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Outline

1. Markov Decision Processes (MDPs) (Tadepalli and 
Borkar)
• Introduction to Reinforcement Learning (30 m)
• Stochastic Approximation Theory (60 m)

2. Scaling Issues (Tadepalli) (60 m)
• Function Approximation 
• Hierarchical Reinforcement Learning 
• Approximate Policy Iteration 

3. Learning Representations (Mahadevan) (90 m)
• Spectral Methods 
• Solving MDPs using Spectral Methods 
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The goal is to act to optimize a performance
measure, e.g., expected total reward received

Reinforcement Learning (RL)

Agent World



Vehicle Routing & Product Delivery



Markov Decision Processes 

• A Markov Decision Process (MDP) consists of a set of states 
S, actions A, Rewards R(s,a), and a stochastic state-transition 
function P(s’|s,a)

• A policy is a mapping from States to Actions.
• The goal is to find a policy π* that maximizes the total expected 

reward until some termination state – the “optimal policy.”
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MDP Theory

• For a fixed policy π, there is a real-valued function Vπ

that satisfies Vπ(s) = R(s,π(s))+E(Vπ(s’)) (BellmanEqn)
Vπ(s) represents the expected total reward of π from s

• Theorem: ∃ an optimal policy π* : ∀s ∀π Vπ*(s) ≥ Vπ(s)
• An optimal policy π* satisfies the Bellman Equation:

Vπ∗(s) = Maxa {R(s,a) + ∑s’ P(s’|s,a) (Vπ∗(s’))}       
• Value iteration: Solve the equations for V by iteratively 

replacing the l.h.s with the r.h.s for all states
• Temporal Difference Learning: Update V for states 

encountered along a trajectory
• If every state is updated infinitely often, V converges to Vπ∗

• Assumption: All policies terminate, i.e., reach an absorbing 
state.



A Grid Example

0 0 0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

states

Goal state
Rewards: 10 for reaching the goal state

-1 for every action

values

Robot



A Grid Example

0 0 0 0 0
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Choose an action a = argmaxa (R(s,a)+V(s’))
Update V(s)  ← Maxa R(s,a)+V(s’)
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A Grid Example
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Choose an action a = argmaxa R(s,a)+V(s’))
Update V(s)  ← Maxa R(s,a)+V(s’)



A Grid Example

9 10

Rewards: 10 for reaching the goal state

-1 for every action



A Grid Example

8 9 10

Update:  V(s)  ← Maxa R(s,a)+V(s’)



A Grid Example
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Update:  V(s)  ← Maxa R(s,a)+V(s’)



A Grid Example
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Choose an action a = argmaxa R(s,a)+V(s’)
Update V(s)  ← Maxa R(s,a)+V(s’)



A Grid Example

6 7 8 9 10

5 6

Choose an action a = argmaxa R(s,a)+V(s’)
Update V(s)  ← Maxa R(s,a)+V(s’)



A Grid Example
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The values converge after a few trials if every
action is exercised infinitely often in every state



Stochastic Case

• Taking action a from the same state s, results in possibly 
different next states s’ with probability P(s’|s,a)

• Choose  a=argmaxa [R(s,a)+ ∑s’ P(s’|s,a)V(s’)]
• Update V(s)  ← Maxa R(s,a)+ ∑s’ P(s’|s,a) V(s’)
• Converges to the optimal policy if every action is exercised 

in every state infinitely often
• Problem: To choose an action, one needs to know not 

only V(.) but also the action models:
– Immediate reward R(.,.)
– State transition function P(.|.,.)

• Method is called “model-based.”



