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Abstract

Sequential decision tasks present many opportunities
for the study of transfer learning. A principal one
among them is the existence of multiple domains that
share the same underlying causal structure for actions.
We describe an approach that exploits this shared
causal structure to discover a hierarchical task struc-
ture in a source domain, which in turn speeds up learn-
ing of task execution knowledge in a new target do-
main. Our approach is theoretically justified and com-
pares favorably to manually-designed task hierarchies
in learning efficiency in the target domain. We demon-
strate that causally motivated task hierarchies transfer
more robustly than other kinds of detailed knowledge
that depend on the idiosyncrasies of the source domain
and are hence less transferable.

Introduction
Sequential decision tasks such as trip planning and real-
time strategy games offer special challenges and oppor-
tunities for studying transfer learning. These domains
are complex, and good performance requires selecting
long chains of actions to achieve subgoals needed for
ultimate success. Reinforcement learning in these do-
mains, because it involves a process of exploratory trial-
and-error, can take a very long time to discover these
long action chains. Fortunately, it is often possible
study smaller versions of these domains that share the
same fundamental structure but that involve fewer ob-
jects and smaller state spaces. Reinforcement learning
on these smaller domains is much faster. If it can dis-
cover the shared structure and transfer it to the large
scale domains, then this provides a much more efficient
way of achieving good performance.

Our approach is based on the claim that the key
to transfer learning is to discover and represent deep
forms of knowledge that are invariant across multiple
domains. Consider the problem of driving to work.
There are surface aspects, such as the amount of time it
takes to get from home to the office or the selection of
the best route, that may be highly regular, but they are
unlikely to transfer when you move to a new city. On
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the other hand, the task structure involved in driving,
such as starting the car, driving, obeying traffic laws,
parking, etc., depends only on the causal structure of
the actions involved, and hence transfers more success-
fully from one city to another. We are interested in
transferring task knowledge between source and target
domains that share the same causal structure, that is,
the actions in both domains depend upon and influence
the same state variables. This is weaker than assuming
that the behavior of actions is exactly identical in two
domains. For instance, although two different cars may
have very different engines that accelerate at different
rates, they both speed up when you press the accelera-
tor and slow down when you hit the brakes.

Many domains have hierarchical task structure that,
once acquired, can lead to faster learning of skills
and efficient planning. The areas of hierarchical plan-
ning (Nau et al. 2003) and its close cousin, hierar-
chical reinforcement learning (Barto and Mahadevan
2003), are both based on this insight. Although most
of the research in these areas employs task hierarchies
designed by hand which requires significant human ef-
fort and expertise, there is some work on learning
these hierarchies (Reddy and Tadepalli 1997; Langley
and Choi 2006; Hogg, Kuter, and Munoz-Avila 2009;
Jonsson and Barto 2006; Mehta et al. 2008b). Since
tasks are like subroutines, automatically learning tasks
addresses the question of what constitutes a good sub-
routine, a long-standing fundamental question in com-
puter science.

Our work builds on the previous research and au-
tomatically induces task hierarchies based on two key
claims: (1) It is possible to uncover the hierarchical task
structure in a domain by analyzing the causal relation-
ships between actions in successful trajectories. (2) The
hierarchical task structure is more robustly transferable
across domains than other kinds of knowledge such as
the utilities of being in different states (the value func-
tion) or the utilities of executing different actions (the
action-value function).

We show how a task hierarchy can be efficiently
discovered from a single source trajectory by exploit-
ing the knowledge of the domain dynamics. In this
respect, our work resembles explanation-based learn-
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Figure 1: The architecture of our system. Action models and a single trajectory from the source task are analyzed
to generate a causally annotated trajectory (CAT). The CAT, along with the action models, is then provided to the
HI-MAT algorithm, which discovers a task hierarchy. The structure of this task hierarchy facilitates faster learning
in a range of target tasks that share the causal structure of the source task.

ing (EBL) which generates explanations of successful
trajectories to deduce sound knowledge (Minton 1988;
Tadepalli and Dietterich 1997; Nejati, Langley, and
Konik 2006). However, unlike the EBL paradigm which
relies on complete knowledge of the actions to learn
sound control rules, we only learn based on the quali-
tative causal structure of actions, which is more readily
available for domains and yields more widely transfer-
able knowledge. The transferred knowledge we focus on
is the hierarchical task structure, which can be further
specialized to learn detailed action policies in the target
task through further experience.

The high-level schema of our approach is shown in
Figure 1. The action models and a successful trajec-
tory are extracted from a source task and analyzed to
identify the causal relationships between the actions
in the trajectory. Our hierarchy discovery algorithm,
HI-MAT (Hierarchy Induction via Models and Trajec-
tories), leverages this causally annotated trajectory to
discover a coherent task hierarchy that minimizes the
number of inter-task causal links. This task hierarchy
is transferable for faster learning in all target tasks that
share the causal structure of the source task.

The rest of the article is organized as follows. The
next section provides the technical background needed
to describe our approach in more detail. It also presents
our main illustrative domain, which is a real-time strat-
egy game called Wargus. This is followed by the main
technical section, which covers the approach. The sec-
tion on empirical evaluation demonstrates that the in-
duced task hierarchies are comparable in effectiveness
to manually-designed hierarchies and that transferring
structured knowledge in the form of task hierarchies
across some domains can be more effective than trans-
ferring the parameters of the optimal policy or value
function. The article concludes with a discussion on
related and future work.

Background and Component
Technologies

In this section, we first briefly describe reinforcement
learning. Next, we describe the Wargus domain, which

serves as a running example for the rest of the article
and which provides a basis for empirical evaluations.
Finally, we discuss the two component technologies of
our approach: action models and task hierarchies.

Reinforcement Learning
Consider the following scenario: an agent is trapped in
an unfamiliar maze and it would like to find the exit as
quickly as possible. It can move around, and when it ex-
its the maze it receives positive feedback. This is an ex-
ample of a sequential decision-making problem, where
the optimal solution is a sequence of actions taken by
the agent that satisfies a global optimality criterion such
as minimum path length. Reinforcement learning (RL)
studies such problems and models them as Markov de-
cision processes (MDPs). An MDP consists of a set of
world states, a set of actions that the agent can execute
to change the state of the world, a transition function
that determines how the state of the world changes with
respect to the executed action, and a reward function
that represents the immediate feedback the agent re-
ceives when executing an action in a state. The tran-
sition and reward functions can be stochastic, that is,
the resultant state and reward upon executing an ac-
tion can exhibit random variations. In a factored state
space, states are described by a set of variables. For
instance, the state in the maze can be represented by
a vector of coordinates rather than by a unique serial
number. An MDP has the Markov property which im-
plies that future states are independent of past states
given the present state and action.

