
Bayesian Policy Search for Multi-Agent Role Discovery

Aaron Wilson and Alan Fern and Prasad Tadepalli
School of EECS, Oregon State University

Abstract

Bayesian inference is an appealing approach for leveraging
prior knowledge in reinforcement learning (RL). In this paper
we describe an algorithm for discovering different classes of
roles for agents via Bayesian inference. In particular, we de-
velop a Bayesian policy search approach for Multi-Agent RL
(MARL), which is model-free and allows for priors on policy
parameters. We present a novel optimization algorithm based
on hybrid MCMC, which leverages both the prior and gradi-
ent information estimated from trajectories. Our experiments
in a complex real-time strategy game demonstrate the effec-
tive discovery of roles from supervised trajectories, the use of
discovered roles for successful transfer to similar tasks, and
the discovery of roles through reinforcement learning.

Introduction
In most real-world domains, there are multiple agents or
agents that play different roles in jointly accomplishing a
task. For example, in a military battle, a tank might engage
the enemies on the ground while an attack aircraft provides
the air cover. In a typical hospital, there are well-delineated
roles for the receptionists, nurses, and the doctors. In this
paper, we consider the general problem of discovering the
roles of different agents and transferring that knowledge to
accelerate learning in new tasks.

We approach the role learning problem in a Bayesian way.
In particular, we specify a non-parametric Bayesian prior
(based on the Dirichlet Process (DP)) over multi-agent poli-
cies that is factored according to an underlying set of roles.
We then apply policy search using this prior. Drawing on
work by (Hoffman et al. 2007), our approach to the policy
search problem is to reduce policy optimization to Bayesian
inference by specifying a probability distribution propor-
tional to the expected return which is then searched using
stochastic simulation. This approach is able to leverage both
prior information about the policy structure and interactions
with the task environment. We define such a distribution for
our multi-agent task, and show how to sample role-based
policies from it. Thus, our work can be viewed as an in-
stance of Bayesian RL, where priors are learned and speci-
fied on multi-agent role-based policies.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Previous work on Bayesian RL has considered priors on
the domain dynamics in model-based RL (Dearden, Fried-
man, and Andre 1999; Strens 2000; Poupart et al. 2006; Wil-
son et al. 2007) and priors on expected returns, action-value
functions, and policy gradients in model-free RL (Dearden,
Friedman, and Russell 1998; Engel, Mannor, and Meir 2005;
Ghavamzadeh and Engel 2007). Our work is contrasted with
these past efforts by being both model-free and by placing
priors directly on the policy parameters. In our role-based
learning formulation, this kind of policy prior is more nat-
ural, more readily available from humans, and is easily gen-
eralizable from experience in related tasks.

The Bayesian approach allows us to address a variety of
role learning problems in a unified fashion. First, we demon-
strate learning roles in the supervised setting where exam-
ples of optimal trajectories are provided by an expert. We
then show that priors learned in one task can be transferred
via Bayesian RL to a related task. Finally we show that roles
can be discovered along with policies through Bayesian RL.
All of our experiments are done in the real-time strategy
(RTS) game of Wargus, focusing on tactical battle problems
between groups of friendly and enemy agents.

In summary, the key contributions of this paper are as
follows: 1) Introducing a novel non-parametric Bayesian
model over role-based multi-agent policies based on the
Dirichlet process, 2) Introducing a novel model-free
Bayesian RL algorithm that can accept priors over policy
parameters, 3) An evaluation of the approach in the real-
time strategy game of Wargus, showing its effectiveness for
supervised learning, transfer, and pure RL.

Problem Formulation
Multi-Agent MDPs. A Markov decision process (MDP) is
a 4-tuple(S, A,R, T ), whereS is a set of states,A is the ac-
tion space,R(s, a) is the immediate reward of executing ac-
tion a in states, and the transition functionT (s, a, s′) is the
probability of reaching states′ given that actiona is taken
in states. A policy π is a stochastic mapping fromS to A.
Every policyπ executed from a starting state incurs a reward
sequence. In this paper, we will assume that all policy exe-
cutions reach a terminal state and the goal is to find a policy
that maximizes the total expected episodic reward.

