
Multiagent Transfer Learning via Assignment-based Decomposition

Scott Proper
Scool of Electrical Engineering and Computer Science

Oregon State University
Corvallis, OR 97331-3202, USA

Email: proper@eecs.oregonstate.edu

Prasad Tadepalli
Scool of Electrical Engineering and Computer Science

Oregon State University
Corvallis, OR 97331-3202, USA

Email: tadepall@eecs.oregonstate.edu

Abstract—We describe a system that successfully transfers
value function knowledge across multiple subdomains of real-
time strategy games in the context of multiagent reinforcement
learning. First, we implement an assignment-based decomposi-
tion architecture, which decomposes the problem of coordinat-
ing multiple agents into the two levels of task assignment and
task execution. Second, a hybrid model-based approach allows
us to use simple deterministic action models while relying on
sampling for the opponents’ actions. Third, value functions
based on parameterized relational templates enable transfer
across sub-domains with different numbers of agents.

Keywords-reinforcement learning; markov decision pro-
cesses; assignment problem; coordination; transfer learning

I. INTRODUCTION

Most real world learning and planning problems such
as fire and emergency response in a city, vehicle routing
and product delivery, and real-time strategy games need to
represent and reason with multiple objects, agents, tasks, and
the relations between them. Such representational richness
is both a blessing and a curse. It is a blessing because the
knowledge may be expressed and learned in a form that
generalizes naturally and transfers easily across domains
with different numbers of objects of different types. Unfor-
tunately, having to reason about multiple objects of different
types and relations between them raises an enormous scaling
problem for planning and learning. In this paper, we show
how we can exploit the representational richness of these
domains for transfer across multiple subdomains, while
taming the complexity of planning and learning in a richer
representation through a judicious mixture of architectural
and algorithmic choices.

Multiagent domains like real-time strategy games face
multiple scaling problems or ”curses of dimensionality”
[1], [2]. First, both the number of states and the number
of actions are exponential in the number of objects such
as computer characters or units in the game. Second, the
action choices of the opponent makes the number of possible
outcomes for a given state-action pair exponential in the
number of enemy agents.

In the assignment-based decomposition (ABD) architec-
ture, the action space is divided into a task assignment level
and a task execution level. At the task assignment level, each

task is assigned a group of agents. At the task execution
level, each agent is assigned primitive actions to perform
based on its task. The current approach extends the model-
free ABD architecture of [3] to a hybrid model-based and
model-free architecture and replaces the hill climbing search
for the task assignment with a more powerful bipartite graph
search. Since the task execution is mostly local, we learn
a low-dimensional relational template-based value function
for it. While this two-level decomposition resembles that of
hierarchical multiagent reinforcement learning, e.g., [4], in
contrast, we do not store a value function at the root level
which must be over the joint state-space over all the agents
in the worst case, and hence intractable.

Our hybrid model-based and model-free approach ad-
dresses the problem of exponential outcome space by learn-
ing an afterstate-based value function that takes into account
the effects of the actions of all the friendly agents but not
the enemy agents. The advantage of this hybrid approach is
that unlike the full model-based approach, it does not need
to learn or use the models for the actions of the opponent.
Like Q-learning, it lets the distribution of the next states
be sampled by the actions of the enemy agent, and use
these samples to update the value of the afterstate. Since our
own agents’ actions are usually deterministic, by modeling
them, it prevents the use of action-based value function as
in Q-learning, which does not scale when the action space
is exponentially large.

Finally, the use of relational templates or parameterized
tables to approximate the lower level value function helps
mitigate the scaling problem [5]. More importantly, it en-
ables transfer between domains of different sizes simply by
appropriately initializing the value function of one domain
from the value function of a previously learned domain in
a manner similar to the behavior transfer of [6]. It also
generalizes the work on class-based value functions of [7]
to tuples of objects which are characterized by a set of
relational features. Our approach transfers the value function
knowledge from 3 to 6 and then 12 agents in a real-time
strategy game on a 10 × 10 grid, a feat that was not
successfully demonstrated until now.

