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1 IntroductionPrior knowledge or bias [Mitchell, 1980] regarding a concept can sometimes dramaticallyreduce the number of examples needed to learn it. One common form of bias is syntacticconstraints on the concept description language. For example, if a learner knows that theconcept being learned is describable by a purely conjunctive boolean expression, a specialtechnique for inducing such expressions can be used to expedite the learning. There havebeen many successful attempts at quantifying syntactic bias, such as [Haussler, 1988]. Theseapproaches are based on a mathematical model of concept learning called Probably Ap-proximately Correct (PAC) learning introduced by Valiant [Valiant, 1984]. For a detailedintroduction to the model, see [Natarajan, 1991].However, humans, and indeed some machine learning systems, draw their power not onlyfrom syntactic bias, but also from knowing something about the content of the particularconcept being learned. For example, a human learning to play a new game often uses hisgeneral knowledge of competitive games to accelerate learning. Similarly, machine learningprograms like FOCL rely on a \domain theory" to expedite learning new knowledge [Pazzani,1992]. In other words, these systems exploit a \semantic bias" in addition to a syntacticbias.Quantifying semantic bias or prior knowledge is an important problem in arti�cial intel-ligence (AI). In a recent introductory book on AI [Rich and Knight, 1991], after discussingValiant's model of PAC learning, the authors of the book note (pages 482-483):After all, people are able to solve many exponentially hard problems by usingknowledge to constrain the space of possible solutions. Perhaps mathematicaltheory will one day be used to quantify the use of such knowledge, but thisprospect seems far o�.In this paper we show that the authors' pessimism is somewhat unwarranted, and thatsemantic bias can be quanti�ed using essentially the same PAC learning framework used toanalyze syntactic bias. To our knowledge, the work described here { which was �rst reportedin [Mahadevan and Tadepalli, 1988] { represents one of the �rst attempts to analyze semanticbias using PAC learning. Russell's work on \tree-structured bias" is another early exampleof such an analysis [Russell, 1988].PAC learning is based on a paradigm wherein a teacher provides a learner with examplesof a target function from an initially agreed upon space of possible functions. This space canbe viewed as representing the syntactic bias of the learner. Examples are selected randomlyaccording to a �xed but arbitrary probability distribution unknown to the learner. Thetask of the learner is to �nd with high probability a function that is a good approximationof the target function { hence the name \Probably Approximately Correct" learning. Thelearner prunes the function space by eliminating functions that are inconsistent with theexamples. Learning is complete when the only functions that remain unpruned are withhigh probability good approximations of the target function. The more restricted the initialspace of functions that contains the target function, the fewer the functions that have to bepruned to learn it, and hence, the fewer the examples needed to do the pruning. In general,2



the number of examples needed to learn an arbitrary function in a function space increasesmonotonically with the number of functions in the function space.In order to obtain broadly applicable results, any attempt to quantify semantic biasshould be insensitive to particular ways of representing the prior knowledge. The key ob-servation behind this paper is that such an analysis can be achieved by modeling knowledgeabstractly as a space of functions of which the target function is a member. We therebygeneralize the notion of function space in PAC learning to the set of functions consistentwith all prior knowledge { both syntactic and semantic.Our results are based on the central results in PAC learning that imply that the numberof examples needed for robust learning increase with some measure of the complexity ofthe function space. Since a reliable learning algorithm has to learn any and all functionsconsistent with its prior knowledge, our negative results, which are based on the size of thefunction space, are hard lower bounds.1 They imply that certain kinds of prior knowledgeare not strong enough to make a learner converge after seeing a reasonably small number ofexamples, whatever form that knowledge is represented in. In contrast, our positive resultsare constructive in that they are accompanied by polynomial-time learning algorithms.An analysis of the e�ect of a particular piece of domain knowledge on learning may not beuseful in other domains. Hence, we analyze the usefulness of general forms of knowledge in adomain-independent way. In particular, this paper presents an analysis of determinations, ageneral form of relevance knowledge. Relevance knowledge consists of information about thedependence among di�erent features. A feature P is relevant to another feature Q if the factthat P holds for some object a�ects whether Q also holds for that object. Determinationswere originally proposed by Davies and Russell [Davies and Russell, 1987, Russell, 1986,Russell, 1989] in the context of analogical reasoning. An example of a determination is theprior knowledge that \nationality" determines \language", that is, individuals of the samenationality speak the same language. This particular form of determination can be weakenedin several ways. For example, another form of determination allows for individuals with thesame nationality to speak di�erent languages, as long as they share a common language. Yetanother form allows for a small number of \exceptional" individuals who may not speak anycommon language, and so on.We analyze each of these forms of determinations. In particular, for each type of deter-mination, we study its e�ect on learning a function by comparing the number of examplesrequired in the absence and presence of the determination. Several interesting facts emergefrom the analysis. Minor changes in the de�nition of a determination can result in dramat-ically di�erent learnability properties. This allows the various determinations to be rankedaccording to their e�ect on the learning process. Furthermore, apparently dissimilar deter-minations are actually quite similar in terms of their e�ect on learning.We believe our theoretical results have direct relevance to implementors of practicalknowledge-based learning systems. For example, Explanation-Based Learning (EBL) is aknowledge-intensive learning technique that relies on its ability to classify an instance usinga theory of the domain [Mitchell et al., 1986, Dejong and Mooney, 1986]. One of the open1Negative results using the PAC learning model should be interpreted as \worst-case" theorems similarto the NP-completeness results in computational complexity theory.3



problems in EBL arises when the domain theory is not adequate to classify every instance[Mitchell et al., 1986]. Most approaches to this \incomplete theory problem" are based onusing pre-classi�ed training examples to expose and �ll in missing parts of the domain theory[Hirsh, 1989, Hall, 1988, Mahadevan, 1989, Danyluk, 1989]. For example, one approachinvolves using determinations to represent gaps in the domain theory, which are �lled byextracting implicative rules from the determinations [Russell, 1987, Mahadevan, 1989]. APAC analysis can be used to determine whether the gaps in a domain theory are \small"enough so that they can be �lled with a reasonably small number of examples.The rest of this paper is organized as follows. Section 2 informally explains our approachto quantifying semantic bias. Section 3 describes the PAC learning framework. The mainresults on learnability of function spaces in the presence of the various determinations aregiven in Section 4. Section 5 discusses some implications of our formal results. Section 6summarizes the main results of the paper.2 Informal Overview of the ApproachIn this section we informally characterize our approach to quantifying semantic bias. Supposean intelligent agent is faced with the task of learning from examples some unknown function,such as a mapping from individuals to languages. Each example describes an individual usinga set of attributes such as his or her height, weight, nationality, place of employment etc., andalso lists his or her language. Any information the learner has about the unknown functionbefore seeing the examples is its \prior knowledge." Although prior knowledge can also takethe form of a \simplicity" preference ordering on the functions in the function space, in thispaper we restrict ourselves to prior knowledge which constrains the set of allowed functionsto a subset of all possible functions. In the absence of any such prior knowledge about thetarget function, the agent can do no better than storing each example. This rote learningstrategy becomes prohibitive if the number of individuals (more precisely, the number ofpossible descriptions of individuals) is very large.On the other hand, suppose the agent has prior knowledge in the form of a determinationthat any two people of the same nationality speak the same language. Given this piece ofknowledge, the initial learning problem is now reduced to one of learning a function thatmaps nationalities to languages. If there are very few nationalities compared to the numberof people, which happens to be true of our world, the learning problem is now a much simplerone. In particular, the agent can justi�ably generalize from a single example: once it knowsthe language spoken by some individual of a given nationality, it can form a general rulestating that every individual of that nationality speaks this language.Pursuing the nationality example further, we note that even with the prior knowledge,the learning problem is not trivial since there may be many functions that are consistent withthe knowledge. For example, the function that assigns all Americans the English language,the function that assigns all Americans the Spanish language etc., are all consistent with theprior knowledge. Generally, prior knowledge will de�ne a space of functions, and exampleshelp re�ne the space of functions to the one target function that the learner is supposed toacquire. 4



Generalizing from the above example, Figure 1 illustrates the relation between the amountof prior knowledge available and the size of the function space. Given no knowledge, thespace of possible functions is large, and learning requires too many examples. When someknowledge is available about the function being learned, the space is reduced since all func-tions that are inconsistent with the given knowledge are eliminated.
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Figure 1: Reducing a function space using prior knowledgeLeaving the formal details to future sections, it will be useful here to brie
y outlinethe form of our analysis. Given a particular determination, we estimate the size of thefunction space consistent with the determination. The main result in PAC learning that weuse is the dimensionality theorem, which relates the number of training examples neededfor successful learning to the size of the function space [Blumer et al., 1989, Natarajan,1989]. Informally, this theorem says that the number of examples su�cient for successfullearning varies logarithmically with the asymptotic size of the function space. We apply thedimensionality theorem to the reduced function space consistent with the prior knowledgeand determine bounds on the number of examples needed to learn functions in that space.If this bound is too high, that is, exponential in the problem parameters, then it is notfeasible to learn that space. If this bound is reasonable, that is, polynomial in the problemparameters, then we conclude that it is feasible to learn this function space.A practical learning technique not only needs to converge with a reasonable number ofexamples, but also needs to be computationally e�cient. While prior knowledge will alwaysreduce the number of examples su�cient for learning, it might sometimes increase the timecomplexity of searching for a function consistent with it [Haussler, 1988]. In those cases, itmay be appropriate to ignore some prior knowledge and consider a bigger function space thanis necessary, thus requiring a few more examples while gaining computational tractability.For each of our function spaces that can be learned with a reasonable number of examples,we isolate conditions under which they are learnable in reasonable time, and describe e�cient(polynomial-time) learning algorithms for them.5