Here we consider a special class of MDPs, multi-agent
MDPs (MMDPs), which model the problem of central con-



trol of a set of cooperative agents. An MMDP is simply a
standard MDP where the action space and rewards are fac-
tored according to a set ofm agents. In particular, the action
spaceA is the product spaceA1 × . . . × Am, whereAj

is the action set of thejth agent. The reward functionR
is similarly defined as the sum of individual agent rewards
R(s, a) =

∑
i Ri(s, ai), whereRi(s, ai) is the reward re-

ceived by agenti for taking actionai in states. The pri-
mary complicating factor of solving MMDPs compared to
standard MDPs is that the action space is exponential in the
number of agents. This means that the desired policyπ is a
probabilistic mapping from states to an exponentially large
joint action space. The key questions are how to compactly
represent such policies and learn them from experience.

Pseudo-Independent Policies.In general, large multi-
agent domains like Wargus may require arbitrary coordina-
tion between agents. Unfortunately representing and learn-
ing coordination of this kind is computationally prohibitive
for anything but very small problems. To alleviate the com-
putational burden we focus on learning a restricted class of
joint agent policies, which in practice are often sufficient to
achieve good performance. In particular, we use a pseudo-
independent multi-agent policy representation where agents
are assumed to be ordered and the decisions of agents at
each time step are made in sequence, with later agents be-
ing allowed to condition on the decisions of previous agents.
More formally, under our representation the probability of
selecting joint actionA = (a1, . . . , am) in states is,

P (A|s) =
∏
u

Pu(au|s,A1,u−1), (1)

which is a product over individual agent policiesPu, where
the policy for agentu conditions on the states and the
actions of previous agents in the ordering represented by
A1,u−1. This pseudo-independent representation allows for
efficient representation and evaluation of a policy, at the ex-
pense of some expressive power in coordination structure.

Due to the large state and action spaces it is not possi-
ble to represent each agent policyPu explicitly. Thus, we
use a common parametric log-linear representation. For this
purpose, we assume the availability of a feature function
g(s, au, A1,u−1) that returns a vector of numeric features for
a states, agent actionau, and the actions of previously or-
dered agents. Given this feature function, each agent policy
is represented via the following Boltzmann distribution,

Pu(au|s,A1,u−1) =
exp(θu · g(s, au, A1,u−1))∑
a′u

exp(θu · g(s, a′u, A1,u−1))
,

(2)
whereθu is the parameter vector for agentu. The parameters
θ = (θ1, . . . , θm) define a joint policy over agent actions.

Role-Based Parameter Sharing.In general, a pseudo-
independent policy can specify different policy parameters
for each agent. However, doing so does not exploit the
fact that agents can often be divided into a small number
of possible roles, where agents of the same role have iden-
tical policies. For example, in Wargus roles arise naturally
because the agents, or units, have different characteristics
which determine their suitability to particular tasks (e.g. the

agents speed, range, durability, and power of their attack).
We can capture such role structure by specifying the fol-
lowing: 1) the number of possible roles, 2) a set of policy
parametersθc for each rolec, 3) for each agentu a role as-
signmentcu, and 4) a means of assigning agents to roles
dependent on agent featuresfu (speed,location,etc.). Given
this information the joint policy assigns all agents to roles
and then agents execute their assigned policies, with para-
metersθ = (θc1 , . . . , θcm), pseudo-independently. The ad-
vantage of this representation is the sharing of parameters
when agents belong to the same role. In particular, agents
assigned to rolec can benefit from the experiences of all
other agents in the same role when learning the parameters
θc. In practice a designer may not know the best role struc-
ture for a domain, the number of roles that should exist, or
how to assign agents to roles. This motivates our goal of au-
tomatically learning and exploiting a prior over the number
of roles, the role parameters, and the assignment of roles.

Bayesian Policy Search
Background. We formulate the MMDP learning problem as
Bayesian policy search. In particular, we assume the avail-
ability of a prior distributionP (θ) over policy parameters,
which might be learned from related problems or provided
by a human. In the next section we will specify a partic-
ular form for this prior that captures uncertainty about the
number and types of roles suitable for a given domain. Here
we describe a novel model-free Bayesian policy-search al-
gorithm that can exploit priors in order to speed up learning.