Q-Learning 

• Motivation: What if R(s,a) and  P(s’|s,a) are unknown?
• An optimal policy π* satisfies the Bellman Equation:

Vπ∗(s) = Maxa {R(s,a) + ∑s’P(s’|s,a)Vπ∗(s’)} 
= Maxa Q(s,a),

where Q(s,a)≡ R(s,a) + ∑s’P(s’|s,a)Vπ∗(s’)
≡ R(s,a) + ∑s’ P(s’|s,a) Maxb Q(s’,b)

• π*(s) = ArgmaxaQ(s,a)
• If we know the Q-function, we know the optimal policy!
• But, we still need P and R to update Q – or do we?
• Use sample update instead of full model update!



Q-Learning 

S’

s
a

Q(s,a) = R(s,a) + ∑s’ P(s’|s,a) (Maxb Q(s’,b))
• Initialize Q-values arbitrarily
• When in state s, take some action a

– Usually a greedy action argmaxa Q(s,a)
– With some probabiity explore different actions

• Observe immediate reward r and next state s’
• r is a sample of R(s,a); s’ is a sample of next state
• Q(s,a) is updated towards r + Maxb Q(s’,b) 

(stochastic approximation or sample update 
instead of a full model update)
– Q(s,a) ← (1-α) Q(s,a) + α (r + Maxb Q(s’,b)) , 

where α is a learning rate
• If every Q(s,a) is updated infinitely often, the Q-

values converge to their true values. 



A Grid Example

Rewards: 10 for reaching the goal state                    
-1 for every action. α is set to 1 for simplicity.  
Update: Q(s,a) = r +Maxb (Q(s’,b))
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A Grid Example

Choose an action a = argmaxa Q(s,a) reaching s’
Update Q(s,a) = r + Maxb Q(s’,b)
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A Grid Example

Choose an action a = argmaxa Q(s,a) reaching s’
Update Q(s,a) = r + Maxb Q(s’,b)
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Exploration-Exploitation Dilemma

Exploitation: Take the best action according to the current 
value function (which may not have converged).
Exploration: Take the most informative action (which may not 
be very good). 
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Solutions to the Dilemma

• Epsilon-Greedy Exploration: Choose greedy action 
with 1-ε probability. With ε probability pick randomly 
among all actions.

• Optimism under uncertainty: Initialize the Q-values 
with maximum possible value Rmax. Choose actions 
greedily. “Delayed Q-Learning” guarantees 
polynomial-time convergence. 

• Explicit Explore and Exploit (E3): Learns models 
and solves them offline. Explicitly chooses between 
following optimal policy for the known MDP and 
reaching an unknown part of MDP. Guarantees 
polynomial-time convergence. 

• RMAX: Model-based version of optimism under 
uncertainty – Implicit Explore and Exploit 



The Curse of Dimensionality

• Number of states is    exponential in the number of 
shops and trucks
• 10 locations, 5 shops, 2 trucks = (102)(55)(52) = 
7,812,500 states
• Table-based RL scales exponentially with the 
problem size (number of state variables)



Solutions to the Curse

• Function Approximation 
– Represent value function compactly using a 

parameterized function 
• Hierarchical Reinforcement Learning 

– Decompose the value function into simpler 
components

• Approximate Policy Iteration
– Represent the policy compactly using approximation



Function Approximation 

• Idea: Approximate the value function V(s) or Q(s,a) 
using a compact function 
– A linear function of carefully designed features
– A neural network
– Tabular linear functions

• Compute the temporal difference error in s (TD-error)
– TD(s) = Maxa (R(s,a) + V(s’))     – V(s)
– TD(s,a) = R(s,a) + Maxb Q(s’,b) – Q(s,a)

• Adjust the parameters of the value function to reduce 
the (squared) temporal difference error
– W ← W +α TD(s) {∂ V(s)/∂ W}
– W ← W +α TD(s,a) {∂ Q(s,a)/∂ W}



Tabular Linear Function 
Approximation

• Use a different linear function for each possible 5-tuple of 
locations l1,…, l5 of trucks 

