1ﬁﬂNsFEn
L earNING

Reinforcement Learning:
From Foundations to Advanced Topics

Prasad Tadepalli

Sridhar Mahadevan
Vivek Borkar

N

IIIIIIIIII

Outline [Reneres

1. Markov Decision Processes (MDPs) (Tadepalli and
Borkar)

* Introduction to Reinforcement Learning (30 m)
« Stochastic Approximation Theory (60 m)

2. Scaling Issues (Tadepalli) (60 m)
 Function Approximation
« Hierarchical Reinforcement Learning
 Approximate Policy Iteration

3. Learning Representations (Mahadevan) (90 m)
 Spectral Methods
« Solving MDPs using Spectral Methods

N

IIIIIIIIII

@ Reinforcement Learning (RL) iREnSEer

The goal is to act to optimize a performance
measure, e.g., expected total reward received

N

IIIIIIIIII

Vehicle Routing & Product Delivery ﬂ,ﬁggggﬁg

TR

CII':.smpia{ i

It Rainier
Mational

Mez Perce
MNatiorial
Histarical

Park

e
AT i,

Portlarid{ [cresham

— |Boise

N
N

Oregon State

UNIVERSITY

——e Markov Decision Processes [%EnEaRe

* A Markov Decision Process (MDP) consists of a set of states
S, actions A, Rewards R(s,a), and a stochastic state-transition
function P(s’|s,a)

* A policy is a mapping from States to Actions.

 The goal is to find a policy n* that maximizes the total expected
reward until some termination state — the “optimal policy.”

N

IIIIIIIIII

MDP Theory Lot

* For a fixed policy =, there is a real-valued function V=
that satisfies V*(s) = R(s, z(s))+E(V*(s’)) (BellmanEqgn)
V#(s) represents the expected total reward of & from s

« Theorem: 3 an optimal policy n* : V5 vz V7 (s) > V7(s)

« An optimal policy n* satisfies the Bellman Equation:
V=(s) = Max, {R(s,a) + X, P(ss,a) (V=(s)}

« Value iteration: Solve the equations for V by iteratively
replacing the l.h.s with the r.h.s for all states

« Temporal Difference Learning: Update V for states
encountered along a trajectory

 If every state is updated infinitely often, V converges to V**
« Assumption: All policies terminate, i.e., reach an absorbing

state. 0 SU

IIIIIIIIII

A Grid Example ([RensFER

Rewards: 10 for reaching the goal state

-1 for every action Goal state
values +0
states
Robot

T

N

IIIIIIIIII

A Grid Example ([RensFER

Choose an action a = argmax,, (R(s,a)*+V(s))
Update V(s) « Max, R(s,a)+V(s))

0 0
0 0
0 0
0 0
0 T 0
= N

IIIIIIIIII

A Grid Example ([RensFER

Choose an action a = argmax_, R(s,a)+V(s))
Update V(s) « Max, R(s,a)+V(s))

11 g o
1] (-1
0 |-
1 |-
110
OSU

IIIIIIIIII

A Grid Example [s

Rewards: 10 for reaching the goal state

-1 for every action

G - 1

N

IIIIIIIIII

A Grid Example ([RensFER

Update: V(s) + Max, R(s,a)+V(s’)

N

IIIIIIIIII

A Grid Example ([RensFER

Update: V(s) « Max, R(s,a)+V(s)

‘@5 > _i

N

IIIIIIIIII

A Grid Example ([RensFER

Choose an action a = argmax_, R(s,a)+V(s)
Update V(s) « Max, R(s,a)+V(s))

6 / 8 9 10
T EETE
@

N

IIIIIIIIII

A Grid Example ([RensFER

Choose an action a = argmax_, R(s,a)+V(s)
Update V(s) « Max, R(s,a)+V(s))

e

N

IIIIIIIIII

A Grid Example ([RensFER

N CR ERET S
i S

5 ' |6 9]
I 4
4 | |5 8|
i T
3| |4 | 71
S, }
2 | 131 |4 5 E\

The values converge after a few trials if every
action is exercised infinitely often in every state OSU