The rest of the paper is organized as follows. Section
2 introduces the multiagent assignment MDP (MAMDP)

framework. Section 3 describes our hybrid value function
learning approach to solving MAMDPs. Section 4 describes
the value function approximation based on relational tem-
plates. Section 5 describes the results of transfer learning
in different sub-domains of real-time strategy games with
different numbers of agents and tasks, which is followed by
Section 6 that concludes the paper.

II. MULTIAGENT ASSIGNMENT MARKOV DECISION
PROCESSES

In this section, we first introduce Markov Decision Pro-
cesses (MDPs), and generalize them to multiagent settings.

We assume that the learner’s environment is modeled by
a Markov Decision Process (MDP), defined by a 4-tuple
〈S,A, p, r〉, where S is a discrete set of states, and A is a
discrete set of actions. Action u in a given state s ∈ S results
in state s′ with some fixed probability p(s′|s, u) and a finite
immediate reward r(s, u). A policy µ is a mapping from
states to actions. Here, we seek to optimize the total expected
reward received until the end of the episode starting from
state s. This is denoted by v(s) and satisfies the following
Bellman equation:

v(s) = max
u∈A

{
r(s, u) +

∑
s′∈S

p(s′|s, u)v(s′)

}
(1)

The optimal policy chooses actions maximizing the right
hand side of this equation. We can use the above Bellman
equation to update v(s). However this is often computation-
ally expensive because of high stochasticity in the domain.
Thus, we want to replace this with a sample update as in
model-free reinforcement learning. To do this, we base our
Bellman equation on the ”afterstate,” which incorporates
the deterministic effects of the action on the state but not
the stochastic effects [8], [2]. Since conceptually afterstate
can be treated as the state-action pair, it strictly general-
izes model-free learning. We can view the progression of
states/afterstates as s a→ sa → s′

a′

→ s′a′ → s′′. The “a”
suffix used here indicates that sa is the afterstate of state s
and action a. The stochastic effects of the environment create
state s′ from afterstate sa with probability p(s′|sa). The
agent chooses action a′ leading to afterstate s′a′ and receiv-
ing reward r(s′, a′). The environment again stochastically
selects a state, and so on. This variation of afterstate total-
reward learning is called “ATR-learning” [5]. We define the
afterstate-based value function of ATR-learning as av(sa),
which satisfies the following Bellman equation:

av(sa) =
∑
s′∈S

{
p(s′|sa)

[
max
u∈A

{r(s′, u) + av(s′u)}
]}

(2)
We use sampling to avoid the expensive calculation of
the expectation above. At every step, the ATR-learning
algorithm updates the parameters of the value function in the
direction of reducing the temporal difference error (TDE),

i.e., the difference between the r.h.s. and the l.h.s. of the
above Bellman equation:

TDE(sa) = max
u∈A

{r(s′, u) + av(s′u)} − av(sa) (3)

A Multiagent Assignment MDP (MAMDP) extends the
above framework to a set of n agents G = {g} (|G| = n).
Each agent g has its own set of local state Sg and actions
Ag . We also define a set of tasks T = {t}, each associated
with a set of state variables St that describe the task. The
set of tasks (and corresponding state variables required to
describe them) may vary between states. The joint action
space is the Cartesian product of the actions of all n
agents: A = A1 × A2 × ... × An. The joint state space
is the Cartesian product of the states of all agents and all
tasks. The reward is decomposed between all n agents, i.e.,
R(s, a) =

∑n
i Ri(s,a), where Ri(s,a) is the agent-specific

reward for state s and action a.
β : T → Gk is an assignment of agents to tasks; here k

indicates an upper bound on the number of agents that may
be assigned to a particular task. β(t) indicates the set of
agents assigned to task t. We let sβ(t) denote those state
variables describing task t and joint states of all agents
assigned to t, and aβ(t) denote the joint actions of all agents
assigned to task t. saβ(t) indicates the task-specific afterstate
of sβ(t) and aβ(t). The total expected utility v(s) depends
on the states of all tasks and agents in s.