The policy of an agent in an MDP specifies what ac-
tion the agent will execute in each state. To solve an
MDP, the agent must find an optimal policy — one
that accumulates the maximum attainable expected re-
ward. In the maze example, such a policy would follow
the shortest path to the exit from every location in the
maze. The expected cumulative reward for following
a policy that eventually terminates from any state is
well defined and finite. The expected cumulative re-
ward when starting in state s and executing policy π
is called the value of s with respect to π. The optimal
policy and its value function can be computed through



classical approaches based on dynamic programming
when the transition dynamics and the reward function
(collectively called the domain model) are known and
the number of states is small. If the domain model is
unknown, then we can either apply model-based RL,
which learns the action and reward models and applies
dynamic programming, or model-free RL such as Q-
learning, which learns a value function over state-action
pairs and avoids the need to learn a domain model (Sut-
ton and Barto 1998).

Dynamic programming suffers from the “curse of di-
mensionality” — it does not scale to large real-world
domains where the number of states is too large (expo-
nential in the number of state variables) to store in a
table. One way around this is to approximate the value
function or the policy over a small number of informa-
tive features derived from the state variables. Another
approach that greatly mitigates the curse is called hi-
erarchical reinforcement learning (HRL), which lever-
ages the natural task structure in the domain to de-
compose the MDP into several sub-MDPs, solves them
separately, and recomposes them to solve the MDP.
The following sections describe this approach more fully
through the running example of the Wargus resource-
gathering domain.

Wargus Resource-Gathering Domain

Peasant

Townhall

Region of sight

Tree

Goldmine

(a) Wargus map.

Variable Description
p.l Peasant’s location
p.r Peasant’s resource (gold/wood)
r.g, r.w, r.t Indicators for goldmine, forest, or townhall regions
q.g, q.w Quota indicators for gold and wood.

(b) Wargus state variables.

Figure 2: Wargus Resource-Gathering Domain.

Wargus is a real-time strategy game. Two players
inhabit a world that contains entities such as peasants,
goldmines, and townhalls, and resources such as gold
and wood. To win, a player must collect resources,
build various kinds of units (e.g., townhalls, lumber
mills, footmen, dragons), and then deploy those units

to defeat the enemy in battle. We focus on the resource-
gathering aspect of Wargus, where our agent needs to
collect a specified quota of gold and wood as quickly
as possible given an arbitrary map as shown in Fig-
ure 2a. To achieve the resource goal, the agent must
command peasants to collect gold from goldmines and
harvest wood from forests and deposit those resources
at townhalls. The game state is described through the
following variables: p.l represents the coordinate loca-
tion of peasant p, p.r indicates if the peasant is empty-
handed (empty) or carrying a resource (gold or wood),
the binary r.g, r.w, r.t variables indicate if there is a
goldmine, forest, or townhall in the peasant’s immedi-
ate vicinity, and the binary q.g, q.w variables indicate
whether the required quotas of gold and wood have been
met.

The actions available to the agent are MineGold,
ChopWood, Deposit, Goto(loc) for mining gold when in
the vicinity of a gold mine, chopping wood when in the
vicinity of a forest, and navigating to a location loc
on the map (this uses the internal path-finding routine
of the game). If MineGold is executed when an empty
peasant p is in the vicinity of a goldmine, then this will
change p.r to gold; otherwise, this action will have no ef-
fect (the game state does not change). Similarly, a suc-
cessful ChopWood will change p.r from empty to wood.
A successful Deposit will deposit the peasant’s resource
at the townhall, set p.r to empty, and provide a posi-
tive reward to the agent. Even though the actions have
deterministic outcomes, they appear to behave nonde-
terministically due to the incomplete representation of
the world provided by the state variables. The overall
goal of achieving the requisite quotas q.g = 1∧ q.w = 1
is attained by having peasants repeatedly collect gold
and wood from goldmines and forests, and deposit these
resources at townhalls. Employing Boolean variables to
represent the map’s topography and the resource quo-
tas actually results in non-Markovian system dynam-
ics and is approximated with probability distributions
within the MDP. For example, transitioning from an
unmet quota to meeting it actually depends upon the
number of deposits, but this is approximated by the
distribution seen at the leaf for q.g′ in Figure 3.

Action Models

Our approach to discovering task hierarchies relies on
compact, inspectable action models. An action model
represents the effect that executing an action has on the
state variables. For instance, depositing gold at a town-
hall changes the peasant’s resource variable p.r from
gold to empty. We employ dynamic Bayesian networks
(DBNs) with context-specific independence to represent
the action models (see Figure 3). A DBN is a bipar-
tite directed graph; each node represents a state vari-
able and each edge represents a direct causal depen-
dence (Dean and Kanazawa 1990). The first stage of
the graph (shown on the left in Figure 3) represents the
state variables before the action is executed, and the
second stage (on the right) represents the state after
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Figure 3: The dynamic Bayesian network model for the Deposit action in the Wargus domain. The left and right
columns of elliptical nodes represent the state variables before and after the action is executed. The diamond node
labeled R represents the immediate reward received after the action is executed. The peasant resource p.r′ and the
gold quota q.g′ nodes have been expanded to show the decision tree representation of their conditional probability
distributions. The internal nodes of the tree check conditions involving the state variables, such as the peasant being
near a townhall (r.t = 1?), and the leaves contain the distributions over resultant values, such as executing Deposit
near a townhall when carrying gold results in the peasant’s resource being empty (p.r′ ← empty) with probability
1, or that the gold quota is met with probability 0.2 if all the conditions are satisfied.

the action is executed. The reward received when exe-
cuting the action is represented by the diamond-shaped
node in the second stage.

Each node v in the second stage contains an in-
spectable description of the conditional probability dis-
tribution Pr(v|Parents(v)), where Parents(v) is the set
of state variables with edges leading into v. We assume
that this conditional probability distribution is repre-
sented as a decision tree that captures context-specific
dependencies. The internal choice nodes of the decision
tree at node v test the values of the Parents(v) and the
leaf nodes specify a probability distribution over the
values of v in the resulting state.

