
Reinforcement Learning:
From Foundations to Advanced Topics

Prasad Tadepalli
Sridhar Mahadevan

Vivek Borkar

Outline

1. Markov Decision Processes (MDPs) (Tadepalli and
Borkar)
• Introduction to Reinforcement Learning (30 m)
• Stochastic Approximation Theory (60 m)

2. Scaling Issues (Tadepalli) (60 m)
• Function Approximation
• Hierarchical Reinforcement Learning
• Approximate Policy Iteration

3. Learning Representations (Mahadevan) (90 m)
• Spectral Methods
• Solving MDPs using Spectral Methods

ActionsActions

PerceptsPercepts

RewardsRewards

The goal is to act to optimize a performance
measure, e.g., expected total reward received

Reinforcement Learning (RL)

Agent World

Vehicle Routing & Product Delivery

Markov Decision Processes

• A Markov Decision Process (MDP) consists of a set of states
S, actions A, Rewards R(s,a), and a stochastic state-transition
function P(s’|s,a)

• A policy is a mapping from States to Actions.
• The goal is to find a policy π* that maximizes the total expected

reward until some termination state – the “optimal policy.”

-0.1,0.9

0, 0.9 0,0.1

A

ED

CB

Move
Unload

Noop

-0.1,0.1

MDP Theory

• For a fixed policy π, there is a real-valued function Vπ

that satisfies Vπ(s) = R(s,π(s))+E(Vπ(s’)) (BellmanEqn)
Vπ(s) represents the expected total reward of π from s

• Theorem: ∃ an optimal policy π* : ∀s ∀π Vπ*(s) ≥ Vπ(s)
• An optimal policy π* satisfies the Bellman Equation:

Vπ∗(s) = Maxa {R(s,a) + ∑s’ P(s’|s,a) (Vπ∗(s’))}
• Value iteration: Solve the equations for V by iteratively

replacing the l.h.s with the r.h.s for all states
• Temporal Difference Learning: Update V for states

encountered along a trajectory
• If every state is updated infinitely often, V converges to Vπ∗

• Assumption: All policies terminate, i.e., reach an absorbing
state.

A Grid Example

0 0 0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

states

Goal state
Rewards: 10 for reaching the goal state

-1 for every action

values

Robot

A Grid Example

0 0 0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Choose an action a = argmaxa (R(s,a)+V(s’))
Update V(s) ← Maxa R(s,a)+V(s’)

0-1

A Grid Example

-1 -1 -1 -1 0

-1 -1 0

0 -1 0 0

-1 -1 0 0

-1 0 0 0 0

Choose an action a = argmaxa R(s,a)+V(s’))
Update V(s) ← Maxa R(s,a)+V(s’)

A Grid Example

9 10

Rewards: 10 for reaching the goal state

-1 for every action

A Grid Example

8 9 10

Update: V(s) ← Maxa R(s,a)+V(s’)

A Grid Example

7 8 9 10

Update: V(s) ← Maxa R(s,a)+V(s’)

A Grid Example

6 7 8 9 10

5

Choose an action a = argmaxa R(s,a)+V(s’)
Update V(s) ← Maxa R(s,a)+V(s’)

A Grid Example

6 7 8 9 10

5 6

Choose an action a = argmaxa R(s,a)+V(s’)
Update V(s) ← Maxa R(s,a)+V(s’)

A Grid Example

6 7 8 9 10

5 6 9

4 5 4 8

3 4 3 7

2 3 4 5 6

The values converge after a few trials if every
action is exercised infinitely often in every state

Stochastic Case

• Taking action a from the same state s, results in possibly
different next states s’ with probability P(s’|s,a)

• Choose a=argmaxa [R(s,a)+ ∑s’ P(s’|s,a)V(s’)]
• Update V(s) ← Maxa R(s,a)+ ∑s’ P(s’|s,a) V(s’)
• Converges to the optimal policy if every action is exercised

in every state infinitely often
• Problem: To choose an action, one needs to know not

only V(.) but also the action models:
– Immediate reward R(.,.)
– State transition function P(.|.,.)

• Method is called “model-based.”

Q-Learning

• Motivation: What if R(s,a) and P(s’|s,a) are unknown?
• An optimal policy π* satisfies the Bellman Equation:

Vπ∗(s) = Maxa {R(s,a) + ∑s’P(s’|s,a)Vπ∗(s’)}
= Maxa Q(s,a),

where Q(s,a)≡ R(s,a) + ∑s’P(s’|s,a)Vπ∗(s’)
≡ R(s,a) + ∑s’ P(s’|s,a) Maxb Q(s’,b)

• π*(s) = ArgmaxaQ(s,a)
• If we know the Q-function, we know the optimal policy!
• But, we still need P and R to update Q – or do we?
• Use sample update instead of full model update!