Our work builds on (Hoffman et al. 2007) which uses
prior information on the policy parameters in a model based
RL setting. Central to this work is the construction of an ar-
tificial distribution, proportional to a utility term and a prior
on the policy parameters influencing the utility,

q(θ) ∝ U(θ)P (θ) = P (θ)
∫

R(ξ)P (ξ|θ)dξ. (3)

In the RL settingξ corresponds to finite length trajectories
from initial states to terminal states. The conditional distrib-
utionP (ξ|θ) is simply the probability that a policy parame-
terized byθ generates trajectoryξ. And the utility is defined
to be the expected returnE(

∑T
t=0 R(st, at)|θ) for the policy

parameters. Importantly, samples drawn from this artificial
distribution focus on policies with high expected return.

Our approach. Given these definitions one can sample
from the augmented distributionq(θ) to search for a policy
maximizing the marginalθ∗ = arg maxθ U(θ)P (θ). Unfor-
tunately sampling fromq is not practical for our problems.
In particular, we do not have access to the domain model
necessary for generating sample trajectories fromP (ξ|θ).
Moreover generating a large number of sample trajectories
based on actual experience is costly. This motivates our
adaptation of this approach to the model-free RL setting.

We elect to sample directly from an estimateÛ(θ)P (θ)
of the target marginal distribution. To evaluate this product
at any pointθ we propose to use a finite sample drawn from
a sequence of policies. To do so we use importance sam-
pling. Importance sampling allows us to evaluate, in off-
policy fashion, the expected return of any policy we wish.



Algorithm 1 Bayesian Policy Search
1: Initialize parameters:θ0, ξ = ∅
2: Generaten trajectories from the domain usingθ0.
3: ξ ← ξ ∪ {ξi}i=1..n

4: S = ∅
5: for t = 1 : T do
6: θt ← Sample(Û(θt−1)P (θt−1))
7: Record the samples:S ← S ∪ (θt)
8: end for
9: Setθ0 = argmax(θt)∈SU(θt)

10: Return to Line 2.

Please see (Shelton 2001) for details on the weighted impor-
tance sampling algorithm used to estimate the expected re-
turn and its gradient in this paper. Intuitively, our agent will
alternate between stages of action and inference. It generates
observed trajectories by acting in the environment according
to its current policy, then performs inference for the optimal
policy parameters given its experience so far, generates new
trajectories given the revised policy parameters, and so on.
An outline of our Bayesian Policy Search (BPS algorithm)
procedure is given in Algorithm 1. The next section details
the prior used in our MMDP setting and the Markov Chain
Monte Carlo (MCMC) algorithm used to generate samples
from Û(θ)P (θ) (Line 6 of the BPS algorithm).

Role Learning with a DP prior
A Role Based Prior. To encode our uncertainty about the
type of roles (what behaviors we expect), the number of
roles, and the assignments of agents to roles we use a modifi-
cation of the Dirichlet Process (DP) prior distribution which
has all the properties we desire. Below we discuss the DP as
a generalization of a standard finite mixture model and the
modifications of the inference process we employ to sample
role based policies.

It is easy to interpret the DP, in the form of an infinite mix-
ture model with concrete assignment variables, in terms of
our role based setting. The DP parameterizes the joint pol-
icy of all agents with a set of role assignmentsc, a set of role
parametersθci , and a set of expert assignment parametersφ.
The DP specifies a distribution over all of these parameters.
Thus, in our case, inference in the DP is a search through all
possible partitions of agents into roles. Though we do not
give a full treatment of the DP in this paper we do specify
how we sample from the standard conditional distributions
used in Gibbs sampling algorithms for the DP (Neal 2000).

With the DP in hand we can define our own artificial prob-
ability distribution,

q(θ, c, φ) ∝ [Û(θ)][
∏
j

G0(θj)]P (c|φ), (4)

which decomposes into the estimated expected returnÛ(θ),
and the prior distributionP (θ, c) = [

∏
j G0(θj)]P (c|φ).