IIIIIIIIII

Stochastic Case ([RensFER

Taking action a from the same state s, results in possibly
different next states s’ with probability P(s’|s,a)

Choose a=argmax, [R(s,a)+ 2. P(ss,a)V(s))]

Update V(s) + Max, R(s,a)+ 2 P(s’|s,a) V(s
Converges to the optimal policy if every action is exercised
In every state infinitely often

Problem: To choose an action, one needs to know not
only V(.) but also the action models:

— Immediate reward R(.,.)
— State transition function P(.|.,.)
Method is called “model-based.”

N

IIIIIIIIII

Q-Learning [ieres

* Motivation: What if R(s,a) and P(s’|s,a) are unknown?
* An optimal policy n* satisfies the Bellman Equation:
V7(s) = Max, {R(s,a) + 2 P(s’|s,a)V*(s’)}
= Max_, Q(s,a),
where Q(s,a)= R(s,a) + 2.P(s’|s,a)V*(s’)
= R(s,a) + 2, P(s’|s,a) Max, Q(s’,b)
« 1*(s) = Argmax,Q(s,a)
 |f we know the Q-function, we know the optimal policy!
« But, we still need P and R to update Q — or do we”?
« Use sample update instead of full model update!

N

IIIIIIIIII

Q-Learning [ieres

Q(s,a) = R(s,a) + 2. P(s’|s,a) (Max, Q(s’,b)) |°
Initialize Q-values arbitrarily a
When in state s, take some action a

— Usually a greedy action argmax_, Q(s,a) S’

— With some probabiity explore different actions
Observe immediate reward r and next state s’
ris a sample of R(s,a); s’is a sample of next state

Q(s,a) is updated towards r + Max, Q(s’,b)
(stochastic approximation or sample update
instead of a full model update)

— Q(s,a) + (1-a) Q(s,a) + « (r + Max, Q(s’,b)) ,
where o is a learning rate

If every Q(s,a) is updated infinitely often, the Q-
values converge to their true values.

N

IIIIIIIIII

A Grid Example ([RensFER

Rewards: 10 for reaching the goal state
-1 for every action. a is set to 1 for simplicity.
Update: Q(s,a) = r +Max, (Q(s,b))

N

IIIIIIIIII

A Grid Example ([RensFER

Choose an action a = argmax_, Q(s,a) reaching s’
Update Q(s,a) =r + Max, Q(s’,b)

)

\

N

IIIIIIIIII

A Grid Example

RANSFER
L'Eﬂl?NlNﬁ

Choose an action a = argmax_, Q(s,a) reaching s’

Update Q(s,a) =r + Max, Q(s’,b)

an

LN

N

IIIIIIIIII

Exploration-Exploitation Dilemma |IF&555ce

Exploitation: Take the best action according to the current
value function (which may not have converged).

EXxploration: Take the most informative action (which may not
be very good).

Which way
to go?
g —

N

IIIIIIIIII

Solutions to the Dilemma e

« Epsilon-Greedy Exploration: Choose greedy action
with 1-¢ probability. With ¢ probability pick randomly
among all actions.

« Optimism under uncertainty: Initialize the Q-values
with maximum possible value Rmax. Choose actions
greedily. “Delayed Q-Learning” guarantees
polynomial-time convergence.

« Explicit Explore and Exploit (E3): Learns models
and solves them offline. Explicitly chooses between
following optimal policy for the known MDP and
reaching an unknown part of MDP. Guarantees
polynomial-time convergence.