A DBN for the Deposit action in Wargus is shown in
Figure 3. The tree structure for p.r′ represents the fact
that it remains unchanged if the peasant is not near a
townhall or when it is not carrying gold or wood; other-
wise, the variable changes (with high probability) to re-
flect the fact that the Deposit succeeds and p.r becomes
empty. This captures the fact that the probability dis-
tribution over p.r′ depends on the context — it is more
compact than representing the probability distribution
as a table that enumerates all possible combinations of
values of the parents (Boutilier et al. 1996).

In the work described in this paper, the action models
have been hand-engineered. In other work, Wynkoop
and Dietterich (2008) have shown how to learn these
action models from exploratory trial-and-error trajec-
tories.

Task Hierarchies

Task hierarchies play a central role in efficient planning,
plan recognition, and explanation generation. They are
essential for the success of automated planning in large
real-world applications where planning at the level of
primitive actions is intractable. Task hierarchies enable
the planner to plan at multiple time scales where plans
at higher levels (larger temporal scales) are refined into
sub-plans at lower levels (finer temporal scales). For
instance, someone planning to attend an international
conference is likely to first arrange for funding before
registering for the conference, which in turn may be
considered before choosing which travel website to use.
The planning process is unlikely to begin by consider-
ing which muscle to move first, although the plan ex-
ecution could indeed begin that way. The structure of
the task hierarchy and the state abstraction possible at
each task constrain the hierarchical policies and conse-



quently speed up learning.
Our particular approach is based on the MAXQ

framework for representing task hierarchies (Dietterich
2000). Each task in a MAXQ task hierarchy has a goal
or termination condition that describes what the task
is trying to achieve and the conditions under which it
can be invoked. It also has a set of child tasks that
it can invoke recursively to achieve its goal and a set
of relevant state variables, which is called the state ab-
straction. The state abstraction constrains the repre-
sentation of the value function for policies within that
task. The root of the task hierarchy corresponds to the
overall MDP, while the leaves correspond to primitive
actions. Given a MAXQ task hierarchy, a hierarchical
policy is a collection of local policies, one for each task.
Each local policy maps the abstracted state within the
task to its child tasks. During execution of a hierarchi-
cal policy, a task invoked by its parent follows its local
policy until a state is reached where its goal or termina-
tion condition is true. At this point, control returns to
the calling parent task, along with the reward obtained
during its execution. Typically, an agent searches for
a recursively optimal policy, where the local policy for
each task optimizes the expected total reward within
that task assuming that all the descendant tasks are
solved in a recursively optimal fashion.

Root

Get Gold Get Wood

Goto(loc)MineGold ChopWood Deposit

GWDeposit

Figure 4: A task hierarchy for the Wargus resource-
gathering domain.

The Wargus resource-gathering domain is too com-
plex for a non-hierarchical solution, because the larger
the map, the larger the state space and the larger the
number of navigation actions available at each state.
However, the task hierarchy shown in Figure 4 decom-
poses the overall problem into simpler subproblems.
The Root task tries to learn a policy for meeting the
overall resource quota in the original MDP by solving
and combining the solutions of three subtasks: a Get-
Gold subtask that moves a peasant to the vicinity of
a goldmine and then mines for gold, a GetWood sub-
task that does the same for wood, and a GWDeposit
subtask that brings a peasant carrying gold or wood
back to the townhall to deposit the resource. Note
that because GetGold is not involved in getting wood
or depositing anything, it does not need to know any-
thing about the townhall (r.t) and wood (r.w) regions;

further, this task is only active when the peasant is
carrying nothing (p.r = empty). Similarly, GWDeposit
does not need to know about mining gold or chopping
wood and is active only when the peasant is carrying
something. Thus, each of these subtasks describes a
sub-MDP with fewer state variables and actions than
the original problem.

In standard HRL, a domain-specific task hierarchy
such as the one in Figure 4 is designed by hand and
provided to the system. Value functions for different
subtasks are learned by applying hierarchical RL al-
gorithms such as MAXQ-0 learning. This hierarchical
approach mitigates the curse of dimensionality of flat
MDPs for two reasons. First, it increases the temporal
scales at which decisions are made. For example, con-
sider a peasant who is moving toward a goldmine. In
the hierarchical MDP, the peasant would be executing
the GetGold subtask, so when it reaches the mine, it will
immediately mine gold. But in the flat MDP, the agent
must re-evaluate all actions at each time step, so once
the peasant reaches the mine, the agent must decide
whether to mine gold or perhaps navigate to a forest
instead. The hierarchy serves to guide trail-and-error
exploration. The second benefit of the hierarchy is that
it enables state abstraction, so that subtasks can em-
ploy a lower-dimensional representation for their value
functions, which speeds learning.

Technical Approach
We consider source and target MDPs where the agent
seeks to achieve a known goal. In such MDPs, there is
a goal state (or a set of goal states), and the optimal
policy for the agent is to reach such a state as quickly
as possible. We assume that we are given DBN action
and reward models characterizing the source MDP, as
well as a successful trajectory. Our objective is to au-
tomatically induce a task hierarchy that can suitably
constrain the policy space in the source domain and
can transfer to achieve faster learning in related target
problems.

Causal Analysis
The input trajectory is a sequence of actions that
achieves the overall goal in the source problem. A
trajectory in Wargus is a sequence of Goto, MineGold,
ChopWood, and Deposit actions that together achieves
the requisite quota of gold and wood. The trajectory is
first annotated with causal information using the DBN
models before it is fed to the HI-MAT algorithm. The
intent of this annotation is to identify how executing
actions affects the state variables that are relevant to
future actions and, ultimately, the goal of the overall
task. For example, we add information to indicate that
the MineGold and ChopWood actions enable the subse-
quent Deposit action by setting the peasant’s resource
p.r to something other than empty, which is required
for Deposit to succeed.