III. MODEL-BASED ASSIGNMENT-BASED
DECOMPOSITION OF MAMDPS

Assignment-based decomposition has previously been im-
plemented in a model-free setting [3]. In this section, we
describe a model-based implementation, which has con-
siderable advantages. In addition to requiring many fewer
parameters than model-free methods, the time required to
calculate the assignment is greatly reduced, as we will show.

Assignment-based decompositions splits the action selec-
tion step of a reinforcement learning algorithm into two lev-
els: the upper assignment level, and the lower task execution
level. At the assignment level, agents are assigned to tasks.
Once the assignment decision is made, the lower level action
that each agent should take to complete its assigned task is
decided by reinforcement learning in a smaller state space.
This two-level decision making process occurs each time-
step of the algorithm, taking advantage of the opportunistic
reassignments.

At the assignment level, we ignore interactions between
the agents assigned to different tasks. This action decompo-
sition exponentially reduces the number of possible actions
that need to be considered at the lowest level, at a cost
of increasing the number of possible assignments that must
be considered. Because each agent g need only consider
its local state and task sg to come to a decision, this
method can greatly reduce the number of parameters that are
necessary to store. This reduction is possible because rather

than storing separate value functions for each possible agent
and task combination, we can share a single value function
between multiple agent-task assignments.

The value v(sβ(t)) denotes the maximum expected total
reward for a task t and assigned set of agents β(t) starting
from the joint state sβ(t) by following their best policy and
assuming no interference from other agents. Similarly we
define av(saβ(t)) as the value of the afterstate of s due to
the actions aβ(t). The temporal difference error (TDE) of
the afterstate-based value function for an assigned subset of
agents using ATR-learning is as follows:

TDE(saβ(t)) =

max
uβ(t)∈Aβ(t)

{
rβ(t)(s′, uβ(t)) + av(s′uβ(t)

)
}
− av(saβ(t))

(4)

The assignment problem described is nontrivial – there
are an exponential number of possible assignments in the
number of agents. We can search over the space of possible
assignments by defining a value yg of a task and set of
agents g. This value is derived from the underlying state-
based value function v(sβ(t)):

yg = v(sg) (5)

The value function we use for ATR-learning is based on
afterstates, so the value v(sg), being based on states, is
learned separately. This is based on the temporal difference
error given below:

TDE(sβ(t)) = rβ(t)+

max
uβ(t)∈Aβ(t)

{
rβ(t)(s′, uβ(t)) + av(s′uβ(t)

)
}
− v(sβ(t))

(6)

Here rβ(t) is the immediate reward received for task t and
agents β(t). This equation may re-use the calculation of
the max found in equation 4. This max is the long-term
expected total reward for being in afterstate sa and thereafter
executing the optimal policy. This afterstate value does not
account for the immediate reward received for being in state
s and taking action a, and so we must add it in here.

To find the best assignment of tasks to agents over
the long run, we need to compute the assignment that
maximizes the sum of the expected total reward until the task
completion plus the expected total reward that the agents
could collect after that. Unfortunately this leads to a global
optimization problem which we want to avoid. So we ignore
the rewards after the first task is completed, and try to find
the assignment that maximizes the total expected reward
accumulated by all agents for that task. It turns out that
this approximation is not so drastic, because the agents get
to reassess the value of the task assignment after every step
and opportunistically exchange tasks.

Fixed assignment: This is the simplest possible option:
no assignment search at all. Assignments are arbitrarily set
at the start of an episode and never change.

Exhaustive search: One straightforward method that
guarantees optimal assignment is to exhaustively search
for the mapping β that returns the maximum total value
for all tasks maxβ

∑
t yβ(t). However, for many agents,

this search could become intractable. A faster approximate
search technique is necessary, which we introduce next.