The prior further decomposes into two parts. The first factor
is the prior over role parameters,G0(θj), encoding our un-
certainty about where we expect to find good solutions in the
role parameter space. For our experiments we defineG0 to

Algorithm 2 BPS For Role Based Policies
1: Initialize all parameters:(θ0, c0, φ)
2: Given the inputξ and the initialized parameters generate sam-

ples fromq(θ, c, φ).
3: S = ∅
4: for t = 1 : T do
5: ct ← SampleAssignments(θt−1, ct−1, φt−1)
6: θt ← SampleRoleParameters(θt−1, ct, φt−1)
7: φt ← SampleKernelParameters(θt, ct, φt−1)
8: S ← S ∪ (θt, ct, φt)
9: end for

be a multivariate Gaussian distribution with zero mean and
diagonal covariance. This asserts that a priori we believe the
parameters of each role tend to be close to zero and that we
do not know of correlations within the role parameter vec-
tor. The distributionP (c|φ) captures our uncertainty over
role assignments. It is conditioned on a new set of parame-
tersφ which influence the probability of assigning an agent
to a role as a function of the agents features.

Overview: BPS for Role Based Policies.Algorithm 2
outlined here, is a specialization of line 6 of the BPS algo-
rithm, designed to sample role based policies. At each point
the state of the Markov chain will include a tuple of para-
meters,(θ, c, φ), which we will simulate in turn. The algo-
rithm has three basic parts. First, after initializing the state
of the chain, the new role assignments are sampled placing
each agent into one of the existing components, or (using the
mechanics of the DP) a new component generated fromG0.
The second part of the algorithm updates the role parameters
using Hybrid MCMC (Andrieu et al. 2003). The key to this
portion of the algorithm is the use of log gradients to sim-
ulate samples fromq(θ|c, φ), focusing samples on regions
of the policy space that are promising. Finally, we perform
a simple Metropolis-Hastings update for the vector of ker-
nel parameters. In the following sections we more explicitly
define the implementation.

Sampling Role Assignments.The advantage of work-
ing with DP models is that they give rise to succinct con-
ditional distributions for the assignment variable. The DP
conditional distribution for role assignments is,

P (cu = j|c(−u), α) =
{

n(−u),j
n−1+α

|n(−u),j > 0
α

n−1+α
|otherwise

, (5)

encoding the probability of assigning agentu to rolej given
all the other assignmentsc(−u). Note that the probability
is proportional to the number of agents currently assigned
to role j, n(−u),j , and the DP focus parameterα (n is the
total number of agents). The second term of this distribu-
tion assigns some probability to a role which currently has
no data assigned to it allocating probability to unseen roles.
This distribution can be used naturally to Gibbs sample new
role assignments. Before we describe how this is done we
modify the distribution.

As currently written the distribution depends only on the
proportion of agents already assigned to a component. Ide-
ally this distribution should take into account the similarities
between agents when computing the conditional probability.



To incorporate this idea we modify Equation 5, adapted from
(Rasmussen and Ghahramani 2002), to depend on the agent
features by replacingn−u,j with the value of a parameter-
ized kernel which we define to be,

n−u,j = (n− 1)

∑
u′ 6=u Kφ(fu, fu′)δ(cu′ = j)∑

u′ 6=u Kφ(fu, fu′)
. (6)

Equation 6 determines the weighted sum of distances be-
tween the agent in question and all agents in rolej and di-
vides by the sum of distances betweenu and all other agents.
We choose to use the kernel below which encodes a similar-
ity metric between agent features, and allows the role as-
signment parameters to determine feature relevance,

Kφ(fu, fu′) = exp(−1
2

∑
d

(fu,d − fu′,d)2/φ2
d). (7)

We choose this kernel because it can decide when contex-
tual features are irrelevant, and when differences in innate
features such as ‘range’ strongly influence to which role an
agent belongs. Principally the modified conditional distrib-
ution can substantially bias role assignments when the sys-
tem is confronted with new tasks. This change was crucial
to success in our experiments.

The assignment of agents to roles must be conditioned
on their performance in the selected role. We encode this
dependence in Equation 8. The equation has two primary
factors. The first factor is new and encodes that the prob-
ability of assignment is proportional to the impact the role
parameters have on the expected returnÛ(θ). The second
factor is the prior probability of the role parameters which
we have already discussed. Additionally, due to our mod-
ification, simulation will tend to assign agents with similar
agent featuresfu to the same role.

P (cu = j|c−(u), θ, φ, α) =
{

b
n−(u),j
n−1+α

Û(θ)G0(θj)|n−u,j > 0

b α
n−1+α

Û(θ)G0(θnew)|otherwise
.