3 The PAC Learning ModelIn this section we give a brief overview of the relevant formal results from PAC learning.In particular, we will use a generalization of Valiant's original model to function learningstudied by Natarajan [Natarajan, 1989, Natarajan, 1991].3.1 PreliminariesSince any domain/range element of a function can be encoded as a binary string, withoutloss of generality we consider learning functions from binary strings to binary strings. Anexample of a function f is a pair (x; f(x)). We assume a routine EXAMPLE, which outputsan example of a function f according to some �xed, but unknown, probability distributionP . In other words, the probability of a particular example (x; f(x)) being generated by acall of EXAMPLE is P (x).In the following, we denote the length, or the number of signi�cant bits of string x byjxj. We let Pn refer to the set of strings of length n and P� to the set of strings of arbitrarylength. We let Trim(w;n) denote the n-length pre�x of string w 2 P�.De�nition 1 A space of functions F is a set of functions from P� to P�.The following de�nition limits the functions being considered to those whose output isat most a polynomial in the size of their input.De�nition 2 If k(n) is a �xed polynomial function, called the scale-up function, the nth-subspace Fn of F = ff1; . . . ; fi; . . .g is fg1; . . . ; gi; . . .g where each gi : Pn ! Pk(n) is suchthat gi(Trim(w;n)) = Trim(fi(w); k(n)) if all w 2 P� with the same n-length pre�x aremapped by fi to strings with the same k(n)-length pre�x, and unde�ned otherwise.A simple example will help illustrate these de�nitions. Assume that the task is to learnboolean functions. The function space B is the set of all possible boolean functions whichoutput a single bit. The nth-subspace Bn is a restriction of B to functions over input bitstrings of length n. Note that Bn has 22n functions.3.2 PAC LearningWe now formally describe the PAC learning model. For convenience, we distinguish learn-ing that converges with reasonable (polynomial) number of examples, which we call fea-sible learnability, from learning that also bounds the computational time, which we callpolynomial-time learnability.De�nition 3 A space of functions F is feasibly learnable if there exists an algorithm Athat, given an error parameter �, a con�dence parameter �, and the problem size n,(i) makes calls to EXAMPLE, whose number is polynomial in n, 1� , and 1� , and6



(ii) for all functions f in Fn and all probability distributions Pr, with probability at least1� � outputs a function g such that, Xx2S Pr(x) � �where S = fx j x 2 Pn and f(x) 6= g(x)g:We make no assumptions on the representation of g other than that there exists a polynomialtime algorithm that, given g and x, outputs g(x).Under the above conditions, A is called a learning algorithm for F .The parameter � speci�es the error of the function g when compared to the real functionf the learner is trying to approximate. The error is measured by the probability that f and gdi�er on some example chosen randomly using the same distribution P that was used duringthe learning. Since the approximation is obtained using randomly chosen training examples,they might sometimes be unrepresentative, in which case the approximation learned fromthem may not be su�ciently accurate on representative test examples. A learning algorithmmust ensure that the probability of this event is lower than the con�dence parameter �.Note that we do not require the output function g to be in Fn. In other words, we allow thelearner to output a function which violates the prior knowledge, as long as it approximatelyagrees with the target function with a high probability on the training distribution. Theadvantage of this de�nition is that it avoids the problem of having to check that g is consistentwith the prior knowledge, which could sometimes be computationally complex [Haussler etal., 1988, Pitt and Valiant, 1988]. This de�nition of learnability is also called \predictability"in PAC learning literature [Haussler et al., 1988, Natarajan, 1991].To study the time requirements of learning, we need to assume a representation or indexfor the functions. Since each function may have multiple names, the index maps functionsto sets of binary strings.De�nition 4 An index of the function space F is a function I : F ! 2�� , such that8f; g 2 F , if f 6= g; I(f)T I(g) = fg:De�nition 5 A function class is said to be polynomial-time learnable if there is a learn-ing algorithm that runs in time polynomial in n, the length of the shortest index of the targetfunction f 2 Fn, 1� and 1� .3.3 Identi�cation and DimensionalityThe following additional de�nitions are needed to state the main theorems from learnabilitytheory.De�nition 6 A function f is consistent with a set of examples S if (x; y) 2 S ) f(x) = y.Typically, learning algorithms work by guessing a function which is consistent with allthe input examples. Following [Rivest, 1987] we call such an algorithm an identi�cation.Formally, 7



De�nition 7 An identi�cation O of a space of functions F is an algorithm that takes asinput an integer n and a set of examples S = f(xi; yi)g, where each xi is of length at mostn, and produces an output function f 2 F that is consistent with S, if such exists. If Oruns in time polynomial in the length of its input and the length of the shortest index of thefunctions consistent with S, we say that F is polynomial-time identi�able.An identi�cation for the boolean function space B will take as input many examples ofthe form (xi; yi), where xi is a bit string of length n and yi is 0 or 1, and outputs the followingfunction f . f outputs a 1 for any input string xi in the example set such that yi = 1, andoutputs a 0 on all other inputs. f can be represented simply by the set of positive instances,that is, examples for which the output is a 1. Since f can be produced in time polynomialin the number of examples, B is polynomial-time identi�able.We now introduce Natarajan's notion of \dimension," a measure of the size of a functionspace [Natarajan, 1989]. The relationship of Natarajan's dimension to the more popularVapnik-Chervonenkis dimension [Blumer et al., 1989] is discussed in [Natarajan, 1989].De�nition 8 The dimension of Fn, the nth subspace of F , is log2 jFnj.De�nition 9 A space of functions F is of dimension D(n) if, for all n, the dimension ofFn (the nth subspace of F ) is D(n). If there is a polynomial p(n) such that D(n) � p(n) forall n, F is said to be of polynomial dimension.To calculate the dimension of the function space B in our boolean function exampleabove, we note that there are 22n possible functions in Bn. Thus, the dimension of thefunction space B is D(n) = 2n. Now consider a subspace B 0 of B in which every booleanfunction maps exactly one input string to 1, and the rest to 0. It is easy to see that thereare only 2n functions in B 0n, one function for each input string. The dimension of this newfunction space B 0 is the polynomial D(n) = n.3.4 Learnability TheoremsThe main results we will be using from the theory of PAC learnability can now be stated[Natarajan, 1989].Theorem 1 (Natarajan) A space of functions F is feasibly learnable if and only if it is ofpolynomial dimension.Theorem 2 (Natarajan) A space of functions is polynomial-time learnable if it is of poly-nomial dimension and is polynomial-time identi�able.Taking our boolean function example once again, since the dimension of the functionspace B is exponential, it is not feasibly learnable. But if the learner has the additionalknowledge that the target function maps exactly one input string to 1 and the rest to 0, wecan simply focus on the reduced function space B 0, which has a polynomial dimension, andfeasibly learn it. B 0 is also polynomial-time learnable because the same identi�cation that8



we discussed before for B would work for B 0 as well, and runs in time polynomial in thelength of its input. This example clearly illustrates how a single piece of knowledge, suchas the existence of a single positive instance for the target function, can make a dramaticdi�erence to the learnability of the function space.The following theorem allows us to estimate the exact number of examples su�cient tolearn a function given the dimensionality of the space containing it.Theorem 3 (Natarajan) If DimF (n) is the dimension of a function space F , then anyalgorithm which collects and identi�es a set of examples of size 1� (DimF (n) ln 2 + lne(1� )) isa learning algorithm of F .The proof for the above theorem follows a similar result for concept learning given in[Blumer et al., 1989] or [Natarajan, 1987].4 Learnability ResultsThis section describes the main results of this paper on quantifying relevance knowledgede�ned by various determinations.4.1 DeterminationsDeterminations are intended as a formalization of the notion of relevance. Intuitively, an at-tribute P is relevant to an attribute Q if the fact that P holds for some object a�ects whetherQ holds of that object. For example, the fact that the attribute American-Nationality holdsfor a certain individual a�ects whether the attribute Speaks-English holds true for him orher. On the other hand, we feel reasonably certain that the Height attribute will not similarlya�ect the Speaks-English attribute.The simplest type of determinations are called total determinations. Russell introduced�ve types of total determination in his thesis [Russell, 1986]. The �rst of these is de�ned asfollows:De�nition 10 Let P (x; y) and Q(x; z) be any two �rst-order sentences, where x representsthe set of variables that occur free in both P and Q, while y and z represent the set of freevariables that occur only in P and Q, respectively. We say P (x; y) � Q(x; z) i�8w; x[[9yP (w; y)^ P (x; y)]) 8z[Q(w; z), Q(x; z)]]An example (which we will use as a running example throughout this paper) will helpclarify the above de�nition. Let P (x; y) denote the predicateNationality(x; y), which meansthat the individual x has nationality y. Also letQ(x; z) denote the predicate Language(x; z),which means that x speaks language z. Then, the above total determination states that ifthere exist two individuals x and w who share a nationality y, then x and w will speak thesame set of languages. 9