The annotation is based on the relevance of vari-
ables to actions which is gleaned from the DBNs. More
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Figure 5: A causally annotated trajectory (CAT) for the Wargus domain. Variables: p.l = peasant location; p.r =
peasant resource; r.g, r.w, r.t = regions; q.g, q.w = quotas. Actions: Goto, MG = MineGold, CW = ChopWood, Dep
= Deposit; the trajectory is prepended with Start which sources all the variables, and appended with End which sinks
all the variables. An edge goes from one action to another (later in the trajectory) when a variable is relevant to
both, but no intervening action; edges are labeled with the associated variables. For succinctness, p.∗ = {p.l, p.r},
and r.∗ = {r.g, r.w, r.t}.

specifically, a variable v is relevant to an action a in
state s if the reward and transition dynamics for a ei-
ther check or change v in s; it is irrelevant otherwise.
In Figure 3, the peasant being near a townhall (r.t) is
always relevant to Deposit because it is in the root node
of the tree, but the peasant’s resource (p.r) is only rele-
vant when the peasant is near a townhall. A causal edge

a
v−→ b connects a to another action b (b following a in

the trajectory) iff v is relevant to both a and b and ir-
relevant to all actions in between. A causally annotated
trajectory (CAT) is the original trajectory annotated
with all the causal edges, sandwiched between dummy
Start and End actions for which all variables are defined
to be relevant. The CAT is preprocessed to remove any
cycles present in the original trajectory (failed actions,
such as an unsuccessful Deposit when the peasant is
not near a townhall). A CAT for Wargus is shown in
Figure 5.

The HI-MAT Algorithm

Given a CAT, the DBN models, and the MDP’s goal
as input, the HI-MAT algorithm discovers hierarchi-
cal structure by recursively partitioning the CAT. Each
partition corresponds to a candidate subtask. This par-
titioning process works backward from the goals of the
task. It regresses each goal through the action models
to discover preconditions and employs a heuristic proce-
dure to determine small CAT segments responsible for
achieving the goal. For example, to achieve the over-
all goal in Wargus, a Deposit action must be executed.
By analyzing the DBN for Deposit and considering the
conditions that allow q.g to be set to 1, the subgoal of
p.r = gold is identified, which then leads to the discov-
ery of the subsequence of Goto and MineGold actions
that achieve this new subgoal, and so on. The HI-MAT
algorithm is outlined in Algorithm 1 and illustrated for
the Wargus domain in Figure 6.

The HI-MAT algorithm partitions the CAT into
unique segments, each achieving a single literal or a
conjunction of literals (due to merging of segments). It
is then invoked recursively on each element of the par-
tition. HI-MAT bottoms out if either the CAT contains
only a single primitive action, or it consists of actions

Algorithm 1 HI-MAT
Input: CAT Ω, DBN models, Goal predicate G.
Output: Task T .

1: if Ω contains a single action a then
2: return task T with termination G, state abstraction

based on variables relevant to a, and child a
3: else if actions in Ω have identical sets of relevance then
4: return task T with termination G, state abstraction

based on Ω’s relevance, actions in Ω
5: Extract trajectory segments from Ω for goal literals and

any literals entering the segments
6: if a segment = Ω then
7: Create two segments: one with the ultimate action

and the other with the rest and the ultimate action’s
precondition as its goal

8: Merge all overlapping segments
9: for every CAT segment do

10: Invoke HI-MAT recursively on it to discover the sub-
task hierarchy and add it as a child of T

11: Set termination for T = G
12: Set state abstraction for T based on the relevant vari-

ables from Ω’s merged DBN
13: Add all primitive actions to T that share DBN structure

but are not already included
14: return task T

whose relevances are identical. In the latter case, any
further partitioning would only yield subtasks with the
same state abstraction as the parent task and hence
would not provide any further state abstraction bene-
fit. Figure 7 shows the final task hierarchy induced by
HI-MAT in Wargus with intuitive names for the sub-
tasks based on their termination conditions and state
abstraction. Note that the TGoto(townhall) subtasks
have been merged by HI-MAT, because discovered sub-
tasks with identical termination conditions and identi-
cal child tasks (recursively) are recognized as multiple
calls to a unique subtask.
Discovering Tasks. For each literal in the goal con-
dition, HI-MAT extracts the corresponding segment of
the trajectory by finding the set of temporally con-
tiguous actions in the CAT such that the final action
achieves the literal and no other actions within the seg-
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(a) The entire CAT is associated with the root task of collecting gold and wood. The root task terminates when the requisite
amount of gold and wood have been collected.
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(b) The segment corresponding to collecting the requisite amount of gold (q.g = 1) is extracted yielding the associated subtask.
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(c) The segment corresponding to collecting the requisite amount of wood (q.w = 1) is extracted. Other literals entering this
segment result in segments that are merged together with the q.g = 1 segment (merged goal condition not shown for clarity).
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(d) The resultant task hierarchy after an entire parse of the CAT. The multiple invocations of the task that gets the peasant
to the townhall (r.t = 1) within the CAT are merged into one unique task. However, the tasks that empty the peasant’s
resource (p.r = 0) are not merged because, while GDep and WDep are proxies for the Deposit action, the former’s abstraction
includes q.g while that of the latter includes q.w instead. The primitive Goto(loc) action is wrapped within tasks that get the
agent to particular types of regions.

Figure 6: Illustrating the HI-MAT algorithm in the Wargus domain. The left-hand side shows the CAT scanning
process, while the right-hand side shows the task hierarchy being built.

ment have any causal influences outside it. Note that
the temporal contiguity of the actions that we assign
to a task is required by the subroutine semantics of
a hierarchical policy. In Figure 6b, HI-MAT extracts
the segment responsible for collecting the gold quota
(achieving q.g = 1), and discovers the subtask asso-
ciated with the segment as a child of the root task.

Figure 6c shows how HI-MAT extracts the segment for
collecting the wood quota (achieving q.w = 1) by stop-
ping the head of the segment at the action after the
Dep action that achieves q.g = 1. Note that the causal
annotation allows HI-MAT to correctly incorporate any
redundant Goto actions that might be present in either
of these segments.