« RMAX: Model-based version of optimism under
uncertainty — Implicit Explore and Exploit GSU

IIIIIIIIII

The Curse of Dimensionality [e

 Number of states is exponential in the number of

shops and trucks

* 10 locations, 5 shops, 2 trucks = (102)(5°)(5%) =

7,812,500 states

« Table-based RL scales exponentially with the

problem size (number of state variables) usu

IIIIIIIIII

Solutions to the Curse |l adtiad

Function Approximation

— Represent value function compactly using a
parameterized function

Hierarchical Reinforcement Learning

— Decompose the value function into simpler
components

Approximate Policy lteration
— Represent the policy compactly using approximation

N

IIIIIIIIII

Function Approximation [Frensrer

« |dea: Approximate the value function V(s) or Q(s,a)
using a compact function

— A linear function of carefully designed features
— A neural network
— Tabular linear functions

« Compute the temporal difference error in s (TD-error)
— TD(s) = Max, (R(s,a) + V(s)) —V(s)
— TD(s,a) = R(s,a) + Max, Q(s’,b) — Q(s,a)

« Adjust the parameters of the value function to reduce
the (squared) temporal difference error

— W« W +a TD(s) {oV(s)/o W)}
— W W+a TD(s,a) {0 Q(s,a)/cd W}

N

IIIIIIIIII

Tabular Linear Function
T Approximation

RANSFER
L'EHF;'NINﬁ

« Use a different linear function for each possible 5-tuple of

locations /,,..., I of trucks

 Each function is linear in truck loads
and shop inventories

« Every function represents
10 million states

* Million-fold reduction in the number
of learnable parameters

e« W« W+a TD(s) {oV(s)/o W}

W, W, +a TD(s) F,;,(s), where s
belongs to the ki linear function,
and F,(s) is its " feature value

-
J]
N
2.§
N

il

il

1]l

il

A
P

N

I

[} T——

e —

st

IIIIIIIIII

Tabular linear function approximation

LEM:INSFEI-“l
vs. table-based EARNING
o 10 locations, 5 shops, 2 trucks, 10° iterations
—
-1
-2
g _3 |
-4
~ _.—\/vxf—fv\/"‘""/_"\/
-5 ANV
P v_/\/v
6 7~
/ Piecewise Linear Function Approximation
-7 Table-based -
8 | | | | | |
10 110 210 310 410 510 610 710 810 910
1000's of Iterations

UoU

Oregon State

UNIVERSITY

Hierarchical Reinforcement Learning [jRE0SFER

 Many domains are hierarchically organized.

 Tasks have subtasks, subtasks have sub-subtasks
and so on.

« Searching the policy space at the lowest level of the
action space may be intractable.

 How can we exploit task hierarchies to learn
efficiently?

« Many formalisms exist
— Options (Precup , Sutton, and Singh)
— MAXQ (Dietterich)
— ALisp (Andre, Murthy, Russell)

N

IIIIIIIIII

RANSFER

Resource Gathering Domain SARNING.

e Grid world domain

* Multiple peasants
harvest resources
(wood, gold) to replenish
the home

« Attack the enemy’s base
any time it pops up

 Number of states
exponential in the

number of peasants and
resources

MAXQ Task Hierarchy | il

ZE=Z.

Each subtask M, is defined by Termination (goal) predicate
G;, Actions A, and State Abstraction B;

The subtasks of task M; are its available actions or
subroutines it can call.

Control returns to the task M, when its subtask finishes.
Each M. learns a policy n: S — Subtasks(M.) ﬂsu

IIIIIIIIII

Value Function Decomposition [[Ransrer

V.(s) = Total optimal expected reward during
task / when starting from state s

Q,(s,j) = Total expected reward during task |,
when starting from state s and task j and
acting optimally

\/I(S) =M an Q,’(S,j)

Ci(s,j)) = Completion reward = Total expected
reward to complete task / after j is done in s.