Q-Learning

S’

s
a

Q(s,a) = R(s,a) + ∑s’ P(s’|s,a) (Maxb Q(s’,b))
• Initialize Q-values arbitrarily
• When in state s, take some action a

– Usually a greedy action argmaxa Q(s,a)
– With some probabiity explore different actions

• Observe immediate reward r and next state s’
• r is a sample of R(s,a); s’ is a sample of next state
• Q(s,a) is updated towards r + Maxb Q(s’,b)

(stochastic approximation or sample update
instead of a full model update)
– Q(s,a) ← (1-α) Q(s,a) + α (r + Maxb Q(s’,b)) ,

where α is a learning rate
• If every Q(s,a) is updated infinitely often, the Q-

values converge to their true values.

A Grid Example

Rewards: 10 for reaching the goal state
-1 for every action. α is set to 1 for simplicity.
Update: Q(s,a) = r +Maxb (Q(s’,b))

9

A Grid Example

Choose an action a = argmaxa Q(s,a) reaching s’
Update Q(s,a) = r + Maxb Q(s’,b)

9876

5 6

4

A Grid Example

Choose an action a = argmaxa Q(s,a) reaching s’
Update Q(s,a) = r + Maxb Q(s’,b)

9876

5 6

4
5

9

3
3

8

7

6

543

2

2

2

5

4 3

4

3
3

2

Exploration-Exploitation Dilemma

Exploitation: Take the best action according to the current
value function (which may not have converged).
Exploration: Take the most informative action (which may not
be very good).

9876

5 6

4
5

0

3

2

2

2

3
3

3

3

3

0

0

0

00

5

4 3

4
Which way
to go?

Solutions to the Dilemma

• Epsilon-Greedy Exploration: Choose greedy action
with 1-ε probability. With ε probability pick randomly
among all actions.

• Optimism under uncertainty: Initialize the Q-values
with maximum possible value Rmax. Choose actions
greedily. “Delayed Q-Learning” guarantees
polynomial-time convergence.

• Explicit Explore and Exploit (E3): Learns models
and solves them offline. Explicitly chooses between
following optimal policy for the known MDP and
reaching an unknown part of MDP. Guarantees
polynomial-time convergence.

• RMAX: Model-based version of optimism under
uncertainty – Implicit Explore and Exploit

The Curse of Dimensionality

• Number of states is exponential in the number of
shops and trucks
• 10 locations, 5 shops, 2 trucks = (102)(55)(52) =
7,812,500 states
• Table-based RL scales exponentially with the
problem size (number of state variables)

Solutions to the Curse

• Function Approximation
– Represent value function compactly using a

parameterized function
• Hierarchical Reinforcement Learning

– Decompose the value function into simpler
components

• Approximate Policy Iteration
– Represent the policy compactly using approximation

Function Approximation

• Idea: Approximate the value function V(s) or Q(s,a)
using a compact function
– A linear function of carefully designed features
– A neural network
– Tabular linear functions

• Compute the temporal difference error in s (TD-error)
– TD(s) = Maxa (R(s,a) + V(s’)) – V(s)
– TD(s,a) = R(s,a) + Maxb Q(s’,b) – Q(s,a)

• Adjust the parameters of the value function to reduce
the (squared) temporal difference error
– W ← W +α TD(s) {∂ V(s)/∂ W}
– W ← W +α TD(s,a) {∂ Q(s,a)/∂ W}

Tabular Linear Function
Approximation

• Use a different linear function for each possible 5-tuple of
locations l1,…, l5 of trucks

• Each function is linear in truck loads
and shop inventories

• Every function represents
10 million states

• Million-fold reduction in the number
of learnable parameters

• W ← W +α TD(s) {∂ V(s)/∂ W}
• Wi ← Wi +α TD(s) Fi,k(s), where s

belongs to the kth linear function,
and FI,k(s) is its ith feature value

Tabular linear function approximation
vs. table-based

10 locations, 5 shops, 2 trucks, 106 iterations

-8

-7

-6

-5

-4

-3

-2

-1

0

10 110 210 310 410 510 610 710 810 910
1000's of Iterations

A
ve

ra
ge

 R
ew

ar
d

Piecewise Linear Function Approximation

Table-based

Hierarchical Reinforcement Learning

• Many domains are hierarchically organized.
• Tasks have subtasks, subtasks have sub-subtasks

and so on.
• Searching the policy space at the lowest level of the

action space may be intractable.
• How can we exploit task hierarchies to learn

efficiently?
• Many formalisms exist

– Options (Precup , Sutton, and Singh)
– MAXQ (Dietterich)
– ALisp (Andre, Murthy, Russell)