(8)
Importantly, we employ an auxiliary role method to allow
for new roles to be automatically generated by the prior.
This means that we always store the set of roles which have
some agents already assigned to them, and in addition store
an auxiliary set of roles with parameters initialized from the
prior G0 as needed. In other words, the first case of Equa-
tion 8 corresponds to the existing roles and the second case
governs the auxiliary roles. The Sample Assignments func-
tion samples a new assignment for each unit in turn exiting
once all units have new assignments. In the next section we
use hybrid MCMC to sample new role parameters.

Sampling Role Parameters.To update the role parame-
ters θ we use Hybrid MCMC. Hybrid MCMC biases new
samples using information about the log gradient of the tar-
get distribution. Doing so helps guide the sampling process
for high dimensional distributions. In our case the target
distribution, given the fixed assignments for all other para-
meters isP (θ|c, φ) ∝ Û(θ)

∏
j G0(θj). So long as we can

compute the log gradient of this function we can use the
hybrid rejection method. The expected return is estimated

using importance sampling, and a treatment of the gradi-
ent we compute for the first term can be found in (Meuleau,
Peshkin, and Kim 2001). The second term is simply the log
gradient of a product of multi-variate normal distributions.
Naturally, this can be computed. With the necessary gradi-
ent information in hand we can make use of Hybrid MCMC
to construct a probing distribution forP (θ|c, φ). Samples
returned from Hybrid MCMC are used to update the state of
θ

Sampling Kernel Parameters. We use Metropolis-
Hastings to update the kernel parameters given the sam-
pled state for(c, θ), using a Gaussian proposal distribu-
tion. Here we use the pseudo-likelihood, proportional to
[Û(θ)][

∏
j G0(θj)][

∏
u P (cu|φ)], to determine acceptance.

Acting in the Environment. After drawing a large sam-
ple using this simulation procedure we wish to select a pol-
icy, a tuple of parameters(θt, ct, φt), to execute in our task.
To do so we select the policy maximizing,

(θ∗, c∗, φ∗) = argmax(θt,ct,φt)∈SU(θt). (9)

The sampled policy is then executed in the domain to gener-
ate new trajectories (Line 2 of the BPS algorithm).

Results
We evaluate our algorithm on problems from the game of
Wargus. RTS games involve controlling multiple agents in
activities such as: resource gathering, building military in-
frastructure/forces, and engaging in tactical battles. We fo-
cus on tactical battles where we must control a set of friendly
agents to destroy a set of enemy buildings and agents con-
trolled by the native Wargus AI.

Decision cycles occur at fixed intervals, where all agents
select an action. The possible actions include attacking any
of the friendly or enemy units, or doing nothing. Attack ac-
tions cause an agent to pursue the selected target and attack
when in range. At the end of each decision cycle the state
is updated and the agents receive rewards, which include a
small reward for damaging a target plus a bonus reward for
killing the target plus a large reward if the team has won
the game (rewards are negative when attacking and killing
friendly units). A game continues until one side is destroyed,
or for a maximum of 100 decision epochs.

Our learning algorithm requires us to provide agent spe-
cific featuresfu to facilitate role assignment. For this pur-
pose, we use as features the basic attributes of agents as de-
scribed in the Wargus configuration file including informa-
tion such as armor strength, speed, and attack range. We
also include features that capture properties of an agent’s
initial state such as distance between agent and enemy tar-
gets, and distance to friendly agents. Thusfu captures both
inherent physical capabilities of an agent as well as con-
textual information in the initial state. Our log-linear pol-
icy representation also requires that we provide a feature
setg(s, au, A1,u−1) that captures properties of the current
states, candidate agent actionau, and other agent actions.
We hand-coded a set of 20 features that capture information
such as whether the range of the target exceeds that of the
agent, whether the target is mobile, and how many agents
are currently attacking the target.



Friendly Enemy
Archers Ballista Knights Towers Ballista Knights

Map 1 4 1 0 2 0 1
Map 2 4 1 1 2 1 1
Map 3 16 1 2 4 2 5
Map 4 7 1 0 2 0 2
Map 5 8 1 1 4 1 2

Table 1: Unit compositions for each map.

