received from the
neighbor was used as the immediate reward for the action
that chose that neighbor.

The “state” in this domain consists of the destination of
the current packet and the current node. The action to
be executed in a state is the neighbor to which the packet
is to be sent. The value function is represented in a dis-
tributed way, in that each node stores its value function for
each destination node (Rcurr node

�
destination � neighbor � or

hcurr node
�
destination �). The goal is to maximize the

weighted gain computed over the entire network.

4.2.2. EXPERIMENTAL RESULTS

In our experiments Tcontrol was set to 400, while Tlearn and
Tevaluate were both set to 500. The set of actions is the set
of neighbors to choose from. All the nodes accessed the
global average reward using mutual exclusion constraints
and updated them. The agent learned for 10,000 seconds
of simulated time and then would read in a new weight
vector. Since the models do not depend on weights, they
were learned from scratch for the first weight and were in-
crementally updated for the later weights in the case of H-
Learning. Both the methods followed an ε-greedy strategy
with ε � 0 � 10.

The results were recorded after every 1000 seconds, where
the agent learned for the first 500 seconds using ε-greedy
strategy and was evaluated for the next 500 seconds using
purely greedy strategy. We verified the policies manually
for a few weights. The algorithm is assumed to converge if
the weighted average rewards lie within δ of each other in
5 consecutive recordings. The convergence graphs for R-
Learning and H-Learning are presented in Figures [9, 10].
The data were collected from 15 runs and averaged. For
each run, the program was executed for 10 simulated days.
The convergence curve was plotted for these 86 weight
vectors. As before, the dynamic multi-criteria approach is
compared to learning from scratch for each weight. As ex-
pected, in the multi-criteria approach, the convergence time
for the few initial weights is high, but goes down quickly
with the number of weights. New policies are learned in-

0

500

1000

1500

2000

2500

3000

3500

4000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85

Number of weights

N
um

be
r o

f t
im

e
st

ep
s

Learning from Prior policies

Learning from Scratch

Figure 9. Convergence graph for R-Learning in the Network
Routing Domain

frequently after about 60 weight vectors. The results are
similar for both the model-free and model-based versions.
In contrast, the number of steps for convergence for the
learning-from-scratch agents is much higher.

0

500

1000

1500

2000

2500

3000

3500

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85

Number of weights

Ti
m

e
st

ep
s

Learning from Scratch

Learning from Prior policies

Figure 10. Convergence graph for H-Learning in the Network
Routing domain

5. Conclusion and Future work

The basic premise of the paper is that many real-world
problems have multiple objectives, where the importance
of the objectives is time-varying. In such cases, the nor-
mal scalar based reinforcement learning techniques do not
suffice. It becomes imperative that the value functions and
rewards are decomposed and adapted to new preferences.
We showed that by exploiting the structure of the MDP and
introducing a vector-based approach, we can learn faster by
storing the previously learned value functions and reusing
them. Similar ideas on decomposing rewards and value
functions have been explored in related work. For exam-
ple, Russell and Zimdars decomposed the value functions
so that they are more smoothly approximated (Russell &

Dynamic Preferences in Multi-Criteria Reinforcement Learning

Zimdars, 2003). Guestrin et al. used the decomposition
idea to make multi-agent coordination tractable (Guestrin
et al., 2001). This approach is similar to Parr’s earlier work
on “policy caches,” which consists of decomposing a large
MDP into smaller MDPs, solving them and combining the
solutions (Parr, 1998).

An interesting direction for future research is to investigate
the number of different weight vectors needed to learn all
the optimal policies within a desired degree of accuracy.
This in turn depends on the structure of the MDPs, which
needs to be carefully characterized. Function approxima-
tion would be useful and important to scale the problems to
large domains.