Qi(s.)) = Vi(s)+ Ci(s,))

N

IIIIIIIIII

Choosing Actions Irenercr

Qroot(harv eSt) = Vharvest + Croot(harv eSt)
=Max, [V, + C,_,.s(8)] + C,,s(harvest)
= Maxa [Maxb [Vb + Ca(b)] T Charvest(a)] T

C,..«(harvest)
N

IIIIIIIIII

MAXQ-Q Learning [Reneres

Learn completion functions C,(j) for internal
nodes and value functions V; for the leaf
nodes. Let s be current state and s’ be the
state after subtask j

— C(s)) (1-0) C(s,) + a V(s)
+— (1-a) Ci(s,j) + aa Max, Q,(s’,k)
— (1-a) Ci(s,)) +
a Max, {V\(s))+ Ci(s’k)}

N

IIIIIIIIII

i ?
How does the hierarchy help” ([RensFer

Temporal Abstraction

— Reduces the number of decision/update points (search
depth)

State Abstraction
— What the peasants carry is irrelevant to the Goto actions

— Other agents’ locations are irrelevant to the Goto and
the Deposit actions

Funneling

— The high level tasks, e.g., Harvest, are considered only in
a small number of states (special locations)

Subtask Sharing

— The same subtask, e.g., Goto, is called by several other
tasks; hence knowledge transfers between the tasks

Sharing among multiple agents GSU

IIIIIIIIII

DARPA

g Single Hierarchical Agent (effector)~

1EHN5FER

EARNING

« The agent has a decomposed value function
 The agent has a task stack
« Each subtask is given appropriate abstraction

N

IIIIIIIIII

DARPA

=t Simple Multi-Effector Setup

1EHN5FER
L earNnING

« Every effector has its own decomposed value function
(depicted by the separate task hierarchies)

 Every effector has its own task stack usu

IIIIIIIIII

SFER

=s=ilultiple Agents with Shared Hierarchy (MA HARNING

* The effectors share one decomposed value function
» Every effector still has its own task stack (control thread)
« Effectors may coordinate by sharing task information usu

IIIIIIIIII

Resource Gathering Results

1EHN5FEH
\.aEFIF;'NINﬁ

7

4 agents in a 25 x 25 grid (30 runs):
Rewards: Deposit = 100, Collision = -5, Offense = 50
Unable to run this setup for coordinating agents with
separate value functions

a8
? s
MASH wso coord &

=

5 -
-s-._g N o - Ld 1 u" | "'..du
I y i L ¥ HH .
£ [] T I-‘ﬂ Ii.||.dn
/i)
? z] n . L N L . i
£ i bdth © i L I
Loy [m]

o HE ¥ i
2] = d
[*]
1 n i
Id
i [[]
r:::

0 g A

_1 '] L L 1 U

g+ le+B 2e+b 3e+h 4e+h He+h

Time Step Oregon State

IIIIIIIIII

Approximate Policy lteration
B (Fern, Yoon and Givan)

RANSFER
L'EHFJNINﬁ

« Based on Policy lteration

« Converges to globally optimal policies in enumerative
state-spaces

* Represents the policy explicitly

current policy W Vi
» Evaluate >

|

_ T Improve n using one step
[
i Control Policy Lookahead

IIIIIIIIII

Taxanomic Decision Lists EEnsqex

Yoon, Fern, and Givan, 2002

A simple policy to clear a goal block Taxonomic Syntax

1. Putdown blocks being held 1. holding : putdown

2. Pickup clear blocks above gclear 2. clear n (on™ gclear) :
blocks (those that are clear in the goal) pickup

N

IIIIIIIIII

DARP, Approximate Policy lteration
e (Fern, Yoon and Givan, 2003)

1EHN5FER
L earNnING

trajectories of

>

current policy
-2

N J

improved policy

Planning Domain
(problem distribution)

: E Learn approximation
[Control Policy } { of 7 J

N

IIIIIIIIII

RANSFER

Computing " Trajectories from =« e

Given: current policy = and problem | §o"* =

OQutput: a trajectory under improved policy 7’

S A A

N

IIIIIIIIII

RANSFER

Computing &’ Trajectories from n LearninG

Given: current policy = and problem | §o"* =

OQutput: a trajectory under improved policy 7’

\ Trajectories under =«

\ SN N NN cost,
NN,

el AN

e cost,

N

IIIIIIIIII

RANSFER

Computing " Trajectories from =« e

Given: current policy = and problem | §o"* =

OQutput: a trajectory under improved policy 7’

2, Y

(| []