We test our algorithm on a variety of Wargus maps with
varying locations and compositions of units. The basic com-
positions of units for each map are shown in Table 1.

Learning from an Expert. An important advantage of
our learning approach is that it naturally benefits from expert
examples. Here we test the ability of our algorithm to dis-
cover the inherent role structure observed in expert play in
Map 1, Map 2, and a much harder map Map 3. In each case,
the algorithm is provided with 40 episodes of observed per-
formance of high-quality (expertly coded) policies, which
were based on natural role structures for each task. To test
the performance of our algorithm we allow BPS to learn a
policy given the expert samples as input. The performance
of the learned policy is then assessed on the target maps.
In all three cases the agents win 100 percent of games af-
ter learning (prior to learning no games are won). We as-
sess how well the discovered roles match those used in the
expert policies by examining the decomposition of units in
the sampled assignment vectorc∗. In each case BPS learns
role structures consistent with the expert policy, including
the appropriate role assignments and role parameters. Two
roles are found for the first map, which correspond to archers
defending the ballista and the ballista attacking the enemy
base. The algorithm discovers that the knight deserves its
own role in map 2 (it is good at killing the enemy ballista).
Likewise, in the difficult third map the sampled policies par-
tition the agents appropriately.

Prior Transfer. Based on the expert demonstrations our
algorithm is able to learn a role structure, role assignment
function, and role parameters. We now evaluate the ability
of BPS to transfer this learned knowledge, in the form of a
prior distribution over parameters(θ, φ), to speedup RL on
new, but related, tasks. In particular, we conduct two ex-
periments. The first uses the posterior distribution learned
from expert demonstrations on Map 1 as a prior for RL in
Map 4. The second experiment is identical but uses the
posterior learned from expert play in Map 2 for RL in Map
5. We compare the transfer performance to three baselines.
The first two baselines (BPS Independent and BPS Single)
represent running the BPS algorithm with an enforced role
structure. In the independent case all agents are forcibly as-
signed to their own component and in the single case all
agents share the same policy. In principle BPS with the
independent role structure can learn the correct policy and
this fixed assumption may be beneficial if the role structure
is unimportant. Similarly, if a single role will suffice, then
BPS run with all agents assigned to a single policy will be
optimal. Because the Independent and Single baselines can-
not make use of the role structure they cannot benefit from
transfer. Instead they must learn their policies from scratch.
Furthermore, we compare our performance to OLPOMDP
where agents independently learn their own policies (Baxter,

Bartlett, and Weaver 2001). In principle OLPOMDP should
be able to find a locally optimal policy.

The results for the first experiment are shown in
Figure1(a). The curve (BPS:Expert Map 1) illustrates the
advantages of transfer using the prior distribution learned
from expert samples on Map 1. The graph shows the aver-
age reward per episode for the learned policy as a function of
the amount of experience (number of episodes) used to learn
the policy. The algorithm benefits substantially from the im-
proved prior distribution as it focuses samples on policies
with good role structures. We see similar results for the more
complex Map 5 illustrated by the curve (BPS:Expert Map 2)
in Figure1(b). In this case a larger number of roles needs
to be correctly mapped to new agents making the problem
substantially more difficult when roles are not transferred.
Our learning algorithm, with the improved prior distribu-
tion, substantially outperforms the baselines. It is worth
noting the performance of BPS Single in Figure1(b). On
this map the baseline has discovered a simple but subopti-
mal policy accumulating a small amount of reward by send-
ing all agents to attack a tower. This results in damaging
the tower, but insures that all friendly units will die. The
restricted policy representation, coupled with the large num-
ber of friendly agents, helps this baseline find this subopti-
mal policy quickly. The baselines were unable to find the
optimal policy before we terminated the experiments.