• Each function is linear in truck loads 
and shop inventories

• Every function represents     
10 million states

• Million-fold reduction in the number 
of learnable parameters

• W ← W +α TD(s) {∂ V(s)/∂ W}
• Wi ← Wi +α TD(s) Fi,k(s), where s

belongs to the kth linear function, 
and FI,k(s) is its ith feature value



Tabular linear function approximation 
vs. table-based

10 locations, 5 shops, 2 trucks, 106 iterations
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Hierarchical Reinforcement Learning 

• Many domains are hierarchically organized. 
• Tasks have subtasks, subtasks have sub-subtasks 

and so on. 
• Searching the policy space at the lowest level of the 

action space may be intractable. 
• How can we exploit task hierarchies to learn 

efficiently?
• Many formalisms exist  

– Options (Precup , Sutton, and Singh)
– MAXQ (Dietterich)
– ALisp (Andre, Murthy, Russell)



Resource Gathering Domain

• Grid world domain
• Multiple peasants 

harvest resources 
(wood, gold) to replenish 
the home

• Attack the enemy’s base 
any time it pops up

• Number of states 
exponential in the 
number of peasants and 
resources



MAXQ Task Hierarchy

Root

Harvest(l) Deposit

Goto(k)

EastSouthNorth West

Pick Put

Offense(e)

Idle

Attack

Primitive Task

Composite Task

• Each subtask Mi is defined by Termination (goal) predicate 
Gi , Actions Ai , and State Abstraction Bi

• The subtasks of task Mi are its available actions or 
subroutines it can call. 

• Control returns to the task Mi when its subtask finishes.
• Each Mi learns a policy π: S → Subtasks(Mi) 



Value Function Decomposition

• Vi(s) = Total optimal expected reward during 
task i when starting from state s

• Qi(s,j) = Total expected reward during task i, 
when starting from state s and task j and 
acting optimally

• Vi(s) = Maxj Qi(s,j)
• Ci(s,j) = Completion reward = Total expected 

reward to complete task i after j is done in s.
• Qi(s,j) = Vj(s)+ Ci(s,j)



Choosing Actions

Qroot(harvest) = Vharvest + Croot(harvest)
= Maxa [Va + Charvest(a)] + Croot(harvest)
= Maxa [Maxb [Vb + C

a
(b)] + Charvest(a)] +                

Croot(harvest)

Root

Harvest(l) Deposit

Goto(k)

EastSouthNorth West

Pick Put

Offense(e)

Idle

Attack



MAXQ-Q Learning

Learn completion functions Ci(j) for internal 
nodes and value functions Vj for the leaf 
nodes. Let s be current state and s’ be the 
state after subtask j
– Ci(s,j) ← (1-α) Ci(s,j) + α Vi(s’)

← (1-α) Ci(s,j) + α Maxk Qi(s’,k) 
← (1-α) Ci(s,j) + 

α Maxk {Vk(s’)+ Ci(s’,k)}



How does the hierarchy help?

• Temporal Abstraction
– Reduces the number of decision/update points (search 

depth)
• State Abstraction

– What the peasants carry is irrelevant to the Goto actions 
– Other agents’ locations are irrelevant to the Goto and 

the Deposit actions
• Funneling

– The high level tasks, e.g., Harvest, are considered only in 
a small number of states (special locations) 

• Subtask Sharing  
– The same subtask, e.g., Goto, is called by several other 

tasks; hence knowledge transfers between the tasks
• Sharing among multiple agents



Single Hierarchical Agent (effector)

Root

Harvest(W1)

Goto(W1)

North

Root

Harvest(l) Deposit

Goto(k)

EastSouthNorth West

Pick Put

Offense(e)

Idle

Attack

• The agent has a decomposed value function 
• The agent has a task stack
• Each subtask is given appropriate abstraction 



Simple Multi-Effector Setup
Root

Harvest(l) Deposit

Goto(k)

EastSouthNorth West

Pick Put
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Idle

Attack

Root

Offense(E1)