Hill climbing search: A simple means of improving
search time is to use a hill climbing approach. We imple-
mented this approach as follows:
• At step 1 of an episode, start with an arbitrary initial
assignment β.
• At subsequent steps, let the starting assignment β be
the assignment found in the last time step.
• Create a list of all possible agent-agent assignment
“swaps” (i.e., switching the tasks of two agents).
• For each swap, if it improves the total value

∑
t yβ(t),

swap the assignments of the corresponding agents.
This simple algorithm is a fast way of improving an existing
assignment. Results can be improved by repeating the final
two steps multiple times.

Bipartite search: The Hungarian method [9] is a combi-
natorial optimization algorithm which solves the assignment
problem in polynomial time. We adapted this technique for
use in solving the assignment problem faced by assignment-
based decomposition. We adapt the Hungarian method (or
Kuhn-Munkres algorithm as it is sometimes called) to assign
multiple agents to each task by copying each task as many
times as necessary to match the number of agents (one copy
for each “slot” available to agents for completing a task).
This creates an n×n matrix defining a bipartite graph, which
is solved by the Hungarian method in polynomial time. The
weight of each edge of the graph is given by yg , where g is
a single task and agent. The solution to the bipartite graph
consists of an assignment of each task to a set of agents.

A serious problem with this approach is that each edge
of the graph, or entry in the n × n matrix, cannot contain
any information other than that pertaining to the single edge
and task of that edge. In other words, we must give up any
coordination information when making our assignment deci-
sions. While this could cause some serious sub-optimalities
in principle, as we will show in the next section, in practice
the approximately optimal assignment found by this method
performs very well.

IV. RELATIONAL TEMPLATES

We use relational templates [5] to create the
function approximator used in our experimetns.
Relational templates are defined by a set of relational
features over shared variables. For example, the
template 〈Distance(A,B), AgentHP (B), TaskHP (A),
UnitsInrange(B)〉 contains relational features indicating
distance between an agent and task, agent and enemy unit
hit points, and a count of the number of agents in range of
a task. Each template is instantiated in a state by binding

its variables to units of the correct type. An instantiated
template i defines a table θi indexed by the values of its
features in the current state. In general, each template may
give rise to multiple instantiations in the same state. The
value v(s) of a state s is the sum of the values represented
by all instantiations of all templates.

v(s) =
n∑
i=1

∑
σ∈I(i,s)

θi(fi,1(s, σ), . . . , fi,mi(s, σ)) (7)

where i is a particular template, I(i, s) is the set of possible
instantiations of i in state s, and σ is a particular instantiation
of i that binds the variables of the template to units in the
state. The relational features fi,1(s, σ), . . . , fi,mi(s, σ) map
state s and instantiation σ to discrete values which index
into the table θi. All instantiations of each template i share
the same table θi, which is updated for each σ using the
following equation:

θi(fi,1(s, σ), . . . , fi,mi(s, σ))←
θi(fi,1(s, σ), . . . , fi,mi(s, σ)) + α(TDE(s, σ))

(8)

where α is the learning rate.

V. EXPERIMENTAL RESULTS

We performed all experiments on several variations of a
real-time strategy game (RTS) simulation first introduced in
[5]. The RTS simulation operates on a 10x10 gridworld.
The grid is presumed to be a coarse discretization of a
real battlefield, and so units are permitted to share spaces.
The number of starting agents varied from 3-12, and the
number of enemy towers (tasks) varied from 1-4. Units,
either enemy or friendly, were defined by several features:
position (in x and y coordinates, hit points (0-6), and type
(either archer or tower) We also defined relational features
such as distance between agents and the assigned enemy
unit, and aggregation features such as a count of the number
of opposing units within range. In addition, each unit type
was defined by how many starting hit points it had, how
much damage it did, the range of its attack (in manhattan
distance), and whether it was mobile or not. Enemy towers
are more powerful than the agent-controlled archers, and so
require coordination to defeat.