Determinations can be viewed as a form of incomplete knowledge [Russell, 1987]. Forexample, from Nationality(x; y)� Language(x; z)and Nationality(John;US)^ Language(John;English)it follows that 8xNationality(x;US)) Language(x;English)However, just knowing that nationality determines language is not su�cient to compute anindividual's language from his nationality. Examples are required to �ll in this knowledge,and thus they are a source of new information (unlike the situation in EBL where examplesare a logical consequence of the domain theory [Mitchell et al., 1986]). In general, fromP (x; y) � Q(x; z) and P (A;B) ^Q(A;C), the implication 8xP (x;B)! Q(x;C) follows.4.2 Function Space Consistent with a DeterminationLet P (x; y) and Q(x; z) be any two �rst-order formulas speci�ed as part of a determinationP (x; y) � Q(x; z), where, as before, x represents the set of free variables appearing in both Pand Q, and y and z represent the set of free variables appearing only in P and Q, respectively.For some sets I, N , and L, let P � I � N and Q � N � L denote the extensions of thepredicates P and Q respectively. Therefore, the variables x range over I, the variables yrange over N , and the variables z range over L. In terms of the nationality example, I isthe set of individuals, N is the set of nationalities, and L is the set of languages.We denote the set fy j P (x; y)g by Px, and the set fy j Q(x; y)g byQx. The task is to learnto predictQx, given x and Px. We view this as learning a function fromD = fhx; Pxi : x 2 Igto 2L. Let F denote the set of all such functions fP;Q : D ! 2L for a given P. The trainingexamples consist of the input-output pairs (hx; Pxi; Qx).Any particular relations P and Q uniquely de�ne a function fP;Q 2 F such that, for allx 2 I; fP;Q(hx; Pxi) = Qx. A determination P (x; y) � Q(x; z) can be viewed as a constrainton the relations P and Q. With every determination P (x; y) � Q(x; z), we can associate aspace of functions F� = ffP;Qg � F , de�ned by all particular relations P and Q satisfyingthat determination. We call it the space of functions consistent with or de�ned by thatdetermination. Formally, F� = ffP;Q : P (x; y) � Q(x; z)g:An example will help clarify the above de�nitions. Consider the determinationNationality(x; y) � Language(x; z). Let I = fGiuseppe, John, Lisa, Isabella, Mami g, N= fItaly, US, Japan g, and L = fItalian, English, Japanese g. Further, let P = f(Giuseppe,Italy), (John, US), (Lisa, US), (Isabella, Italy), (Mami, Japan)g. For the above P, it is easyto see that Q = f(Giuseppe, Italian), (John, English), (Lisa, English), (Isabella, Italian),(Mami, Japanese)g is consistent with the above determination, whereas Q0 = f(Giuseppe,Japanese), (John, English), (Lisa, English), (Isabella, Italian), (Mami, Japanese)g is not.The reason, of course, is that, Giuseppe and Isabella, who are both from Italy, are mappedto the same language byQ, but mapped to two di�erent languages byQ0. Hence the functionfP;Q with mappings h Giuseppe, fItalyg i ! fItaliang, h John, fUSgi ! fEnglishg, etc. is10



in F�, and the other function fP;Q0 with mappings h Giuseppe, fItalyg i ! fJapaneseg, andh Isabella, fItalyg i ! fItaliang, etc. is not.As we said before, the nationality determination makes the function learning problemfeasible because it reduces the original problem of learning a function that maps individualsto languages, which is infeasible, to a simpler problem, namely learning a function from na-tionalities to languages. We can view the domain of the new function, that is, nationalities,as an abstraction of the domain of the old function, that is, individuals. Figure 2 illustratesthis point, showing how individuals sharing a nationality can be abstracted by their nation-ality. In Figure 2, John and Lisa are grouped together as Americans, and Giuseppe andIsabella are grouped as Italians. Now, learning a mapping from nationalities to languagese�ectively permits us to predict a person's language by knowing his/her nationality. Theamount of abstraction achieved by a determination depends on the number of nationalitiesand individuals, and will turn out to be the basis for our learnability results. For the abovedetermination, learning becomes feasible when the number of nationalities is much smallerthan the number of individuals (we make this statement more precise below).
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4.3 Results on Total DeterminationsThe �rst set of results concern the various types of total determinations. For each type ofdetermination we compute bounds on the dimensionality of the function space consistentwith that determination. Using the learnability theorems presented above, we can thendetermine the learnability of each space. We present detailed proofs for two cases in thissection and refer the reader to the appendix for the rest.A function in the function space de�ned by the determination P (x; y) � Q(x; z) is il-lustrated in Figure 3. As a generalization of the example discussed in previous section,individuals may have multiple P values, that is, nationalities. Each ellipse in the domainof the function in Figure 3 represents a nationality. Individuals who share at least onenationality speak exactly the same set of languages.The following theorem a�rms the polynomial-time learnability of function spaces con-sistent with the total determination �.Theorem 4 The space of functions F� consistent with a determination P (x; y) � Q(x; z) ispolynomial-time learnable if jrange(P )j � c and jrange(Q)j � l are polynomials in jxj = n.
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valueFigure 3: Part of a function in the space consistent with the � determinationProof: Let us de�ne a relation R such that any two elements a and b in I are relatedby R i� the sets Pa and Pb are not mutually exclusive. It follows from the de�nition ofthe � determination that for any two such elements a and b, Qa = Qb. The transitiveclosure on R induces a partition of the set I. We call each member of that partition a\continent". For any x and y that belong to two distinct continents, Px and Py shouldbe mutually exclusive, and hence each distinct continent must have at least one distinctnationality. Hence, jcontinentsj � jN j � c.From the de�nition of the � determination, it can be seen that each member of a singlecontinent has to be mapped to the same subset of L. Hence, the total number of possiblefunctions is bound from the above by the number of ways the continents can be mappedto subsets of L. Since the number of subsets of L is bounded by 2l, the total number offunctions is bounded by (2l)jcontinentsj. Since jcontinentsj � jN j � c, the number of functions12



Function BuildContinentMap (input: �, �, n);Collect 1� (c(n)l(n) ln 2 + ln(1� )) examples in ST := fgFor each example (hx; Pxi; Qx) 2 S doIf 9 T (w) such that wTPx 6= fgThen Remove T (w) from T and let T (wSPx) := QxElse let T (Px) := QxEnd;Output TEnd BuildContinentMap; Figure 4: A Learning algorithm for F�in Fn is bounded by (2l)c. Hence, the dimension of F� � cl. If c and l are polynomials in n,then by Theorem 1, F� is feasibly learnable since it is of polynomial dimension.BuildContinentMap (see Figure 4) takes the error parameters �, �, and problem size nas inputs, collects a large enough set of examples S, and constructs a mapping T , which isconsistent with the examples in S, from subsets of N that correspond to continents to subsetsof L. T is a representation of a function in F�. If the set of P values of an individual x ofthe current example intersects with some continent w in the mapping T , then the continentw is merged with Px, and its image is stored as Qx. (If all the examples are consistent withthe determination, this new image will be the same as the old image.) If there is no suchintersection, then T maps Px to Qx.To �nd out the mapping of a new example, say hw;Pwi, under the learned function, �ndany T (y), where y has a non-empty intersection with Pw. If the examples are consistent withthe determination and with each other, all such y's should give the same result.T is consistent with the training examples if some function in F� is consistent with them.Note that the size of the table T never exceeds c because the number of entries in T is notincreased unless the algorithm comes across an example with nationalities (in Px) whichhave not been seen previously. Hence, BuildContinentMap runs in time polynomial in thesample size and c, which are in turn polynomials in 1� , 1� and n. Since the constructionof T is consistent with the training examples and the determination P (x; y) � Q(x; z), byTheorems 2 and 3, it follows that F� is polynomial-time learnable by BuildContinentMap �Note that BuildContinentMap assumes that the polynomial bounds c(n) and l(n) areknown in advance to facilitate the estimation of the number of examples su�cient for learn-ing. Hence, strictly speaking, our proof of Theorem 4 is only an existence proof of a learningalgorithm. However, it is possible to convert it into an \on-line" learning algorithm thatdoes not assume the knowledge of these bounds by using the stochastic testing method in-troduced in [Angluin, 1988]. This method works by incrementally training the system untilit correctly classi�es a set of randomly drawn test examples. The number of test examplesin each iteration must be increased by a small factor to guarantee that the total probability13



of learning a function which is not approximately correct in any iteration is bounded by �.If c(n) and l(n) are polynomial functions of n, then the total number of training and testexamples can still be shown to be polynomial in 1� , 1� and n. We ignore this re�nementin the interest of simplicity and simply note that the same argument applies to all of ouralgorithms, which assume the knowledge of various �xed polynomial functions.As we mentioned earlier, there are several types of total determinations. We now intro-duce the remaining types, and characterize when they de�ne learnable function spaces.In the real world, the assertion that Nationality(x; y) � Language(x; z) is too strong.In our toy example, if Giuseppe happens to be a national of both US and Italy, then itfollows that Lisa, John, Giuseppe, and Isabella should all speak both Italian and English!This conclusion follows even though Isabella and John do not share any nationality. Oneindividual who has multiple nationalities can e�ectively merge all those nationalities into asingle continent! The following total determination eliminates this problem by weakeningthe � determination.De�nition 11 Let P and Q be any two binary predicates. We say P (x; y) �8 Q(x; z) i�8w; x[[8yP (w;y), P (x; y)]) 8z[Q(w; z), Q(x; z)]]Nationality(x; y) �8 Language(x; z) means that two individuals speak the same set oflanguages if their set of nationalities is the same. The following theorem characterizes thelearnability of F�8 .Theorem 5 The space of functions F�8 consistent with P (x; y) �8 Q(x; z) is not learnableif jrange(P )j = c � O(n), where n = jxj. However, F�8 is polynomial-time learnable ifc � O(log n).
L

individuals
with same P
valueFigure 5: Part of a function in the space consistent with the �8 determinationProof: Figure 5 illustrates a portion of a function in the space F�8 . In contrast to thesituation in Figure 3, here every subset of N can be mapped to a completely distinct subsetof L. Note that elements merely sharing a P value may not be mapped to the same subsetof L, as the �gure illustrates. 14