Resource Gathering Domain

• Grid world domain
• Multiple peasants

harvest resources
(wood, gold) to replenish
the home

• Attack the enemy’s base
any time it pops up

• Number of states
exponential in the
number of peasants and
resources

MAXQ Task Hierarchy

Root

Harvest(l) Deposit

Goto(k)

EastSouthNorth West

Pick Put

Offense(e)

Idle

Attack

Primitive Task

Composite Task

• Each subtask Mi is defined by Termination (goal) predicate
Gi , Actions Ai , and State Abstraction Bi

• The subtasks of task Mi are its available actions or
subroutines it can call.

• Control returns to the task Mi when its subtask finishes.
• Each Mi learns a policy π: S → Subtasks(Mi)

Value Function Decomposition

• Vi(s) = Total optimal expected reward during
task i when starting from state s

• Qi(s,j) = Total expected reward during task i,
when starting from state s and task j and
acting optimally

• Vi(s) = Maxj Qi(s,j)
• Ci(s,j) = Completion reward = Total expected

reward to complete task i after j is done in s.
• Qi(s,j) = Vj(s)+ Ci(s,j)

Choosing Actions

Qroot(harvest) = Vharvest + Croot(harvest)
= Maxa [Va + Charvest(a)] + Croot(harvest)
= Maxa [Maxb [Vb + C

a
(b)] + Charvest(a)] +

Croot(harvest)

Root

Harvest(l) Deposit

Goto(k)

EastSouthNorth West

Pick Put

Offense(e)

Idle

Attack

MAXQ-Q Learning

Learn completion functions Ci(j) for internal
nodes and value functions Vj for the leaf
nodes. Let s be current state and s’ be the
state after subtask j
– Ci(s,j) ← (1-α) Ci(s,j) + α Vi(s’)

← (1-α) Ci(s,j) + α Maxk Qi(s’,k)
← (1-α) Ci(s,j) +

α Maxk {Vk(s’)+ Ci(s’,k)}

How does the hierarchy help?

• Temporal Abstraction
– Reduces the number of decision/update points (search

depth)
• State Abstraction

– What the peasants carry is irrelevant to the Goto actions
– Other agents’ locations are irrelevant to the Goto and

the Deposit actions
• Funneling

– The high level tasks, e.g., Harvest, are considered only in
a small number of states (special locations)

• Subtask Sharing
– The same subtask, e.g., Goto, is called by several other

tasks; hence knowledge transfers between the tasks
• Sharing among multiple agents

Single Hierarchical Agent (effector)

Root

Harvest(W1)

Goto(W1)

North

Root

Harvest(l) Deposit

Goto(k)

EastSouthNorth West

Pick Put

Offense(e)

Idle

Attack

• The agent has a decomposed value function
• The agent has a task stack
• Each subtask is given appropriate abstraction

Simple Multi-Effector Setup
Root

Harvest(l) Deposit

Goto(k)

EastSouthNorth West

Pick Put

Offense(e)

Idle

Attack

Root

Offense(E1)

Attack

Root

Harvest(l) Deposit

Goto(k)

EastSouthNorth West

Pick Put

Offense(e)

Idle

Attack

Root

Harvest(W1)

Goto(W1)

North

• Every effector has its own decomposed value function
(depicted by the separate task hierarchies)

• Every effector has its own task stack

Multiple Agents with Shared Hierarchy (MASH)

Root

Harvest(l) Deposit

Goto(k)

EastSouthNorth West

Pick Put

Offense(e)

Idle

Attack

Root

Offense(E1)

Attack

Root

Harvest(W1)

Goto(W1)

North

• The effectors share one decomposed value function
• Every effector still has its own task stack (control thread)
• Effectors may coordinate by sharing task information

Resource Gathering Results
(Model-based Average-Reward RL)

4 agents in a 25 × 25 grid (30 runs):
Rewards: Deposit = 100, Collision = -5, Offense = 50
Unable to run this setup for coordinating agents with
separate value functions

Approximate Policy Iteration
(Fern, Yoon and Givan)

Vπ

π’ Improve π using one step
LookaheadControl Policy

current policy π
Evaluate

• Based on Policy Iteration

• Converges to globally optimal policies in enumerative
state-spaces

• Represents the policy explicitly

Taxanomic Decision Lists

A simple policy to clear a goal block Taxonomic Syntax

1. Putdown blocks being held
2. Pickup clear blocks above gclear
blocks (those that are clear in the goal)

1. holding : putdown
2. clear ∩ (on* gclear) :

pickup

Yoon, Fern, and Givan, 2002

?1. ?2.