Given an extracted segment, HI-MAT considers all
literals that enter it (from earlier in the CAT) for fur-
ther segment extraction to ensure that these literals are
accounted for. In Figure 6c, the segment associated
with collecting the wood quota (q.w = 1) has two in-
coming edges: one for the peasant’s resource p.r, and
the other for the peasant’s location p.l. Consequently,
HI-MAT extracts two segments associated with these
literals. However, both these segments overlap with the
segment that collects the gold quota (q.g = 1). (Note
that extracted segments can only overlap fully when
their shared ultimate action achieves the literals of all
these segments.) HI-MAT merges the overlapping seg-
ments by replacing them with one that is assigned a
conjunction of the subgoal literals. Thus, the merged
goal condition is q.g = 1∧p.r = empty∧p.l = townhall,
but the second and third literals are always true when
the first becomes true and we leave them out to reduce
clutter. CAT scanning is repeated until all literals are
accounted for; it can be proved that the set of subtasks
output by the algorithm is independent of the order
in which the unresolved literals are picked. If an ex-
tracted trajectory segment is equal to the entire CAT,
then this implies that the segment achieves only the lit-
eral emerging out of the ultimate action. In this case,
the trajectory is split into two new segments: one seg-
ment contains only the ultimate action, and the other
segment contains everything prior to the ultimate ac-
tion. The goal of this second segment is defined to be
the preconditions of the ultimate action. For example,
the CAT associated with collecting gold cannot be split
further based on the annotation so it is forcibly split
into two segments: one containing only the ultimate
Dep action and another containing all actions prior to
Dep within the CAT whose goal is to achieve the goal
of getting the peasant back to the townhall with some
gold.

Defining the Child Tasks and Termination Con-
dition. To define a task, we must specify the set of
child tasks that it can invoke and its termination predi-
cate. The child tasks are those tasks that appear within
all trajectory segments that constitute the task. The
termination predicate is computed by taking the literal
that was achieved by the segment and generalizing it
subject to the conditions that appear in the DBNs. For
example, although the specific condition for getting the
peasant to a townhall involves both the peasant’s loca-
tion p.l and the townhall indicator r.t. = 1, the DBN
only checks the latter and consequently only r.t = 1
is the termination condition. Initially, the root task
is associated with the entire CAT, and its termination
condition is equal to the MDP’s goal predicate as shown
in Figure 6a.

Determining State Abstraction. Every task’s lo-
cal policy in the hierarchy is dependent only on a sub-
set of the state variables. For instance, the agent can
be oblivious to the location of forests when executing
the task for collecting gold. HI-MAT tries to assign

Root

Harvest WoodHarvest Gold

Get Gold Get WoodPut Gold Put Wood

MineGold ChopWoodGDeposit WDeposit

G t (l )

GGoto(goldmine) WGoto(forest)TGoto(townhall)

Goto(loc)

Figure 7: HI-MAT hierarchy for Wargus. The task
names have been assigned intuitively based on the ter-
mination conditions. Note that although HI-MAT does
not explicitly create parameterized subtasks, the dif-
ferent Goto subtasks are equivalent to bounding the
location parameter to a goldmine, forest, or townhall
because they only terminate when the peasant is in the
vicinity of one of those entities.

the smallest set of relevant state variables to every task
in its induced hierarchy to help expedite the learning
of the local task policies. It determines this state ab-
straction by first constructing a merged DBN for the
set of actions in the segment associated with the task
by unioning the edges of the individual DBNs. This
merged DBN represents variable dependencies for any
sequence of these actions. Given the merged DBN for a
set of actions, if we compute Parents(· · · (Parents(R)))
until convergence, then the final set of variables is rel-
evant to this set of actions.

The state abstraction for a task is the union of the
set of relevant variables of the merged DBN for the
task and the set of variables appearing in the termina-
tion predicate. When a task’s relational termination
condition involves other variables not already in the
abstraction, these variables are added to the state ab-
straction. This has the effect of creating a task with
these added variables as the formal parameters or ar-
guments. In HI-MAT, this parameterization is implicit
in the termination conditions rather than being explicit
as in Dietterich (2000). For instance, the state abstrac-
tion of the navigation task only involves the peasant’s
location p.l. However, the 3 navigation tasks that ter-
minate when the peasant is at a goldmine, forest, or
townhall are equivalent to one explicitly parameterized
navigation task with a single argument that is bound
to a goldmine, forest, or townhall as needed.

Generalizing the Task Hierarchy. Because the
CAT is based on a single successful trajectory in the
source problem, not all primitive actions might be ob-
served. Incorporating only the observed actions might
limit the scope of transfer. To make the task hierarchy
more generally applicable, HI-MAT checks if there are
unobserved primitive actions that can be incorporated



into a task T with primitive child tasks without adding
more state variables to T ’s current state abstraction.
It does this by creating a merged DBN for the child
actions and incorporating an unobserved action if its
DBN is a subgraph of the merged DBN. The rationale
here is to add unobserved actions that have the same
causal effects as those of the child actions. For exam-
ple, the given trajectory might only involve a few of
the Goto actions, but all unobserved Goto actions are
added to the induced task hierarchy because they all
affect the same set of variables. However, if one of the
Goto actions affects a different variable, then it will not
be incorporated even if it might turn out to be useful
in a target task.

Theoretical Analysis

In Mehta et al. (2008b), we showed that the HI-MAT
algorithm enjoys the following properties under suitable
conditions.

1. Safety: The state abstractions produced by the al-
gorithm correctly represent the recursively optimal
hierarchical value function for the hierarchy.

2. Consistency: HI-MAT outputs a task hierarchy con-
sistent with the input trajectory, that is, it can gen-
erate the input trajectory with an appropriate value
function.

3. Compactness: The abstraction of any task in the
task hierarchy is maximally compact, that is, it does
not contain redundant state variables.

The first property guarantees that the value function
of the desired policy is representable by the hierarchy.
The first two properties together imply that one could
solve the input problem starting with the task hierar-
chy and learning an appropriate value function. Com-
pactness determines the speed of learning in the target
task after transfer — the more compact the abstraction,
the fewer the number of parameters to be learned, and
hence the faster the learning. The third property im-
plies that the abstraction is as compact as possible while
guaranteeing safety with respect to the input models.

Empirical Evaluation
In this section, we verify two hypotheses: (a) the hierar-
chies induced by HI-MAT speed up convergence to the
optimal policy in related target problems, and (b) the
HI-MAT hierarchies are applicable to and will acceler-
ate learning in RL problems that are different enough
from the source problems that value functions either do
not transfer or lead to poor transfer.