Function BuildSetsOfCountriesMap (input: �, �, n);Collect 1� f2c(n)l(n) ln 2 + ln 1�g examples in ST := fgFor each example (hx; Pxi; Qx) in S doIf there exists no entry for Px in the table TThen let T (Px) := Qx;;; Else T (Px) must already equal Qx if the examples are consistent.End;Output TEnd BuildSetsOfCountriesMap;Figure 6: A Learning algorithm for F�8 and F��In this case, given any two elements a and b in I, we can assert that Qa = Qb if Pa = Pb.If c � n, then jF�8 j is as large as the number of ways in which subsets of N can be assignedelements in 2L. This is so because every possible assignment of elements in 2L to subsets ofN de�nes a function consistent with the above determination. So, in the worst case, jF�8 j= (2l)2c. Thus dim(F�8) = 2cl. If c > n, then dim(F�8) = dim(F ) = 2nl. This is becausejF�8 j � jF j, since F�8 � F . Thus, if c � O(n), it follows from Theorem 1 that F�8 is notfeasibly learnable. If c � O(log n), then dim(F�8) = 2cl � 2k lognl = nkl is a polynomial inn, and hence F�8 is feasibly learnable.We describe, in Figure 6, a polynomial-time learning algorithm that collects and identi�esa large enough set of examples in time polynomial in n when c � O(log n). It constructs atable T that represents a mapping from subsets of N that represent Px to subsets of L thatrepresent Qx for all examples (hx; Pxi; Qx). Since all individuals x who map exactly to thesame Px, should also map to the same Qx, this table T is guaranteed to be consistent withall the examples. Using T , any input hx; Pxi is mapped to T (Px), or to fg if T (Px) is not inT . The size of the table T can grow as big as the number of subsets of N . Hence thecomplexity of the above algorithm is O(1�f2cl + ln 1�g). If c grows at most logarithmicallywith n, BuildSetsOfCountriesMap runs in time polynomial with n �We introduce the remaining types of total determinations below, but postpone theirlearnability analysis to Appendix 8.1.One problem that the �8 determination does not solve is when two individuals, such asGuiseppe and John, share a nationality. In that case, we feel con�dent in asserting that theyshare a language too. This is captured by the following third type of total determination:De�nition 12 Let P and Q be any two binary predicates. We say P(x,y) �9 Q(x,z) i�8w; x[[9y P (w; y) ^ P (x; y)]) 9z[Q(w; z)^ Q(x; z)]]In this case Nationality(x; y) �9 Language(x; z) means that if two individuals share15



a nationality, then it can be asserted that they share a language. We prove the followingnegative result in the appendix.Theorem 6 The space of functions F�9 consistent with P (x; y) �9 Q(x; z) is not learnable.For the case when individuals with multiple nationalities exist, it would be computation-ally advantageous if we could compute the set of languages of such individuals as the unionof some \o�cial" set of languages associated with each nationality. Denoting such a rela-tion from nationalities to languages by a second order predicate R, we have the followingde�nition:De�nition 13 Let P and Q be any two binary predicates. We say P (x; y) �R Q(x; z) i�9R 8x; z[Q(x; z), 9y[P (x; y)^ R(y; z)]]Thus given any nationality y, the set of languages associated with y is simply fz j R(y; z)g.The set of languages spoken by any individual x is given by fz j P (x; y)^R(y; z)g. We provethe following theorem in the appendix.Theorem 7 The space of functions F�R consistent with a determinationP (x; y) �R Q(x; z) is polynomial-time learnable if jrange(P )j = c and jrange(Q)j = l arepolynomials in jxj = n.The de�nition of P (x; y) �R Q(x; z) above is expressed as a statement in second or-der logic. Russell introduced another determination which is intended to be a �rst orderapproximation of the previous determination.De�nition 14 Let P and Q be any two binary predicates. We say P(x,y) �� Q(x,z) i�8w; x[[8yP (w;y)) P (x; y)]) 8z[Q(w; z)) Q(x; z)]]In terms of the nationality example, the �� determination states that if the set of na-tionalities of w is a subset of that of x, then the set of languages spoken by w is also a subsetof those spoken by x. In the appendix, we show that if c � O(log n), then the functionclass de�ned by the above determination is learnable in polynomial-time by the algorithmBuildSetsOfCountriesMap in Figure 6. Somewhat surprisingly, however, this function classis not learnable when c � O(n), even though the previous function class F�R it is intendedto approximate is learnable if c � O(nk).Theorem 8 The space of functions F�� consistent with P (x; y) �� Q(x; z) is not learnableif jrange(P )j = c � O(n), where jxj = n. However, F�� is polynomial-time learnable ifc � O(log n), and jrange(Q)j = l � O(nk). 16



4.4 Results on Extended and Partial DeterminationsPreliminaries More often than not, real world knowledge admits exceptions. Extendedand partial determinations are two types of determination knowledge that can deal withexceptions. In order to facilitate the analysis of such determination knowledge, we introduce adistance metric on function spaces. We then prove a general result regarding the learnabilityof function spaces that are \close" to other learnable function spaces in terms of this metric.We begin by de�ning the notion of distance between two functions.2De�nition 15 Given any two functions f : D ! R and g : D ! R, the distance betweenf and g is de�ned as: dist(f; g) = jfx 2 D j f(x) 6= g(x)gj (1)In other words, the distance between two functions is simply the number of domainelements on which the two functions disagree. We generalize this notion to function spacesas follows. Intuitively, the distance from a function space to another is the maximum of thedistances from the functions in the �rst space to their closest neighbors in the second space.De�nition 16 Given any two function subspaces Fn and Gn the distance from Fn to Gnis de�ned as: Dist(Fn; Gn) =Maxf2FnfMing2Gndist(f; g)g (2)Note that the distance from a function subspace Fn to Gn is not necessarily the same asthe distance from Gn to Fn. We now de�ne a relation \p-close" between two function spacesthat indicates that the distance between the corresponding subspaces is small. It is easy tosee that the relation p-close is not symmetric.De�nition 17 Given two spaces of functions F and G, we say that F is p(n)-close orp-close to G i� for all n, Dist(Fn; Gn) � p(n).This relation between function spaces establishes a relationship between their dimensions,which in turn relates the number of examples needed to learn them.Theorem 9 Let F be a function space which is p(n)-close to G. Let the range of the func-tions in the two subspaces Fn and Gn be Rn. If jRnj � 2k(n) for some polynomial k(n), andthe dimension of G is DimG(n), then the dimension of F DimF (n) � DimG(n)+p(n)k(n)+np(n) + log p(n).Proof: Let the domain of the functions in the function subspaces Fn and Gn be Dn. Asbefore, assume that jDnj = 2n. Since F is p-close to G, Dist(Fn; Gn) � p(n). We de�ne anew function subspace En : Dn ! Rn [ f?g, where ? is some element not in Rn, as follows.En = ff : Dn ! Rn [ f?g j f maps at most p(n) elements in Dn to Rn, andthe rest to ?g.2The de�nitions below assume that D, R, Fn, and Gn are all �nite.17



Intuitively, functions in En represent the set of all possible ways in which the functionsin Fn can di�er with the functions in Gn. Note thatjEnj = p(n)Xi=0  2ni !(2k(n))i � p(n)(2n)p(n)(2k(n))p(n)Hence the dimension of E,DimE(n) � log p(n) + np(n) + p(n)k(n)Given the spaces Gn and En, we de�ne the product space Gn � En as follows:Gn � En = ff : Dn ! Rn j 9g 2 Gn and e 2 En such that8x 2 I, if e(x) =? then f(x) = g(x), else f(x) = e(x) gSince the functions in Fn have a corresponding function in Gn which di�ers from it on atmost p(n) elements, and some function in En represents all such di�erences, it follows thatGn �En includes all functions in Fn. Gn �En contains at most jGnj � jEnj many functions.Hence, the dimension of F ,DimF (n) = log jFnj � log jGnj+ log jEnj � DimG(n) + p(n)k(n) + p(n)n + log p(n)�We are now ready to infer the feasibility of learning in one space from the feasibility oflearning in another space which is p(n)-close to it.Theorem 10 If a space of functions F is p(n)-close to another space of functions G forsome polynomial function p(n), and G is feasibly learnable, then F is also feasibly learnable.Proof: Since G is feasibly learnable, from Theorem 1, its dimension DimG(n) is apolynomial in n. From the previous theorem, it follows that F has a polynomial dimensionas well, which implies that F is feasibly learnable �Note that the above theorems do not make any guarantees about the learning time.However, they are useful to predict the number of examples su�cient to learn a functionspace from the number of examples su�cient to learn another function space which is \close"to it.Extended Determinations In many real world situations, it is di�cult to �nd total de-terminations. Even in our nationality example, the reader might have noticed that it isnot always true that all people with the same nationality speak the same set of languages.One would like to be able to tolerate a small number of \exceptions" to a total determina-tion. Russell proposes two solutions to this problem: extended determinations, and partialdeterminations [Russell, 1986]. We analyze the former �rst.An extended determination is like a total determination, except that one is required tosee p examples with the same values for P and Q, in order to conclude that all elements withthe same value for P also have the same value for Q: An extended determination reduces to18