S

N

IIIIIIIIII

E

RANSFER

Computing ©t" Trajectories from & =

Given: current policy = and problem | §o"* =

OQutput: a trajectory under improved policy 7’

\S

Trajectories under =«

OO cost
' IYW/\

a2 I\W __/\'. cost,

EARNING

N

RANSFER

e=m=m COMputing ' Trajectories from & e

Given: current policy = and problem | §o"* =

OQutput: a trajectory under improved policy 7’

e /\.\g\f\f\/w\f\f\/\

\

\\ Trajectories under «

OO cost
' IYW/\

S : :
a2 I\N\'f\' __/\'. cost,

N

IIIIIIIIII

Random Walk Bootstrapping [RensFer

Objective: Learn policy for long random walk
distributions by transferring knowledge from short
random walk distributions

; 5 step random walk

Fro g J
wJ distribution

l trajectories of
current policy & [Policy improved policy

Rollout J 'l

| Learn approximation
{ Control Policy }L{ p(ff - }

N

IIIIIIIIII

Experimental Results | i arbain

Blocks World (20 blocks)

Percent Success

0 1 2 3 4 5 6 7 8

Iterations
Random

walk length: 4 14 54 54 54 54 334 334 334

N

IIIIIIIIII

Domains with Good Policies [[Rensrer

Success Percentage

Blocks | Elevator | Schedule | Briefcase | Gripper

API | 100 | 100 100 100 100
FF-— 1 o8 100 100 0 100
Plan

Typically our solution lengths are comparable to FF’s.

N

IIIIIIIIII

Domains without Good Policies [Fensrer

Success Ratio

Freecell | Logistics

AP 0 0
FF-
oan | 47 100

N

IIIIIIIIII

Conclusions [i

« Function approximation can result in faster convergence if
chosen carefully.

— But there is no guarantee of convergence in most
cases.

« Task hierarchies and shared value functions among agents
leads to fast learning

— The hierarchies and abstractions are given and carefully
designed.

« Approximate Policy Iteration is effective in many planning
domains

— The policy language must be carefully chosen to contain

a good policy

IIIIIIIIII

Current Research | b

Learning the task hierarchies including termination
conditions and state abstraction

Theory of function approximation — few convergence
results are known

Transfer Learning: How can we learn in one domain
and perform well in a related domain?

Relational Reinforcement Learning

Combining planning and reinforcement learning
Partially observable MDPs

Game playing and assistantship learning

N

IIIIIIIIII

	Outline
	Reinforcement Learning (RL)
	Vehicle Routing & Product Delivery
	Markov Decision Processes
	MDP Theory
	A Grid Example
	A Grid Example
	A Grid Example
	A Grid Example
	A Grid Example
	A Grid Example
	A Grid Example
	A Grid Example
	A Grid Example
	Stochastic Case
	Q-Learning
	Q-Learning
	A Grid Example
	A Grid Example
	A Grid Example
	Exploration-Exploitation Dilemma
	Solutions to the Dilemma
	The Curse of Dimensionality
	Solutions to the Curse
	Function Approximation
	Tabular Linear Function Approximation
	Tabular linear function approximation vs. table-based
	Hierarchical Reinforcement Learning
	Resource Gathering Domain
	MAXQ Task Hierarchy
	Value Function Decomposition
	Choosing Actions
	MAXQ-Q Learning
	How does the hierarchy help?
	Single Hierarchical Agent (effector)
	Simple Multi-Effector Setup
	Multiple Agents with Shared Hierarchy (MASH)
	Resource Gathering Results �(Model-based Average-Reward RL)
	 Approximate Policy Iteration�(Fern, Yoon and Givan)
	Approximate Policy Iteration�(Fern, Yoon and Givan, 2003)
	Computing p’ Trajectories from p
	Computing p’ Trajectories from p
	Computing p’ Trajectories from p
	Computing p’ Trajectories from p
	Random Walk Bootstrapping
	Experimental Results
	Domains with Good Policies
	Domains without Good Policies
	 Conclusions
	Current Research