Another interesting problem is to infer the weights when
the user is unable to provide them, but simply controls the
agent in a near-optimal manner. This problem resembles
the “inverse reinforcement learning” problem or “prefer-
ence elicitation” problem (Ng & Russell, 2000; Boutilier,
2002). Chajewska et al. use a Bayesian approach to solve
this problem and learn to predict the future decisions of
the agent from the past decisions (Chajewska et al., 2001).
More recently, Ng et al. formulate the problem of “appren-
ticeship learning,” which includes learning from observa-
tions and reinforcements (Abbeel & Ng, 2004). Observed
behavior is used to elicit the weights of the user, which are
in turn used to find an optimal policy for those weights.
It would be interesting to see if we can improve appren-
ticeship learning by storing previously learned policies and
reusing them as in the current paper.

6. Acknowledgement

We are grateful to OPNET Technologies Inc. for providing
us with their network simulator and support. This mate-
rial is based upon work supported by the National Science
Foundation under Grant No.IIS-0329278 and the support
of DARPA under grant number HR0011-04-1-0005. We
thank Tom Dietterich, Alan Fern, Neville Mehta, Aaron
Wilson, Ronald Bjarnason and the anonymous reviewers
for their valuable suggestions.

References

Abbeel, P., & Ng, A. (2004). Apprenticeship learning via
inverse reinforcement learning. In Proceedings of ICML-
04.

Altman, E. (1999). Constrained markov decision pro-
cesses. Chapman and Hall. First edition.

Boutilier, C. (2002). A POMDP formulation of preference
elicitation problems. In Proceedings AAAI-02.

Chajewska, U., Koller, D., & Ormoneit, D. (2001). Learn-
ing an agent’s utility function by observing behavior. In
Proceedings of ICML-01.

Feinberg, E., & Schwartz, A. (1995). Constrained markov
decision models with weighted discounted rewards.
Mathematics of Operations Research, 20, 302–320.

Gabor, Z., Kalmar, Z., & Szepesvari, C. (1998). Multi-
criteria reinforcement learning. In Proceedings of ICML-
98.

Guestrin, C., Koller, D., & Parr, R. (2001). Multiagent
planning with factored MDPs. In Proceedings NIPS-01.

Kaelbling, L. P., Littman, M., & Cassandra, A. (1998).
Planning and acting in partially observable stochastic do-
mains. Artificial Intelligence, 101.

Kurose, J. F., & Ross, K. W. (2003). Computer networking
- a top-down approach featuring the internet. Pearson
Education. Second edition.

Lu, Y., Wang, W., Zhong, Y., & Bhargava, B. (2003). Study
of distance vector routing protocols for mobile ad hoc
networks. In Proceedings of PerCom-03.

Mahadevan, S. (1996). Average reward reinforcement
learning: Foundations, algorithms, and empirical results.
Machine Learning, 22, 159–195.

Mannor, S., & Shimkin, N. (2004). A geometric approach
to multi-criterion reinforcement learning. JMLR, 5, 325–
360.

Ng, A. Y., & Russell, S. (2000). Algorithms for inverse
reinforcement learning. In Proceedings of ICML-00.

Parr, R. (1998). Flexible decomposition algorithms for
weakly coupled markov decision problems. In Proceed-
ings UAI-98.

Puterman, M. L. (1994). Markov decision processes.
J.Wiley and Sons.

Russell, S., & Zimdars, A. L. (2003). Q-decomposition for
reinforcement learning agents. In Proceedings of ICML-
03.

Schwartz, A. (1993). A reinforcement learning method for
maximizing undiscounted rewards. In Proceedings of
ICML-93.

Stone, P. (2000). TPOT-RL applied to network routing. In
Proceedings of ICML-00.

Tadepalli, P., & Ok, D. (1998). Model-based average re-
ward reinforcement learning. AI Journal, 100, 177–223.

Tao, N., Baxter, J., & Weaver, L. (2001). A multi-agent
policy-gradient approach to network routing. In Pro-
ceedings of ICML-01.

White, D. (1982). Multi-objecticve infinite-horizon dis-
counted markov decision processes. Journal of Math-
ematical Analysis and Applications, 89, 639–647.