a total determination when p = 1. Intuitively, extended determinations represent situationswhere there are a small number of exceptions to a total determination.Figure 7 illustrates a portion of a function consistent with an extended determination.A set of elements sharing a given P value all map to a given subset of L, except for a set of\exceptional" individuals who map to larger subsets of L.We now carry out an analysis of extended determinations. Following [Russell, 1986] wede�ne the notion of an extended determination as follows:De�nition 18 We say P (x; y) �pE Q(x; z) i�8w1; . . . ; wp; y; z[P (w1; y) ^Q(w1; z) ^ . . . ^ P (wp; y) ^ Q(wp; z) ^ w1 6= w2 ^ w1 6=w3 ^ . . . ^ wp�1 6= wp] ) 8x[P (x; y)) Q(x; z)]]For example,Nationality(x; y)�pE Language(x; z) means if p or more distinct people areAmerican, and they all speak English, then every American will speak English. Clearly, whenp = 1, this reduces to the determination �, and as p grows larger the statement becomesweaker. The question naturally arises: how large can p get without sacri�cing learnability.To answer this question, we �rst relate p to the distance between the function subspaces ofF�pE and F�R.Lemma 1 Let P � I �N and Q � I � L. If jLj � l, and jN j � c then the function spaceF�pE consistent with the determination P (x; y) �pE Q(x; z) is cl(p� 1)-close to the functionspace F�R consistent with P (x; y) �R Q(x; z).Proof: Please see Appendix 8.2.We are now ready to establish the learnability of the corresponding function space.Theorem 11 The function space F�pE consistent with the determination P (x; y) �pE Q(x; z)is polynomial-time learnable if jrange(P )j = c, jrange(Q)j = l, and p are polynomials injxj = n.Proof: The feasible learnability of F�pE follows from Theorem 10, and the fact thatF�pE is cl(p � 1)-close to F�R, which is feasibly learnable. Please see Appendix 8.2 for apolynomial-time learning algorithm �Our learnability result essentially states that as long as the number of exceptions per-mitted by the extended determination is low (that is, polynomial in n), the function spacede�ned by it is polynomial-time learnable.Partial Determinations A partial determination is similar to an extended determinationin that it tolerates a small number of exceptions to a total determination. A partial determi-nation is introduced through a probability measure, d(P;Q), which is an empirical estimateof the relevance of one attribute P to another attribute Q [Russell, 1986]. This measure isalso similar to the \uniformity" measure discussed in [Davies, 1988].19



L

Exceptions

individuals with 
a given P valueFigure 7: Part of a function in the space consistent with an extended determinationConsider two relations P and Q as before, where P � I � N and Q � I � L. Let usdenote the set fx j P (x;w)g by P�1w . For each w such that jP�1w j > 1, d(P�1w ; Q) is de�nedas follows: d(P�1w ; Q) =  1jP�1w j (jP�1w j � 1)! Xi2P�1w Xj2P�1w �i jQi \QjjjQjj (3)If we interpret P as Nationality and Q as Language, then essentially d(P�1w ; Q) is mea-suring the extent to which the languages spoken by individuals belonging to nationality woverlap. If they all speak the same set of languages, d(P�1w ; Q) is 1, and if there is no overlap,then d(P�1w ; Q) is 0.Now we de�ne d(P;Q) as the average of the above metric over all possible range valuesof the relation P . d(P;Q) = Pw2N and jP�1w j>1 d(P�1w ; Q)jfw 2 N : jP�1w j > 1gj (4)In general, d(P;Q) is intended to capture the probability that two randomly chosenindividuals with the same P value have the same Q value. Note that if we have a totaldetermination P � Q, d(P;Q) = 1. If P and Q are uncorrelated, then d(P;Q) is just theprobability that two randomly chosen individuals have the same Q value. Thus, intuitivelyd(P;Q) is a measure on how relevant P is to making predictions about Q. A good discussionof how this measure is related to other metrics for relevance in statistics, such as correlation,is given in [Davies, 1988]. desJardins considered the task of predicting the value of a targetfeature Q from a single input feature P , which is assumed to be statistically correlated toQ, making some strong assumptions on the distribution of the input and output features[desJardins, 1989]. In the spirit of our previous results, we derive distribution-independentsu�cient conditions for learnability which rely on the asymptotic growth rate of d(P;Q) withthe size of the learning problem.De�nition 19 We say that P (x; y) partially determines Q(x; z) (written as P (x; y) ��PQ(x; z)) if there is a polynomial � in n, such that d(P;Q) � 1� �(n)2n , where jxj � n.20



L

Exceptions

individuals with 
a given P valueFigure 8: Part of a function in the space consistent with the �p determinationFigure 8 illustrates a portion of a function in the function space F��P . Most members ofI with a given P value get mapped to a particular subset of L (shown by the shaded regionin Figure 8), while there is a set of \exceptions," who get mapped to arbitrary subsets of L.Our results imply essentially that partial determinations de�ne learnable function spaces aslong as the number of such exceptions remains bounded by a polynomial in n. Also, notethe di�erence between Figure 7 and Figure 8. In the former, which describes a functionconsistent with an extended determination, exceptional individuals must map to subsetsof L that include the corresponding maps of normal individuals. In the case of partialdeterminations, there is no such restriction.If P partially determines Q, then it can be shown that the resulting function space F��Pis 2c2l�-close to F�, and hence is feasibly learnable. But �rst, we need an auxiliary lemmathat allows us to infer a lower bound on d(P�1w ; Q) for any w 2 N from the lower bound ond(P;Q).Lemma 2 If P � I�N and Q � I�L are such that P(x,y) ��P Q(x, z), then for all w 2 Ns.t. jP�1w j > 1, d(P�1w ; Q) � 1 � c�2n .Proof: Please see Appendix 8.3.Lemma 2 is used to prove the following:Lemma 3 The space of functions F��P consistent with P (x; y) ��P Q(x; y) is 2c2l�-close tothe space F� consistent with P (x; y) � Q(x; z).Proof: Please see Appendix 8.3.Now we can state the main theorem of this section.Theorem 12 The space of functions F��P consistent with P (x; y) ��P Q(x; y) is polynomial-time learnable, if jrange(P )j = c, jrange(Q)j = l, and � are polynomials in jxj = n.Proof: Feasible learnability follows from the above lemmas and the Theorem 10. Pleasesee Appendix 8.3 for a polynomial-time learning algorithm �21



There are some interesting points to note regarding the above analysis. The strategyused to prove the above results, based on a distance metric on function spaces, revealsrelations between the various determinations not obvious from their respective de�nitions.For example, the positive results on both the partial and the extended determinations aredue to the proximity of their function spaces to that of a learnable total determination. Ifwe interpret d(P;Q) as the probability of the predicate P totally determining Q, P partiallydetermines Q means that this probability can be made arbitrarily close to 1, by increasingn. Our results show that for learning to be e�ective, it is not necessary for P to totallydetermine Q. It su�ces if the probability of this can be made asymptotically close to 1.Interestingly, the notion of partial determination seems similar to the �-semantics, pro-posed by Pearl to give probabilistic semantics to default logic [Pearl, 1988].3 Here defaultrules are interpreted to be sentences which are true with a probability 1 � �, where � canbe made arbitrarily small. A sentence is true under this semantics if it can be inferred withprobability 1�O(�) in all distributions which are consistent with the input defaults. Viewedin this vein, if P partially determinesQ, a default inference of a Q value might be sanctionedfor an individual with a known P value; however, this default will have to be over-ridden ifthere is extra-evidence to suggest that the real Q value of this individual is di�erent fromthat of \normal" individuals.4.5 A Summary of Learnability ResultsTable 1 summarizes our results. The table characterizes the number of examples su�cientto learn the function spaces de�ned by the di�erent types of determinations under variousconditions on their parameters. The table also speci�es if and when the function spacede�ned by each determination is polynomial-time learnable.Min(x; y) denotes the minimum of x and y. Note that in the case of the �8 determina-tion, since the number of functions consistent with it could not be more than jF j, we needto take the smaller of the dimensionalities computed with and without the determinationknowledge. In the case of the �� and �9 determinations, the dimensionality lies betweenthe two expressions shown enclosed by square brackets.What can we take away from these results in Table 1?First, the results characterize some conditions under which the determinations de�nelearnable function spaces. Obviously, the table is not exhaustive in terms of conditions{ for example, what happens to the learnability of F�8, if we further require that everyindividual can only belong to a constant number of nationalities?4 The table gives us thesu�cient conditions for feasible learning when di�erent determination-based theories areavailable. It is important, particularly when interpreting the negative results, to note thatthe results are tied to the assumptions underlying the PAC learnability model. For example,the non-learnable spaces may turn out to be learnable for some speci�c \easy" distributionsof examples.3We thank one of the reviewers, who pointed this out.4As the reader might have guessed, the function space is learnable if the number of nationalities is boundedby a polynomial in n, and not learnable otherwise. 22