Autonomous Role Discovery. Learning in both of the
test maps becomes much more difficult when examples of
expert play are not provided. This can be seen by the poor
performance of the baselines, which cannot benefit from
prior role knowledge. Here we consider whether our algo-
rithm is able to start from an uninformative prior and au-
tonomously learn the role structure during the actual RL
process, and benefit from that structure as it is being learned.
The BPS curve in Figure 1(c) shows results of our agent
with an uninformed prior. Given the less informed prior
many more episodes are required before an optimal policy
is found. This is a substantial benefit over the baseline al-
gorithms which do not win games. This shows that learning
the role structure during the actual RL process can speed up
RL even when the initial prior is uninformative. The pri-
mary reason for this is that experience between agents of the
same role is shared leading to faster learning of role poli-
cies once good role assignments are discovered. Qualita-
tively the algorithm did find distinct and natural roles for
the archers and ballista. Results on Map 5 are not good for
any of the non-transfer algorithms. We conjecture that it
would require any RL agent without significant prior knowl-
edge a very long time to discover a winning policy. In fact,
when run with a random policy no win was recorded after
500 games. As shown in Figure 1(d) BPS without transfer
performs no better than the baselines on this problem. How-
ever, as illustrated above, BPS can successfully make use of
learned priors to significantly speed learning in new tasks.
Thus, we first allow BPS to learn a useful role structure in
Map 1 and then make use of the learned prior distribution in
Map 5. The results are shown in Figure 1(d), BPS:BPS Map
1; the prior learned in the simpler problem make the harder
problem tractable. It is a substantial advantage of the BPS



Figure 1: Results for Map 4 and Map 5. Top row: Results of RL after learning prior from expert examples. Bottom row:
Learning roles using RL. Each graph shows the average total reward per episode (average over 20 runs).

algorithm that it can naturally leverage experience in simple
tasks to learn quickly in hard tasks.

Conclusion
We have introduced a Bayesian Policy Search algorithm
for the model-free multi-agent RL problem. Our approach,
based on stochastic simulation methods, uses a prior dis-
tribution on the policy parameters and gradient informa-
tion to improve the speed of learning. The resulting simple
framework was demonstrated to effectively learn multiple
roles from supervised optimal trajectories. Furthermore, we
demonstrated that learned roles can be successfully trans-
ferred to similar tasks. The framework was also used suc-
cessfully in the RL setting to autonomously discover new
roles that were useful for a task and learn how to map agents
to those roles based on their observable properties.

Acknowledgements. We gratefully acknowledge the support of
the Army Research Office under grant W911NF-09-1-0153.

References
Andrieu, C.; de Freitas, N.; Doucet, A.; and Jordan, M. I. 2003. An
introduction to MCMC for machine learning.Machine Learning
50(1):5–43.

Baxter, J.; Bartlett, P. L.; and Weaver, L. 2001. Experiments with
infinite-horizon, policy-gradient estimation.Journal of Artificial
Intelligence Research15(1):351–381.

Dearden, R.; Friedman, N.; and Andre, D. 1999. Model based
Bayesian exploration. InUAI.

Dearden, R.; Friedman, N.; and Russell, S. 1998. Bayesian Q-
learning. InAAAI.

Engel, Y.; Mannor, S.; and Meir, R. 2005. Reinforcement learning
with Gaussian processes. InInternational Conference on Machine
Learning, 201–208.

Ghavamzadeh, M., and Engel, Y. 2007. Bayesian policy gradient
algorithms. InNIPS.

Hoffman, M.; Doucet, A.; de Freitas, N.; and Jasra, A. 2007.
Bayesian policy learning with trans-dimensional MCMC.NIPS.

Meuleau, N.; Peshkin, L.; and Kim, K.-E. 2001. Exploration in
gradient-based reinforcement learning.Technical Report.

Neal, R. M. 2000. Markov chain sampling methods for Dirichlet
process mixture models.Journal of Computational and Graphical
Statistics9(2):249–265.

Poupart, P.; Vlassis, N.; Hoey, J.; and Regan, K. 2006. An analytic
solution to discrete Bayesian reinforcement learning. InICML.

Rasmussen, C. E., and Ghahramani, Z. 2002. Infinite mixtures of
Gaussian process experts. InNIPS, 881–888.

Shelton, C. R. 2001. Importance Sampling for Reinforcement
Learning with Multiple Objectives. Ph.D. Dissertation, MIT.

Strens, M. J. A. 2000. A Bayesian framework for reinforcement
learning. InInternational Conference on Machine Learning, 943–
950.

Wilson, A.; Fern, A.; Ray, S.; and Tadepalli, P. 2007. Multi-
task reinforcement learning: a hierarchical Bayesian approach. In
ICML.