Agents had six actions available in each time step: move
in one of the four cardinal directions, wait, or attack its
assigned target (if in range). Towers cannot move, but may
choose whom to attack. Towers followed predefined policies,
attacking the unit closest to death and within range. An
attack at a unit within range always hits, inflicting damage to
that unit and killing it if it is reduced to 0 hit points. Thus,
the number of agents (and tasks) are reduced over time.
Eventually, one side or the other is wiped out, and the battle
is “won”. We also impose a time limit of 20 steps. Due to the
episodic nature of this domain, total reward reinforcement
learning is suitable. We gave a reward of +1 for a successful

Figure 1. Comparison of 6 agents vs 2 task domains.

kill of an enemy unit, a reward of −1 if an agent is killed,
and a reward of −.1 each time step to encourage swift
completion of tasks. Thus, to receive positive reward, it is
necessary for agents to coordinate with each other to quickly
kill enemy units without any losses of their own.

In [5], we studied the effectiveness of relational templates
for transferring knowledge between different subdomains
of three agents and one enemy unit. Transfer learning
across subdomains is very helpful, but transfer learning
may also provide an additional benefit when combined with
assignment-based decomposition: we can transfer knowl-
edge learned in a small domain (such as the 3 vs 1 domains
discussed in [5]) to a larger domain, such as the 6 vs. 2 or
12 vs. 4 domains discussed here.

To transfer results from the 3 vs. 1 domain to the 6 vs.
2 domain, we must use assignment-based decomposition
within the larger domain. This domain has two enemy units
(tasks) and six agents. Each time step, we assign agents to
tasks using any of a variety of search algorithms, and allow
the task execution level to decide how each group of agents
should complete its single assigned task. Thus, we can adapt
the relational templates used to solve the 3 vs. 1 domain to
this larger problem.

If we adapt the templates used in the 3 vs. 1 domain
directly (one of which is shown in section IV), performance
will suffer due to interference (being shot at) by enemy units
other than those assigned to each agent. To prevent this,
we create a new aggregation feature TasksInrange(B)
(which counts the number of enemies in range of agent
B), and define a behavior transfer function [6] ρ(π) which
initializes the new relational templates which include this
feature by transforming the old templates which do not.
We do this simply by copying the parameters of the old
templates into those of the new for all possible values
of the additional dimensions. We also used the template
〈UnitX(A), UnitY (A), UnitX(B), UnitY (B)〉 to allow

Figure 2. Comparison of 12 agents vs 4 task domains.

coordination between pairs of agents.
We have an additional consideration when transferring

from the 3 vs. 1 to 6 vs 2 domains: as we are using
assignment-based decomposition in the 6 vs. 2 domains, can
we (or should we?) transfer the state-based value functions?
While this is possible to do (by learning the function in the
3 vs. 1 domain) empirical results have shown that it is not
necessary, and performance suffers very little if we learn
the state-based value function from scratch each time, and
so this is what we have done for all results in this paper.

All experiments shown here (Figures 1 and 2) are aver-
aged over 30 runs of 105 steps each, averaging the results
of each run together. We used the ATR-learning algorithm
with assignment-based decomposition for most of the ex-
periments. Runs were divided into 40 alternating train/test
phases, with ε = .1 or ε = 0 respectively. For the 6 vs. 2
domain, we used α = .1. For the 12 vs. 4 domain, we used
α = .01.

We compared results with and without transfer from the
3 vs. 1 domain to the 6 Archers vs. 2 Towers domain. These
results show that using transfer is significantly better than
not using it at all. In addition, we tested several different
forms of assignment search: exhaustive, hill climbing, bi-
partite, and fixed assignment. As expected, fixed assignment
performs quite poorly. Bipartite search, while performing
slightly worse than exhaustive, still does very well. The
performance of hill climbing varies between that of fixed
assignment and bipartite search, depending on how many
times the hill climbing algorithm is used to improve the as-
signment. Shown are results for only one iteration of the hill
climbing algorithm, which is only a modest improvement
upon fixed assignment.