Determ. Dimension jExamplesj needed P-time learnable ifP � Q � cl 1�fcl ln 2 + ln 1�g c � O(nk)P �R Q cl 1�fcl ln 2 + ln 1�g c � O(nk)P �8 Q Min[2cl; 2nl] 1� fMin(2cl; 2nl) ln 2 + ln 1�g c � O(log n)P �� Q [2c=2l;Min[2cl; 2nl]] 1�f2cl ln 2 + ln 1�g c � O(log n)P �9 Q [2n(l � 1); 2nl] 1�f2nl ln 2 + ln 1�g Not LearnableP �pE Q � cl+ cl2(p� 1)+ 1�f(cl + cl2(p � 1) + cln(p� 1)+ c � O(nk)cln(p� 1) + log(cl(p� 1)) log(cl(p� 1))) ln 2 + ln 1�gP ��P Q � cl+ 2c2l2�+ 1�f(cl+ 2c2l2�+ 2c2l�n+ c � O(nk)2c2l�n+ log 2c2l� log 2c2l�) ln 2 + ln 1�gTable 1: A summary of learnability results. See text for explanationSecond, the results specify the amount the input needs to be abstracted for the functionlearning problem to be feasible. For example, for the �R determination, a logarithmicreduction is su�cient (in terms of the nationality example, the number of nationalities needsto be a logarithm of the number of people). On the other hand, for the �8 determination,a doubly logarithmic reduction is needed. Interestingly, for the �9 determination, even adoubly logarithmic reduction is insu�cient to make the learning feasible.Third, the results also give us some insight into the relations between the various deter-minations. For example, it is interesting to note that the function space that correspondsto �R is learnable under much weaker conditions than that of its �rst-order approximation��.Finally, the results on extended and partial determinations are interesting because theyallow a small number of exceptions to total determinations without sacri�cing the learnabil-ity. Determinations of this form are more suitable to the real world domains since there areusually a number of exceptions to any rule in such domains.5 DiscussionThe main lesson of this work is that PAC learning can be used to quantify semantic biasby analyzing the learnability of a hypothesis space consistent with all prior knowledge {syntactic and semantic. What this work suggests is that in some cases semantic bias can beas e�ective as syntactic bias in making the learning task tractable. In this section we discusssome implications of our analysis for knowledge-based learning.5.1 Syntactic and Semantic BiasesTraditionally, PAC learning has focused on constraining learning by providing the learnerwith a syntactically de�ned space of functions. For example the class of k-CNF booleanformulas, which is de�ned as the set of conjunctions of at most k disjuncts, is known to23



be learnable [Valiant, 1984]. Semantic bias allows one to make �ner distinctions betweenthe objects of the same syntactic type. For example, it allows us to talk about somethingbeing a function of one attribute rather than another, which cannot be done with purelysyntactic constraints. However the price paid is that the semantic bias can be very domain-speci�c and an algorithm to implement an arbitrary domain-speci�c bias may be of no usein another domain. The problem, then, is to identify general classes of semantic bias moreexpressive than syntactic bias. Such semantic bias should be describable by a small set ofparameters which can be explicit inputs to the learning algorithm. Determinations are goodexamples of such semantic bias in that they can be parameterized by a set of attributes thatdetermine the target function. This allows the same learning algorithm to be applicable tomany domains, in spite of the domain-speci�c nature of the particular determinations suchas nationality determines language.Note, however, that our work is agnostic about whether prior knowledge should be declar-atively represented in the system. The analysis holds whether or not this is the case. In[Russell and Grosof, 1989], the bene�ts of declarative bias are eloquently argued, while in[Brooks, 1991] the necessity of any declarative representations in reasoning and learning isseriously questioned. The problem is that declarative representations of prior knowledge,while being more 
exible, might introduce computational intractability. The question ofwhat part of the knowledge must be declaratively represented and how, must be resolvedusing considerations of computational complexity in addition to the needed generality and
exibility of learning. In the case of determinations, it su�ces to declaratively representthe attributes in the determination. Our algorithms do not require the �rst order logicrepresentations of the various determinations.5.2 Tree-structured BiasOur results suggest that knowledge-based learning is not automatically immune to the ob-served statistical limitations of inductive learning systems [Dietterich, 1989]. The analysis ofthe kind performed here can help the designer of a learning system decide whether some ex-isting prior knowledge is adequate, or if more knowledge is needed to make learning feasible.It might also suggest the need for learning from additional sources of information such as\membership queries," when learning from random examples alone is not computationallytractable [Angluin, 1988].It may not always be realistic to �nd a small number of relevant attributes that candetermine a target function. Russell showed that if the learner has a set of determinationsstructured as a tree, the number of examples needed to learn a target function is signi�cantlyreduced even while the total number of relevant attributes is large [Russell, 1989]. Tree-structured bias consists of a tree of attributes such that each attribute at a node is determinedby at most a small constant number (k) of other attributes, which are represented as itschildren. At the root of the tree is the target attribute, whose value is to be predicted, andat the leaves are the input attributes, whose values are given. The learning problem is madedi�cult by the fact that the non-root internal nodes that represent \intermediate" attributesare not observable during the training or testing.24



Note that it is logically sound to replace the tree of determinations with a single \
at"determination that says that the target attribute is determined by the input attributes.However, Russell showed that the tree structure provides additional bias so that a functionclass which is not feasibly learnable with the 
at determination might still be learnable withthe tree of determinations.It had been shown [Pitt and Warmuth, 1990, Kearns and Valiant, 1989] that learningwith tree-structured bias from random examples is computationally as hard as invertingsome cryptographic functions such as the RSA cryptosystem, which is believed to be in-tractable. However, there is an e�cient learning algorithm for boolean functions that obeytree-structured bias if the learner is also allowed to query the output of the target functionfor any arbitrary input, i.e., ask \membership queries" [Tadepalli, 1993]. This algorithm wasimplemented as a program called TSB and was shown to learn the target functions consistentwith a determination tree of a few dozen nodes to almost 100% accuracy with a modest num-ber of examples and queries [Tadepalli, 1993]. A knowledge-free induction program (ID3)using the same data could only achieve a maximum of 75% accuracy. This shows the powerof the tree-structured determination knowledge in reducing the number of training examplesneeded for learning, and the usefulness of membership queries in e�ectively exploiting thisknowledge.5.3 Learning prior knowledgeWe could also consider the possibility of the system interactively learning the necessary priorknowledge, perhaps by asking a domain expert directed questions. In the language domain,for example, it makes sense to ask, \do you know any attribute that determines language?"This is a more useful question to ask than \what language does Giuseppe speak?" because ana�rmative answer to the �rst question greatly reduces the di�culty of the learning problem.Thus, our work can provide guidance as to what questions to ask in a new domain to facilitatefurther knowledge acquisition.One could also consider learning prior knowledge from examples and some weaker priorknowledge. For example, under some conditions, \nationality determines language" mightbe learned by knowing that \some attribute determines language."However, prior knowledge cannot be considerably weakened without sacri�cing learnabil-ity. To see this, assume that there is some knowledge K (such as a mapping from individualsto languages) which is not feasibly learnable from prior knowledge Pweak , but is feasibly learn-able given a stronger piece of prior knowledge Pstrong. Let us consider the possibility of �rstlearning Pstrong from Pweak, and then learningK. If Pstrong can be learned feasibly from Pweakand examples, then since K can be feasibly learned from Pstrong, Pstrong +K can be feasiblylearned from Pweak. This means that K itself can be feasibly learned from Pweak , which weknow is impossible. Hence Pstrong must not be learnable from Pweak. A corollary of this isthat if something is not learnable from a state of tabula rasa, then any prior knowledge thatmakes such learning feasible is itself not learnable from a state of tabula rasa.Another approach for acquiring prior knowledge might be through some other means oflearning: by being told, for example. However, the results of [Natarajan and Tadepalli, 1988]25



show that this approach too su�ers from the same information theoretic limitations. Simplystated, the set of all possible functions is too large to be learned from a reasonable number ofbits whether these bits are interpreted as examples or domain theory or knowledge or bias.Thus, we must conclude that although some forms of prior knowledge might be learnable,not all forms are, and that what can be feasibly learned is, indeed, limited.5.4 Application to knowledge-based learning systemsOur work provides a way to analyze the convergence of techniques for completing partial do-main theories. For example, PED is a technique that extends EBL to partial domain theoriescontaining determinations by using classi�ed training instances to extract implicative rulesfrom the determinations [Mahadevan, 1989]. PED relies on the fact that if instances P (A;B)and Q(A;C) of a determination P (x; y) � Q(x; z) can be proven from a training instance,then the de�nition of a determination sanctions adding the rule P (x;B) ) Q(x;C) to thedomain theory. Our results can be used to distinguish situations when PED can feasiblycomplete a partial theory from those when it cannot.For example, if the determinations in a domain theory are all of the �rst type (that is,P � Q ), and instances of the predicates in a determination can always be derived froma given training instance, and jrange(P )j and jrange(Q)j are polynomial in n for everydetermination, then our results imply that PED can �ll in the gaps in the domain theoryfrom a polynomial number of training instances.5.5 Application to Speedup LearningInterestingly, the analysis of the kind performed above can also be carried out for speeduplearning systems like the EBL systems. In these systems, the problem is to compute anoperational (e�cient) specialization of an intractable domain theory from examples. Sincethe original domain theory of the system is \complete" in the sense that the examples,and the �nal result of learning are deductive consequences of the domain theory, it mightseem that they require a radically di�erent kind of analysis. However, as we show below, asimple re-interpretation of the task of these systems su�ces to allow exactly the same kindof analysis.Suppose that an EBL system is given examples by a teacher, who generates solutions usingan operational specialization of a domain theory which is tuned to the training distributionof problems. Before the learning begins, what does the learner know about this operationalform of the domain theory in the teacher's mind? Only that it should be entailed by itsdomain theory. In other words, it has no knowledge of the particular operational version ofthe domain theory, although it knows the domain theory! The examples provide the learnernew information about the teacher's knowledge, even if they do not provide new informationabout the domain. In other words, although the domain theory may be \complete" inthe sense that any output of the learner must be sound with respect to the initial domaintheory, it is too weak to predict which of the many possible deductive consequences of thedomain theory the teacher has in mind. We can view this situation as learning a particular26