Transfer of the Task Hierarchy

We test the transfer performance of task hierarchies
within the Wargus domain. We consider target prob-
lems whose specifications—number of peasants, gold-
mines, forests, and the size of the map—are scaled up
from those of the source problems. This scaling along
with the random placement of the entities in the source

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0  10  20  30  40  50  60

E
pi

so
de

 D
ur

at
io

n

Episode

Q
Manual
HI-MAT

Figure 8: Performance of 3 learning algorithms in a
target Wargus problem (averaged over 10 runs). Source
problem: 25×25 grid, 1 peasant, 2 goldmines, 2 forests,
1 townhall, 100 units of gold, 100 units of wood; tar-
get problem: 50 × 50 grid, 3 peasants, 3 goldmines,
3 forests, 1 townhall, 300 units of gold, 300 units of
wood. Learning algorithms: the non-hierarchical RL al-
gorithm Q-learning (Q), the hierarchical RL algorithm
MAXQ-0 applied to the manually-designed hierarchy
(Manual), and MAXQ-0 applied to the HI-MAT in-
duced hierarchy (HI-MAT). Note that although there is
some improvement via experience in the HI-MAT learn-
ing curve, it looks flat because of the scale of the vertical
axis required to show the learning curves of the much
slower learners.

and target problems ensures that, although the proba-
bility parameters of the transition dynamics differ be-
tween the two, they are structurally the same. For in-
stance, although the townhall is in a different location in
the target map, depositing wood in its vicinity employs
the same causal relationships as in the source map.

We compare 3 approaches: (1) a basic non-
hierarchical RL algorithm called Q-learning (Q),
(2) the hierarchical RL algorithm MAXQ-0 applied
to the manually-designed hierarchy (Manual), and
(3) MAXQ-0 applied to the HI-MAT induced hierar-
chy (HI-MAT). The source problem is solved using non-
hierarchical RL, and a successful trajectory is generated
from it for HI-MAT. Figure 8 shows the total duration
of an episode as a function of the number of episodes
experienced, averaged over 10 runs.

A surprise to us was that HI-MAT’s hierarchy is
faster to converge than the manually-designed one. It
turns out that HI-MAT was able to find a more refined
task hierarchy with stricter termination conditions for
each subtask than our hand-written hierarchy. Conse-
quently, the reduced policy space in the target problem
yields a greater speedup in learning than reducing the
number of value parameters via subtask sharing as in
the manually-designed hierarchy. The improved rate of



convergence is in spite of the fact that HI-MAT does
not currently merge different invocations of the same
explicitly parameterized subtask, so there is room for
further improvement.

This experiment reveals the spectrum of performance
based on the structure of the task hierarchy transferred
across problems. The performance of Q is equivalent to
that of transferring the shallowest task hierarchy (where
all the primitive actions are children of the root task).
Although such a hierarchy is applicable to a broader
range of target problems, no knowledge is transferred
from the source problem and the net effect is identical
to learning in the target from scratch. The manually-
designed task hierarchy is slightly more constrained
than the shallowest hierarchy and consequently Man-
ual performs better in the target problem, but it has
a more limited transfer horizon than Q. Although the
HI-MAT hierarchy is even more constrained and conse-
quently HI-MAT performs the best, it still has the same
transferability as the manually-designed hierarchy, be-
cause the additional policy constraints are only made
at the level of the causal relationships in the transition
dynamics and not at the parameter level.

Transferring Structure over Value

To test whether hierarchical structure transfers better
than value functions, we design source and target prob-
lems in the Taxi domain (Dietterich 2000), where a taxi
transports a passenger from a source location to a des-
tination within a grid world. The source and target
problems differ only in their wall configurations, while
the passenger sources and destinations stay the same as
shown in Figure 9. This setup is specifically engineered
so that a value function from the source domain is a
syntactically legal value function in the target domain
(i.e., the state and action spaces are identical). How-
ever, the differing wall configurations affect the partic-
ular parameterization of the transition dynamics in the
two problems. The difference between the source and
target problems in the Wargus domain renders this kind
of direct value-function transfer impossible.

1 2 1 2

34 34

(a) Source problem.

1 2 1 2

34 34

(b) Target problem.

Figure 9: Source and target problems in the Taxi do-
main. In this domain, a taxi needs to get a passenger
from one numbered location to another on the grid.
Source and target problems differ only in the configu-
ration of the grid walls.

Figure 10 shows a manually-designed task hierarchy
for Taxi. The decomposition uses the knowledge that
the destination of the passenger is irrelevant when the
taxi first goes to pick up the passenger, that the source
is irrelevant once the taxi has picked up the passen-
ger, and that the location of the passenger is irrelevant
when the taxi is navigating to a preselected location.
The HI-MAT induced hierarchy is exactly the same ex-
cept that it has two navigation tasks for picking up
and dropping off the passenger instead of the single pa-
rameterized Goto(l) task. Both task hierarchies encode
strong policy constraints, such as prefixing the goal for
navigation based on the passenger’s information, and
facilitate quicker convergence to the optimal policy.

RootRoot

Get Put

Pickup DropoffGoto(l)

l/pass.loc l/pass.dest

North South East West

Figure 10: A manually-designed task hierarchy for the
Taxi domain. The explicit binding for Goto’s argument
l to either the passenger’s location (pass.loc) or desti-
nation (pass.dest) is part of the structural knowledge.

Figure 11 shows the performance of the three learn-
ers, Q, Manual, HI-MAT, in the Taxi domain along with
their variants (suffixed with the phrase “with value”)
in which the value functions are initialized with opti-
mal value functions learned in the source problem. We
observe that the performance of the HI-MAT induced
hierarchy converges to the optimal policy at a rate com-
parable to that of the manually-designed hierarchy. Al-
though the source-target problem pairs in Taxi allow
value-function transfer to occur, the target problems
are still different enough that the agent has to “unlearn”
the old policy through epsilon-greedy exploration. This
leads to negative transfer in which transferring either
the flat or the hierarchical value functions lead to worse
rates of convergence to the optimal policy than trans-
ferring just the hierarchy structure with uninitialized
policies (zeroed value functions) or even flat learning
from scratch. Transferring the navigation policies from
the source problem initially causes the agent to keep
running into walls in the target problem. This indicates
that transferring structural knowledge can be superior
to transferring value functions, especially when the tar-
get problem differs significantly in terms of its optimal
policy.