Approximate Policy Iteration
(Fern, Yoon and Givan, 2003)

trajectories of
improved policy π’

??

? ?

π’ Learn approximation
of π’Control Policy

current policy π
?

Planning Domain
(problem distribution)

Computing π’ Trajectories from π

Given: current policy π and problem

… …

Output: a trajectory under improved policy π’

?

?

Computing π’ Trajectories from π

Given: current policy π and problem

Output: a trajectory under improved policy π’

?

?

…
…

…

…
…

Trajectories under π

a1

an

?

cost1

costn

…

Computing π’ Trajectories from π

Given: current policy π and problem

Output: a trajectory under improved policy π’

?

?

s

Computing π’ Trajectories from π

s …
…

…

…
…

Trajectories under π

a1

a2

Given: current policy π and problem

Output: a trajectory under improved policy π’

s
?

?

cost1

costn

…

Computing π’ Trajectories from π

s …
…

…

…
…

Trajectories under π

a1

a2

Given: current policy π and problem ?

… …

Output: a trajectory under improved policy π’

?

s

cost1

costn

…

Random Walk Bootstrapping

Objective: Learn policy for long random walk
distributions by transferring knowledge from short
random walk distributions

5 step random walk
distribution

??
? ?

Policy
Rollout

π’ Learn approximation
of π’Control Policy

current policy π
trajectories of
improved policy π’

Experimental Results

Blocks World (20 blocks)

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

Iterations

P
er

ce
nt

 S
uc

ce
ss

4 14 54 5454 54 334 334 334
Random

walk length:

Blocks Elevator Schedule Briefcase Gripper

API 100 100 100 100 100

FF-
Plan 28 100 100 0 100

Typically our solution lengths are comparable to FF’s.

Success Percentage

Domains with Good Policies

Freecell Logistics

API 0 0

FF-
Plan 47 100

Success Ratio

Domains without Good Policies

Conclusions

• Function approximation can result in faster convergence if
chosen carefully.
– But there is no guarantee of convergence in most

cases.
• Task hierarchies and shared value functions among agents

leads to fast learning
– The hierarchies and abstractions are given and carefully

designed.
• Approximate Policy Iteration is effective in many planning

domains
– The policy language must be carefully chosen to contain

a good policy

Current Research

• Learning the task hierarchies including termination
conditions and state abstraction

• Theory of function approximation – few convergence
results are known

• Transfer Learning: How can we learn in one domain
and perform well in a related domain?

• Relational Reinforcement Learning
• Combining planning and reinforcement learning
• Partially observable MDPs
• Game playing and assistantship learning

	Outline
	Reinforcement Learning (RL)
	Vehicle Routing & Product Delivery
	Markov Decision Processes
	MDP Theory
	A Grid Example
	A Grid Example
	A Grid Example
	A Grid Example
	A Grid Example
	A Grid Example
	A Grid Example
	A Grid Example
	A Grid Example
	Stochastic Case
	Q-Learning
	Q-Learning
	A Grid Example
	A Grid Example
	A Grid Example
	Exploration-Exploitation Dilemma
	Solutions to the Dilemma
	The Curse of Dimensionality
	Solutions to the Curse
	Function Approximation
	Tabular Linear Function Approximation
	Tabular linear function approximation vs. table-based
	Hierarchical Reinforcement Learning
	Resource Gathering Domain
	MAXQ Task Hierarchy
	Value Function Decomposition
	Choosing Actions
	MAXQ-Q Learning
	How does the hierarchy help?
	Single Hierarchical Agent (effector)
	Simple Multi-Effector Setup
	Multiple Agents with Shared Hierarchy (MASH)
	Resource Gathering Results �(Model-based Average-Reward RL)
	 Approximate Policy Iteration�(Fern, Yoon and Givan)
	Approximate Policy Iteration�(Fern, Yoon and Givan, 2003)
	Computing p’ Trajectories from p
	Computing p’ Trajectories from p
	Computing p’ Trajectories from p
	Computing p’ Trajectories from p
	Random Walk Bootstrapping
	Experimental Results
	Domains with Good Policies
	Domains without Good Policies
	 Conclusions
	Current Research