operational version of the domain theory, which the teacher is trying to communicate to thelearner through examples.Thus, we can interpret the di�erent operational versions of the domain theory that aspeedup learning system might potentially learn as its \hypotheses" about the teacher'sknowledge. However, only one of these possible hypotheses (functions) is correct, and thetask is to �nd an approximation to the correct function with a high probability.In [Tadepalli, 1991], an analysis similar to that we used in this paper was carried out forEBL systems when the hypotheses are in the form of sets of macro-operators. The learningalgorithm exploits a piece of domain knowledge called \serial decomposability" [Korf, 1985].This property is relevant to problem solving domains whose states can be represented asdiscrete valued feature vectors. A domain is said to be serially decomposable when itsfeatures can be ordered such that the e�ect of any operator (and hence a macro-operator)on a feature is a function of, (or is determined by), only that feature and the features thatcome before it in the ordering [Korf, 1985]. Given such an ordering of features and anoperator sequence that achieves the goal values for those features in that order, it is possibleto e�ciently decompose the operator sequence into general macro-operators by ignoring allthe irrelevant features in the initial state. Thus, similar to determinations, the knowledgeof serial decomposability allows the learner to e�ectively generalize from a small numberof examples. Although serial decomposability can be detected by exhaustive search, thisproblem is known to be NP-hard [Bylander, 1992]. Hence the knowledge of the orderingof features that makes a domain serially decomposable also reduces the time complexity oflearning.6 ConclusionsThis paper employed the PAC learning framework to analyze the e�ectiveness of variousforms of prior knowledge in learning. We showed that it is possible to use PAC learning toanalyze the e�ectiveness of semantic prior knowledge as well as syntactic prior knowledge,by viewing the prior knowledge as constraining the function space to that which is consis-tent with it. We used this approach to analyze various forms of determination knowledge.The analysis revealed surprising di�erences and similarities between the di�erent kinds ofdeterminations. While some kind of determinations make polynomial-time learning possi-ble, some forms of determinations still require exponential number of examples. The analysisalso shows similarities between two seemingly di�erent determinations: partial and extendeddeterminations.Our work describes one way to do a representation-independent quanti�ed analysis ofknowledge. We believe that this kind of analysis can also be carried out for systems that learnfrom intractable and inconsistent domain theories, and constitutes an interesting directionfor future work.By applying the tools of computational learning theory to a more knowledge-intensiveform of learning than it is usually applied to, our work shows how PAC-learning can forma theoretical basis for a uni�ed view of learning. Analyses of this kind might also help usunderstand the structure of various kinds of knowledge and its relationship to the structure27



of the complexity classes.7 AcknowledgementsWe are indebted to Balas Natarajan for his generous assistance in our work. In addition,we thank the following people for their invaluable comments on earlier versions of this pa-per: Tom Amoth, Oren Etzioni, Benjamin Grosof, Steve Minton, Tom Mitchell, and StuartRussell. We thank Alka Indurkhya for helping us with the proofs. Finally, we thank thereviewers for their detailed and helpful comments. The second author is supported by theNational Science Foundation under grant number IRI:9111231.8 AppendixIn what follows, we make the usual assumptions on the bounds of various sets: jIj � 2n,jN j � c and jLj � l.8.1 Total DeterminationsTheorem 6: The space of functions F�9 consistent with P (x; y) �9 Q(x; z) is not learnable.Proof: This determination says that if two individuals share a P value then they alsoshare a Q value. We prove that F�9 is not learnable by constructing a space F 00 of exponentialdimension which is consistent with this determination. Let c = jrange(P )j = 1 and l =jrange(Q)j > 1. Let i be an element in L such that 8x in I, i 2 Qx. Now for every elementb in I we can choose to de�ne the set Qb in exactly 2l�1 ways, since Qb = fig [ L0 where L0is any subset of L - fig. Hence dim(F 00) � 2n(l� 1), and F�9 is not learnable even if c = 1 �Theorem 7: The space of functions F�R consistent with a determinationP (x; y) �R Q(x; z) is polynomial-time learnable if jrange(P )j = c and jrange(Q)j = l arepolynomials in jxj = n.Proof: �R determination says that there is a relation R from N to L such that Qxfor any x 2 I is the set fzjP (x; y) ^ R(y; z)g. This implies that, given the relation P, therelation Q from I to L can be computed from R. Hence, an upper bound on the number ofmappings from N to 2L also gives an upper bound on the number of mappings from I to 2L.Since jN j = c, and ���2L��� = 2l, this upper bound is (2l)c. Hence dim(F�) � cl. If c and l arepolynomials in n, then by the dimensionality theorem F� is learnable since it is of at mostpolynomial dimension.F�R is in fact polynomial-time learnable since it is polynomial-time identi�able by theprogram BuildNationalitiesMap in Figure 9. The program returns a table T that representsa mapping from N to subsets of L. T maintains, for each member of N , the largest possiblesubset of L that it can map to while being consistent with all the previous examples. Initially,each member of Px has no T -image, and Qx is made its T -image. Subsequently, a new T -28



Function BuildNationalitiesMap (input: �, �, n);Collect 1� (c(n)l(n) ln 2 + ln(1� )) examples in S ;T := fg;For each example (hx; Pxi; Qx) in S doFor each P 0 2 Px doIf there is an entry T (P 0) = zThen let T (P 0) := zTQxElse let T (P 0) := QxEnd;End;Output TEnd BuildNationalitiesMap;Figure 9: A Learning algorithm for F�Rimage is computed as the intersection of the current T -image and Qx. It is easy to see thatthis maintains the required semantics for T and runs in time polynomial in n, l, and c.T can be viewed as a representation of functions in F�R. Any input hx; Pxi will bemapped to fzjz 2 T (y) and y 2 Pxg �Theorem 8: The space of functions F�� consistent with P (x; y) �� Q(x; z) is notlearnable if jrange(P )j = c � O(n), where jxj = n. However, F�� is polynomial-timelearnable if c � O(log n), and jrange(Q)j = l � O(nk).Proof: This determination constrains functions fromD ! 2L in the following way: givenany two elements a and b in I, if Pa � Pb, then it must be that Qa � Qb. It follows thatif there exist a and b in I such that Pa = Pb, then Qa = Qb. Hence, this determination isstronger than �8, and hence, is learnable whenever F�8 is learnable.We prove that it is not learnable under signi�cantly weaker conditions by constructing aspace of functions F 0 of exponential dimension consistent with the above determination. Weconstruct F 0 as follows. Assume that c = 2n. For any b in I, if Pb is of size greater than c=2,then de�ne Qb = L. If Pb is of size less than c=2, then de�ne Qb = fg. If Pb is of size exactlyc=2, then let Qb be any arbitrary subset of L. It is easy to verify that F 0 is consistent withthe above determination. Since there exist at least 2c=2 subsets of N of size c=2, and sincewe can assign each of them to subsets of L in 2l ways, the number of functions in F 0 is atleast (2l)2c=2. Hence dim(F 0) � 2c=2l = 2nl.Next we have to show that when c � O(log n), F�� is polynomial-time learnable. Forthis, we simply note that F�� � F�8 . Since F�8 is learnable in polynomial-time by Build-SetsofCountriesMap (cf. Figure 6) when c � O(log n), F�� is also learnable by the samealgorithm. 29