An explanation for the result is that an optimal pol-
icy is tuned to a particular instance of a domain. It
will remain optimal in a very small set of related in-
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Figure 11: Performance in the target Taxi domain (av-
eraged over 20 runs). Learning algorithms: the non-
hierarchical RL algorithm Q-learning (Q), the hierar-
chical RL algorithm MAXQ-0 applied to the manually-
designed hierarchy (Manual), MAXQ-0 applied to the
HI-MAT induced hierarchy (HI-MAT), and their vari-
ants in which the optimal value function in the source
is also transferred along with the structure, denoted by
the phrase “with value”.

stances, because it depends intimately on the transi-
tion probabilities and the immediate reward values of
the instances. Consequently, the corresponding optimal
value function has very limited transferability. On the
other hand, a task hierarchy embodies domain knowl-
edge at a more abstract level than the value function
and is more broadly applicable across instances of the
domain. Given a transferred task hierarchy, the hierar-
chical policy can then be optimized individually for the
target problems.

Related Work on Transfer

Traditionally, reinforcement learning has focused on
learning in the context of the single task or planning
domain at hand. Transfer learning goes beyond this
by seeking to exploit the similarities between different
tasks and transferring knowledge learned in one task to
another. Various elements in reinforcement learning are
amenable to knowledge transfer including value func-
tions, policies, models of system dynamics, and task
hierarchies (as we have considered in our work). These
elements lie along the spectrum going from transfer-
ring detailed knowledge with a narrow scope to more
abstract knowledge with a broader scope of transfer.
Transferring detailed knowledge, when possible, leads
to huge speedup, but transferring more abstract knowl-
edge leads to transfer across a broader range of tasks.

Value functions or policies transfer to a new task only
when the target task is almost identical to the source
task in terms of the action dynamics and rewards. For
instance, (1) the value function can be transferred as

an auxiliary reward signal for “reward shaping” when
part of the state space is identical (Konidaris and Barto
2006), (2) compact policy constraints (such as when the
agent should pass versus shoot in soccer-like games)
can be employed for advice in the target task (Torrey
et al. 2007; Taylor and Stone 2009), or (3) previously
learned policies can be leveraged as macro actions when
exploring in a new task (Fernández and Veloso 2006).

Task hierarchies are transferable to target tasks that
are different from the source in terms of action dynam-
ics or rewards, as long as the qualitative causal struc-
ture and variable dependencies of actions are preserved.
There have been several approaches to induce hierarchi-
cal task structure in RL including HEXQ which uses a
heuristic based on relative rates of change of state vari-
ables in trajectories (Hengst 2002), and VISA which
learns the structure only from DBN models (Jonsson
and Barto 2006). Our approach takes advantage of
the DBN models as well as the trajectories to pro-
duce more compact hierarchies which result in better
transfer. Extracting causal structure from the trajec-
tories to discover the task dependencies is common to
the EBL approach adopted by other systems (Tadepalli
and Dietterich 1997; Nejati, Langley, and Konik 2006).
However, by relying on only the qualitative structure of
the domain dynamics and abstracting away the detailed
quantitative model, our approach learns more widely
transferable knowledge than these other approaches.
Due to the generality of the transferred knowledge, the
learner does require further experience in the target
task to perform optimally. Besides being transferred
as structural knowledge, task hierarchies also facilitate
modular value-function transfer between two dissimilar
RL problems that share common subtasks even though
the overall flat value function may not transfer (Mehta
et al. 2008a).

All the transfer methods discussed above require
some correspondence between the state representations
of the source and target tasks. In some cases, the trans-
ferred knowledge is based on an agent-centric represen-
tation that is common across all the tasks (Mehta and
Tadepalli 2005; Konidaris and Barto 2006). In other
cases, an explicit mapping between state variables is ei-
ther provided or learned (Taylor and Stone 2009). In
our work, we employ an agent-centric representation
and allow for scaling of the domains of the state vari-
ables from the source to the target task. This is possi-
ble because the state abstractions of the subtasks only
specify which variables are involved, and the hierarchi-
cal value function can be relearned for different variable
domains. In contrast, relational reinforcement learning
addresses transfer via a higher-order generalization of
the state space. Here, the world is represented as a first-
order MDP, where the states are represented via pred-
icates in first-order logic. The relational value function
or policy generalizes to all grounded instances of the
first-order MDP by virtue of the relational representa-
tion (Wang, Joshi, and Khardon 2008).



Conclusion and Future Work

We presented an approach to automatically induce task
hierarchies from source problems and transfer these
hierarchies to related target problems that share the
causal structure of the system dynamics. Given action
models, our method, HI-MAT, analyzes the causal and
temporal relationships among the actions in a success-
ful trajectory and partitions the trajectory recursively
into a task hierarchy. We show that these induced hier-
archies perform comparably to manually-designed hier-
archies and provide more effective transfer than direct
transfer of the value function.

There are several future directions to pursue. Our
method assumes that the given trajectory can be parsed
as the execution trace of a hierarchical policy. In some
domains, there are many good policies, only some of
which will exhibit hierarchical structure (e.g., Kael-
bling (1993)), so a trajectory extracted from a learned
non-hierarchical policy is unlikely to possess this struc-
ture. In other domains, hand-designed hierarchies ex-
ploit parameter bindings in the subtask hierarchy to
encode non-Markovian intentions (e.g., Parr and Rus-
sell (1995)), which greatly improves the compactness
of the policies. An important open question is how
to develop algorithms for discovering such hierarchical
policies.

Our work has dealt with near transfer where the
source and target problems share the causal structure
of their domain dynamics. Although we cannot expect
positive transfer between arbitrary pairs of unrelated
domains, people are able to effectively transfer between
much more disparate domains than what computers are
able to do at present. We need to be able to trans-
fer between increasingly disparate domains by suitably
constraining the search to find an effective mapping be-
tween the state variables and actions of the two do-
mains, for example by using analogical reasoning (Hin-
richs and Forbus 2007). In our work, the structure
of the task hierarchy is transferred without alteration.
However, the more different the target task, the less
this is likely to be useful. Various adaptations might
be necessary before the hierarchy is plugged into the
target problem. For instance, the termination condi-
tions or state abstraction might need to be changed,
or the task structure might need some tweaking. We
could even try transferring parts of the induced task
hierarchy when the entire hierarchy fails to transfer.