We also tested the “flat” (no assignment-based de-
composition) 6 vs. 2 domain without transfer learn-
ing. As expected, this performed very poorly, which
is due to the difficulty of creating an adequate func-

Table I
EXPERIMENT DATA AND RUN TIMES.

Size Transfer Search type Seconds

3 vs 1 no flat 28
3 vs 1 yes flat 29
6 vs 2 no exhaustive 34
6 vs 2 yes exhaustive 60
6 vs 2 yes bipartite 60
6 vs 2 yes hill climbing 60
6 vs 2 yes fixed 57
6 vs 2 no flat 2567
12 vs 4 no bipartite 76
12 vs 4 yes bipartite 122
12 vs 4 yes hill climbing 156
12 vs 4 yes fixed 114
12 vs 4 yes bipartite 108

tion approximator for 6 agents and 2 tasks. We ar-
rived at using only a single, simplified, relational
template – 〈Distance(A,B), AgentHP (B), TaskHP (A),
UnitsInrange(B), TasksInrange(B)〉 – after experimen-
tation with several other alternative templates. Even with
α set very low (.008) parameters of the value function
slowly continue to grow, causing performance to peak and
eventually dip. This points to the inadequacy of traditional
methods to solve such a large problem: we need to decom-
pose problems of this size in order to attempt to solve them.
“Flat” ATR-learning is also very slow on such problems,
taking almost 43 times more computation time to finish a
single run than the decomposed versions! (Table I)

Our tests on the 12 vs. 4 domain have similar results.
Here, we transferred from the 6 vs. 2 domain, which requires
no additional relational features. Results (Figure 2) show that
using transfer provides an enormous benefit. Most 12 vs. 4
results use bipartite search (as an exhaustive search of the
assignment space is unacceptably slow) and this performs
very well, especially compared to no assignment search at
all.

Finally, we examine the performance of the various al-
gorithm/domain combinations (Table I). The columns list
domain size, use of transfer learning, assignment search type
(“flat” indicates no assignment search), and average time
to complete a single run. From these results, we can see
that the computation time required to solve a problem using
assignment-based decomposition scales linearly in the num-
ber of agents and tasks. This is a considerable improvement
over “flat” approaches, which require an exponential amount
of time in the number of agents/tasks to solve. As expected,
not searching at all is very fast. Exhaustive search is the
slowest search technique – so slow as to be unusable in the
12 vs. 4 domain. Bipartite search outperforms hill climbing
in both speed and quality. Interestingly, methods that used
no transfer learning were faster than those that did. This
is most likely because more agents died during these runs,

resulting in less time to compute each time step.

VI. DISCUSSION

We have shown how relational templates and assignment-
based decomposition combine to transfer knowledge from a
domain with only a few units to domains with many units.
Although the addition of one or more relational features may
be required, the decomposed value function used in this
technique allows a straightforward transfer of knowledge
from smaller to larger domains. In combination with fast
approximate search techniques such as bipartite search, we
can achieve a linear increase in required computation times,
as opposed to the exponential amount of time conventional
RL approaches require.

An interesting area of possible future work in model-
based assignment-based decomposition is the introduction
of coordination graphs. Coordination graphs [10], [11] are
a means of coordinating multiple agents so as to avoid
conflicts and jointly take actions between multiple agents.
Coordination graphs are not sufficient to coordinate assign-
ment decisions [3], however they are useful for coordinating
between agents at the task-execution level, for example to
avoid collisions. The RTS domain introduced here does not
model collisions, and so there is no need for low-level
coordination between tasks as there is in [3]. Introducing
collisions to this RTS domain would be straightforward, and
would require adapting the use of coordination graphs to a
model-based RL algorithm.