8.2 Extended DeterminationsLemma 1: Let P � I �N and Q � I � L. If jLj � l, and jN j � c then the function spaceF�pE consistent with the determination P (x; y) �pE Q(x; z) is cl(p-1)-close to the functionspace F�R consistent with P (x; y) �R Q(x; z).Proof: Let f be any function in the nth-subspace of F�pE . We show that there is afunction g in the nth-subspace of F�R such that dist(f; g) is at most cl(p� 1).Let P and Q be the predicates corresponding to f . T is a partial function from N to 2Lde�ned as follows.T (y) := fz j there are p distinct elements xi 2 I such that P (xi; y) ^Q(xi; z)gBy the de�nition of extended determination, if T (y) is de�ned for some y 2 N , then forall x 2 I such that P (x; y), Qx must include T (y).If we de�ne g(hx; Pxi) to be Sy2Px T (y), it then follows that for any function f 2 F�pE ,f(hx; Pxi) must include g(hx; Pxi).Furthermore, treating T as a representation of the relation R � N �L as de�ned by thedetermination F�R , g can be seen to be a member of F�R.We now estimate dist(f; g). Let us call each x on which f and g disagree, an exception.By the de�nition of T and F�pE , each (y; z) s.t. y 2 N and z 2 L can contribute at mostp � 1 exceptions. If more than p � 1 members of I map to the same y 2 N and the samez 2 L, then T (y) will include z, which will be re
ected in g. Hence the number of exceptions,dist(f; g) � cl(p� 1), which implies that the function space F�pE is cl(p� 1)-close to F�R �Theorem 11: The function space F�pE consistent with the determination P (x; y) �pEQ(x; z) is polynomial-time learnable if jrange(P )j = c, jrange(Q)j = l, and p are polynomialsin jxj = n.Proof: By Theorem 9 and Lemma 1, the dimension of F�pE is at mostDim�R(n) + cl(p� 1) � l + cl(p� 1) � n + log(cl(p� 1))Since Dim�R(n) is at most cl, by Theorem 3, it can be feasibly learned by identifying a setof 1�f(cl + cl2(p� 1) + cln(p� 1) + log(cl(p� 1))) ln 2 + ln 1�gexamples.The procedure BuildNationalitiesAndExceptionsMap (see Figure 10) collects that manyexamples, and constructs the mapping T from N to 2L de�ned in the previous proof, andalso builds a table E of exceptions indexed by nationalities and languages. Whenever thenumber of exceptions for a nationality y and language z exceeds p� 1, then T (y) is updatedto include z, and the exceptions are removed.Assuming that c, l, and p are polynomials in n, it can be easily seen that the aboveprogram runs in time polynomial in the required parameters. Since the size of exceptionstable does not exceed p for any nationality language pair (y; z), T and E represent a functionconsistent with the determination P �pE Q and with the examples. Hence, BuildNationali-tiesAndExceptionsMap is a polynomial-time learning algorithm for F�pE . The tables T and30



Function BuildNationalitiesAndExceptionsMap (input: �, �, n);Collect 1�f(c(n)l(n) + c(n)l2(n)(p(n) � 1) + c(n)l(n)n(p(n)� 1)+log(c(n)l(n)(p(n) � 1))) ln 2 + ln 1�g examples in ST := E := fgFor each example (hx; Pxi; Qx) in S doFor each y in Px do;; T (y) � Qx if the example set is consistent with the determination.For each z in Qx � T (y) doIf jE(y; z)j � p � 1, ThenLet T (y) := T (y)SfzgE(y; z) := fgElse E(y; z) := E(y; z)S(hx; Pxi; Qx)EndEndEndOutput T and EEnd BuildNationalitiesAndExceptionsMapFigure 10: A Learning algorithm for F�pEE are used to predict Qx for a given example as follows: �rst look up the particular examplein the exceptions table E (for each y 2 Px and z 2 L). If it is not in this table, then returnthe union of all T (y) such that y 2 Px �8.3 Partial DeterminationsLemma 2: If P � I � N and Q � I � L are such that P(x,y) ��P Q(x, z), then for allw 2 N s.t. jP�1w j > 1, d(P�1w ; Q) � 1 � c�2n .Proof: We prove this result by contradiction. Assume that there is some w0 2 N suchthat ���P�1w0 ��� > 1 and d(P�1w0 ; Q) < 1� c�(n)2n . Let���fw 2 N : ���P�1w ��� > 1g��� = c0Note that c0 � jN j = c. Since d(P�1w ; Q) � 1 for all W , from the de�nition of d(P;Q), itfollows that d(P;Q) < (1� c�(n)2n ) + (c0 � 1)c0 = 1� c�(n)c02n (5)Since P(x,y) ��P Q(x, z), we haved(P;Q) � 1 � �(n)2n31



Combining the above two inequalities, we getc0�(n) > c�(n)which leads to a contradiction �Lemma 3:The space of functions F��P consistent with P (x; y) ��P Q(x,y) is 2c2l�-closeto the space F� consistent with P (x; y) � Q(x; z).Proof: We prove this result by contradiction. Assume that F��P is not 2c2l�-close toF�. Then it follows that there is some function f in F��P such that for all functions g in F�,dist(f; g) > 2c2l�.Let us denote the restriction of f and g to the elements of P�1w by fw and gw respectively.Let w0 2 N be such that dist(fw0; gw0) � dist(fw; gw), for all w 2 N . It is easy to see thatdist(f; g) �Pw dist(fw; gw) � c � dist(fw0; gw0)We can combine the above two inequalities to obtaindist(fw0; gw0) > 2c2l�c = 2cl�We now show that the above is not possible, which implies that8f 2 F��P ;8g 2 F�;8w 2 N; dist(fw; gw) � 2cl� (6)Note that for any g 2 F�, gw0 should map all the elements x in P�1w0 to the same setL0 � L. If fw0 were to di�er from all such gw0 by more than 2cl�, then, for any set L0 � L,there are more than 2cl� elements in P�1w0 that are not mapped to L0 by f . It then followsthat for each i 2 P�1w0 , there are more than 2cl� elements j 2 P�1w0 such that Qj = fw0(hj; Pji)is di�erent from Qi = fw0(hi; Pii). At least for half such pairs (i; j), Qj 6� Qi. Each such paircontributes at most 1 � 1l to the numerator of d(P�1w0 ; Q). Thus, we get the following upperbound for d(P�1w0 ; Q).d(P�1w0 ; Q) � ���P�1w0 ��� (���P�1w0 ���� 1)� ���P�1w0 ��� 2cl�12 1l���P�1w0 ��� (���P�1w0 ���� 1) = 1� c�(���P�1w0 ���� 1) < 1� c����P�1w0 ��� (7)From Lemma 2, we know that d(P�1w0 ; Q) � 1� c�2n :Combining the above two inequalities, we get ���P�1w0 ��� > 2n, which leads to a contradiction.Hence dist(fw0; gw0) � 2cl�, and dist(f; g) � 2c2l� �Theorem 12: The space of functions F��P consistent with the partial determinationP (x; y) ��P Q(x; y) is polynomial-time learnable, if jrange(P )j = c, jrange(Q)j = l, and �are polynomials in jxj = n.Proof: Instead of directly learning the set of functions F��P , our algorithm learns asuperset of functions which are 2c2l�-close to F�.32



By Theorem 9 and Lemma 1, the dimension of F��P is at mostDim�(n) + 2c2l� � l+ 2c2l� � n+ log 2c2l�Since Dim�(n) is at most cl, by Theorem 3, it can be feasibly learned by identifying a set of1�f(cl + 2c2l2� + 2c2l�n+ log 2c2l�) ln 2 + ln 1�gexamples.FindMinimalExceptionsMap (see Figure 11) collects that many examples, and identi�esit in time polynomial in n, 1� and 1� . The idea of this learning algorithm is to build a tableT from N to subsets of L, to represent the \normal" mappings, and store the examples thatdo not obey this mapping in an exceptions table E.Note that all the \normal" mappings from y 2 I whose P values have some w 2 N incommon should map to the same subset of L. The algorithm considers each w 2 N , andbuilds the Table T , which maps each w 2 N to a subset Z of L such that the number ofexceptions hx; Pxi which do not map to that subset, even while w 2 Px, are minimized. Thisis done by computing Score(w;Z) for each w 2 N , and each relevant Z � L, which indicatesthe number of members of P�1w whose Q values coincide with Z. The Z � L that maximizesScore(w;Z) is stored in T (w). For each w 2 N all members of P�1w whose Q values do notcoincide with T (w) are considered \exceptions" and their Q values are stored in E.Since the target function satis�es the partial determination F��P , from Equation 6 in theproof of Lemma 3, the number of actual exceptions for each w 2 N is upper-bounded by2cl�. Since our algorithm minimizes the number of exceptions in each P�1w with respectto the examples, the number of exceptions stored in E for each w must also be � 2cl�.Hence the maximum size of E is upper-bounded to 2c2l�, ensuring that the output functionrepresented by T and E is 2c2l�-close to some function in F�.It is easy to see that the above program runs in time polynomial in n, 1� and 1� if c andl are bounded by polynomials in n. The tables T and E are used to predict Qx for a giveninput hx; Pxi as follows: First look up E for the particular example. If it is not in this table,then return T (y) for some y 2 Px �
33



Function FindMinimalExceptionsMap (input: �, �, n);Collect 1�f(c(n)l(n) + 2c2(n)l2(n)�(n) + 2c2(n)l(n)�(n)n+log 2c2(n)l(n)�(n)) ln 2 + ln 1�g examples in ST := E := N := fg;Score(�; �) := 0;;; Compute the scores and initialize T (w)For each (hy; Pyi; Qy) 2 S doFor each w 2 Py doScore(w;Qy) := Score(w;Qy) + 1;T (w) := fg;End;End; ;; Store T -images as the Q values that maximize their ScoreFor each hw;Zi for which Score is computed, doIf T (w) = fg or Score(w;Z) > Score(w;T (w)) ThenT (w) := Z;End; ;; Store the exceptions in EFor each (hy; Pyi; Qy) 2 S doFor each w 2 Py doIf T (w) 6= Qy and E(y) is not already storedThen let E(y) := QyEnd;End;Output T and EEnd FindMinimalExceptionsMapFigure 11: A Learning algorithm for F�pE
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