Acknowledgments

We thank Mike Wynkoop for many productive discus-
sions. We are also grateful to the meticulous reviewers
for their thoroughly helpful feedback. This material is
based upon work supported by the Defense Advanced
Research Projects Agency (DARPA) under Contract
No. FA8750-05-2-0249 and the Army Research Office
(ARO) under Contract No. W911NF-09-1-0153. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and

do not necessarily reflect the views of DARPA, the Air
Force Research Laboratory (AFRL), ARO, or the US
government.

References

Barto, A., and Mahadevan, S. 2003. Recent advances
in hierarchical reinforcement learning. Discrete Event
Dynamic Systems 13(4):341–379.

Boutilier, C.; Friedman, N.; Goldszmidt, M.; and
Koller, D. 1996. Context-specific independence in
Bayesian networks. In Conference on Uncertainty in
Artificial Intelligence.

Dean, T., and Kanazawa, K. 1990. A model for reason-
ing about persistence and causation. Computational
Intelligence 5(3):142–150.

Dietterich, T. 2000. Hierarchical reinforcement learn-
ing with the MAXQ value function decomposition.
Journal of Artificial Intelligence Research 13:227–303.

Fernández, F., and Veloso, M. 2006. Reusing and
building a policy library. In International Conference
on Automated Planning and Scheduling.

Hengst, B. 2002. Discovering hierarchy in reinforce-
ment learning with HEXQ. In International Confer-
ence on Machine Learning.

Hinrichs, T., and Forbus, K. 2007. Analogical learning
in a turn-based strategy game. In International Joint
Conference on Artificial Intelligence.

Hogg, C.; Kuter, U.; and Munoz-Avila, H. 2009.
Learning hierarchical task networks for nondetermin-
istic planning domains. In International Joint Confer-
ence on Artificial Intelligence.

Jonsson, A., and Barto, A. 2006. Causal graph based
decomposition of factored MDPs. Journal of Machine
Learning Research 7:2259–2301.

Kaelbling, L. 1993. Hierarchical reinforcement learn-
ing: Preliminary results. In International Conference
on Machine Learning.

Konidaris, G., and Barto, A. 2006. Autonomous shap-
ing: Knowledge transfer in reinforcement learning. In
International Conference on Machine Learning.

Langley, P., and Choi, D. 2006. Learning recursive
control programs from problem solving. Journal of
Machine Learning Research 7:493–518.

Mehta, N., and Tadepalli, P. 2005. Multi-agent shared-
hierarchy reinforcement learning. International Con-
ference on Machine Learning Workshop on Rich Rep-
resentations in Reinforcement Learning.

Mehta, N.; Natarajan, S.; Tadepalli, P.; and Fern, A.
2008a. Transfer in variable-reward hierarchical rein-
forcement learning. Machine Learning 73:289–312.

Mehta, N.; Ray, S.; Tadepalli, P.; and Dietterich, T.
2008b. Automatic discovery and transfer of MAXQ
hierarchies. In International Conference on Machine
Learning.



Minton, S. 1988. Learning Search Control Knowledge:
An Explanation-Based Approach. Kluwer Academic
Publishers.

Nau, D.; Au, T.; Ilghami, O.; Kuter, U.; Murdock,
J.; Wu, D.; and Yaman, F. 2003. SHOP2: An HTN
planning system. Journal of Artificial Intelligence Re-
search 20:929–935.

Nejati, N.; Langley, P.; and Konik, T. 2006. Learning
hierarchical task networks by observation. In Interna-
tional Conference on Machine Learning.

Parr, R., and Russell, S. 1995. Approximating op-
timal policies for partially observable stochastic do-
mains. In International Joint Conference on Artificial
Intelligence.

Reddy, C., and Tadepalli, P. 1997. Learning goal
decomposition rules using exercises. In International
Conference on Machine Learning.

Sutton, R., and Barto, A. 1998. Reinforcement Learn-
ing: An Introduction. MIT Press.

Tadepalli, P., and Dietterich, T. 1997. Hierarchical
explanation-based reinforcement learning. In Interna-
tional Conference on Machine Learning.

Taylor, M., and Stone, P. 2009. Transfer learning for
reinforcement learning domains: A survey. Journal of
Machine Learning Research 10:1633–1685.

Torrey, L.; Shavlik, J.; Walker, T.; and Maclin, R.
2007. Relational macros for transfer in reinforcement
learning. In International Conference on Inductive
Logic Programming.

Wang, C.; Joshi, S.; and Khardon, R. 2008. First
order decision diagrams for relational MDPs. Journal
of Artificial Intelligence Research 31:431–472.

Wynkoop, M., and Dietterich, T. 2008. Learning MDP
action models via discrete mixture trees. In European
Conference on Machine Learning.

Neville Mehta is a Ph.D. candidate at Oregon State
University. Besides dabbling in various facets of ma-
chine learning, his primary research interests include
automating the discovery of models and hierarchical
structure for efficient planning and reinforcement learn-
ing. In his spare time, he tries not to apply his research
to playing the guitar or tennis.
Soumya Ray is an assistant professor in the depart-
ment of Electrical Engineering and Computer Science
at Case Western Reserve University. His research inter-
ests are in developing methods for statistical machine
learning and reinforcement learning, and applications
of these methods to challenging practical problems.
Prasad Tadepalli is Professor of Computer Science
in Oregon State University. He is an expert in rein-
forcement learning, computational learning theory, re-
lational learning, and probabilistic planning. He is an
action editor of the Machine Learning journal and an
associate editor of the Journal of Artificial Intelligence
Research. His interests include learning to plan, learn-

ing from texts, structured machine learning, and inte-
gration of learning and inference.
Thomas Dietterich (AB Oberlin College 1977; MS
University of Illinois 1979; PhD Stanford University
1984) is Professor and Director of Intelligent Systems
Research in the School of Electrical Engineering and
Computer Science at Oregon State University, where
he joined the faculty in 1985. Dietterich developed
the MAXQ framework for Hierarchical Reinforcement
Learning as well as an early application of reinforcement
learning to job shop scheduling. He is a Fellow of the
AAAI, ACM, and AAAS. He has served as Technical co-
Chair of AAAI-90, Technical Chair of NIPS-2000, Gen-
eral Chair of NIPS-2001, and first President of the In-
ternational Machine Learning Society, which organizes
the International Conference on Machine Learning. His
research interests span machine learning, AI systems,
and applications in ecological research and ecosystem
management.