Another possibility for future work is to combine the work
on hierarchical RL with assignment-based decomposition.
Currently, our assignment search method ignores the calcula-
tion of the expected future reward after the current tasks are
completed by the corresponding agent teams. One approach
to take this into account is to learn an assignment-level value
function as in the work of [4]. However, this value function
is likely to be highly nonlinear and hard to approximate
when a large number of agents are present. Better ways of
exploiting the structure of the domain to either search this
larger space or represent its value function more compactly
would be an interesting research avenue.

ACKNOWLEDGMENTS

We gratefully acknowledge the support of the Defense
Advanced Research Projects Agency under grant number
FA8750-05-2-0249.

REFERENCES

[1] W. B. Powell and B. Van Roy, “Approximate Dynamic
Programming for High-Dimensional Dynamic Resource Allo-
cation Problems,” in Handbook of Learning and Approximate
Dynamic Programming, J. Si, A. G. Barto, W. B. Powell, and
D. Wunsch, Eds. Wiley-IEEE Press, Hoboken, NJ, 2004.

[2] S. Proper and P. Tadepalli, “Scaling model-based average-
reward reinforcement learning for product delivery.” in ECML
’06: Proceedings of the 17th European Conference on Ma-
chine Learning, ser. Lecture Notes in Computer Science,
J. Fürnkranz, T. Scheffer, and M. Spiliopoulou, Eds., vol.
4212. Springer, 2006, pp. 735–742.

[3] S. Proper and P. Tadepalli, “Solving multiagent assignment
markov decision processes.” in AAMAS ’09: Proceedings of
the 8th International Joint Conference on Autonomous Agents
and Multiagent Systems, 2009, pp. 681–688.

[4] R. Makar, S. Mahadevan, and M. Ghavamzadeh,
“Hierarchical multi-agent reinforcement learning,” in
AGENTS ’01: Proceedings of the 5th International
Conference on Autonomous Agents. Montreal, Canada:
ACM Press, 2001, pp. 246–253. [Online]. Available:
citeseer.ist.psu.edu/makar01hierarchical.html

[5] S. Proper and P. Tadepalli, “Transfer learning via relational
templates.” in ILP 2009: Proceedings of the 19th Interna-
tional Joint Conference on Inductive Logic Programming,
2009.

[6] M. E. Taylor and P. Stone, “Behavior transfer for value-
function-based reinforcement learning,” in AAMAS ’05: The
Fourth International Joint Conference on Autonomous Agents
and Multiagent Systems, F. Dignum, V. Dignum, S. Koenig,
S. Kraus, M. P. Singh, and M. Wooldridge, Eds. New York,
NY: ACM Press, July 2005, pp. 53–59.

[7] C. Guestrin, D. Koller, C. Gearhart, and N. Kanodia, “Gen-
eralizing plans to new environments in relational mdps,” in
IJCAI ’03: In International Joint Conference on Artificial
Intelligence, 2003, pp. 1003–1010.

[8] R. S. Sutton and A. G. Barto, Reinforcement learning: an
introduction. MIT Press, 1998.

[9] H. Kuhn, “The Hungarian Method for the assignment prob-
lem,” Naval Research Logistic Quarterly, vol. 2, pp. 83–97,
1955.

[10] C. Guestrin, M. Lagoudakis, and R. Parr, “Coordinated
reinforcement learning,” in ICML ’02: Proceedings of the
19st International Conference on Machine Learning. San
Francisco, CA: Morgan Kaufmann, July 2002.

[11] X. Zhang, D. Aberdeen, and S. V. N. Vishwanathan, “Condi-
tional random fields for multi-agent reinforcement learning,”
in ICML ’07: Proceedings of the 24th International Confer-
ence on Machine Learning. New York, NY, USA: ACM,
2007, pp. 1143–1150.