Attack

Root

Harvest(l) Deposit

Goto(k)

EastSouthNorth West

Pick Put

Offense(e)

Idle

Attack

Root

Harvest(W1)

Goto(W1)

North

• Every effector has its own decomposed value function 
(depicted by the separate task hierarchies)

• Every effector has its own task stack



Multiple Agents with Shared Hierarchy (MASH)

Root

Harvest(l) Deposit

Goto(k)

EastSouthNorth West

Pick Put
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Idle

Attack

Root

Offense(E1)

Attack

Root

Harvest(W1)

Goto(W1)

North

• The effectors share one decomposed value function 
• Every effector still has its own task stack (control thread)
• Effectors may coordinate by sharing task information 



Resource Gathering Results 
(Model-based Average-Reward RL)

4 agents in a 25 × 25 grid (30 runs):
Rewards: Deposit = 100, Collision = -5, Offense = 50
Unable to run this setup for coordinating agents with 
separate value functions



Approximate Policy Iteration
(Fern, Yoon and Givan)

Vπ

π’ Improve π using one step 
LookaheadControl Policy

current policy π
Evaluate 

• Based on Policy Iteration   

• Converges to globally optimal policies in enumerative    
state-spaces

• Represents the policy explicitly 



Taxanomic Decision Lists

A simple policy to clear a goal block          Taxonomic Syntax

1. Putdown blocks being held 
2. Pickup clear blocks above gclear
blocks (those that are clear in the goal) 

1. holding : putdown
2. clear ∩ (on* gclear) : 

pickup

Yoon, Fern, and Givan, 2002

?1. ?2.



Approximate Policy Iteration
(Fern, Yoon and Givan, 2003)

trajectories of 
improved policy π’

??

? ?

π’ Learn approximation 
of π’Control Policy

current policy π
?

Planning Domain
(problem distribution)



Computing π’ Trajectories from π

Given: current policy π and problem

… …

Output: a trajectory under improved policy π’

?

?



Computing π’ Trajectories from π

Given: current policy π and problem

Output: a trajectory under improved policy π’
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Computing π’ Trajectories from π

Given: current policy π and problem

Output: a trajectory under improved policy π’

?
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Computing π’ Trajectories from π
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Given: current policy π and problem

Output: a trajectory under improved policy π’
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Computing π’ Trajectories from π

s …
…

…

…
…

Trajectories under π

a1

a2

Given: current policy π and problem ?

… …

Output: a trajectory under improved policy π’
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s
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Random Walk Bootstrapping

Objective: Learn policy for long random walk 
distributions by transferring knowledge from short 
random walk distributions 

5 step random walk
distribution

??
? ?

Policy
Rollout

π’ Learn approximation 
of π’Control Policy

current policy π
trajectories of 
improved policy π’



Experimental Results

Blocks World (20 blocks)
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Blocks Elevator Schedule Briefcase Gripper

API 100 100 100 100 100

FF-
Plan 28 100 100 0 100

Typically our solution lengths are comparable to FF’s.

Success Percentage

Domains with Good Policies



Freecell Logistics

API 0 0

FF-
Plan 47 100

Success Ratio

Domains without Good Policies



Conclusions 

• Function approximation can result in faster convergence if 
chosen carefully. 
– But there is no guarantee of convergence in most 

cases. 
• Task hierarchies and shared value functions among agents 

leads to fast learning 
– The hierarchies and abstractions are given and carefully 

designed.  
• Approximate Policy Iteration is effective in many planning 

domains
– The policy language must be carefully chosen to contain 

a good policy



Current Research

• Learning the task hierarchies including termination 
conditions and state abstraction 

• Theory of function approximation – few convergence 
results are known 

• Transfer Learning: How can we learn in one domain 
and perform well in a related domain?

• Relational Reinforcement Learning 
• Combining planning and reinforcement learning 
• Partially observable MDPs
• Game playing and assistantship learning 
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