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Abstract
Imitation learning refers to the problem of learn-
ing how to behave by observing a teacher in ac-
tion. We consider imitation learning in relational
domains, in which there is a varying number of ob-
jects and relations among them. In prior work, sim-
ple relational policies are learned by viewing imi-
tation learning as supervised learning of a function
from states to actions. For propositional worlds,
functional gradient methods have been proved to
be beneficial. They are simpler to implement than
most existing methods, more efficient, more natu-
rally satisfy common constraints on the cost func-
tion, and better represent our prior beliefs about
the form of the function. Building on recent gen-
eralizations of functional gradient boosting to rela-
tional representations, we implement a functional
gradient boosting approach to imitation learning in
relational domains. In particular, given a set of
traces from the human teacher, our system learns
a policy in the form of a set of relational regression
trees that additively approximate the functional gra-
dients. The use of multiple additive trees combined
with relational representation allows for learning
more expressive policies than what has been done
before. We demonstrate the usefulness of our ap-
proach in several different domains.

1 Introduction
It is common knowledge that both humans and animals learn
new skills by observing others. This problem, which is called
imitation learning, can be formulated as learning a represen-
tation of a policy – a mapping from states to actions – from
examples of that policy. Imitation learning has a long history
in machine learning and has been studied under a variety of
names including learning by observation [Segre and DeJong,
1985], learning from demonstrations [Argall et al., 2009],
programming by demonstrations [Calinon, 2009], program-
ming by example [Lieberman, 2000], apprenticeship learn-
ing [Ng and Russell, 2000], behavioral cloning [Sammut et
al., 1992], learning to act [Khardon, 1999], and some others.
One distinguishing feature of imitation learning from ordi-
nary supervised learning is that the examples are not iid, but

follow a meaningful trajectory. Nevertheless, techniques used
from supervised learning have been successful for imitation
learning [Ratliff et al., 2006]. We follow this tradition and
investigate the use of supervised learning methods to learn
behavioral policies.

Inverse reinforcement learning is a popular approach to
imitation learning studied under the name of apprentice-
ship learning [Abbeel and Ng, 2004; Ratliff et al., 2006;
Neu and Szepesvari, 2007; Syed and Schapire, 2007]. Here
one would assume that the observations are generated by a
near-optimal policy of a Markov Decision Process (MDP)
with an unknown reward function. The approaches usually
take the form of learning the reward function of the agent and
solving the corresponding MDP. While this approach is justi-
fied when there is reason to believe that there is a simple re-
ward function whose expected long-term value can be nearly
optimized, in many cases the policy itself is simple enough to
learn directly from observation, and the expected long-term
value is difficult to optimize. For example, in chess, one
could easily learn a few good opening moves by imitation,
while optimizing them to improve the probability of winning
appears impossible in the foreseeable future.

Our focus is on relational domains where states are natu-
rally described by relations among an indefinite number of
objects. Examples include real time strategy games such
as Warcraft, regulation of traffic lights, logistics, and a va-
riety of planning domains. Imitation learning in relational
domains is not new. Indeed, one of the earliest approaches
to imitation learning was explanation-based learning where
a complete and correct model of the domain, usually in
the form of STRIPS operators [Fikes and Nilsson, 1971],
was used deductively to learn deterministic macro-operators
[Segre and DeJong, 1985; Shavlik and DeJong, 1987]. This
deductive approach was generalized to stochastic domains
under the name of symbolic dynamic programming (SDP)
[Boutilier, 2001; Kersting et al., 2004; Joshi and Khardon,
2008]. However, SDP is computationally quite expensive
and leads to highly complex representations of value func-
tions or rules that are expensive to use even in deterministic
domains [Minton, 1988]. This problem is somewhat miti-
gated by performing an approximate or partial SDP, and em-
ploying induction over multiple examples to learn an empiri-
cally valid approximate value function [Gretton and Thibaux,
2004]. However, all these approaches have the drawback that



they assume that a sound and complete domain model and re-
ward function are available, which makes them inapplicable
to most real world domains.

An alternative inductive approach is to assume an efficient
hypothesis space for the policy function, and learn only poli-
cies in this space that are closest to the training trajectories.
Positive empirical results have been obtained in this paradigm
in several planning domains such as blocks world and lo-
gistics with appropriately designed policy languages in both
deterministic [Khardon, 1999] and stochastic [Yoon et al.,
2002] cases. Theoretical results show that in deterministic
domains when there is a target policy in the hypothesis space
that is consistent with the training data, it is possible to learn
it with a polynomial number of examples with a small error
with high probability [Khardon, 1999].

Unfortunately, it is difficult to guarantee realizability of
target policies in most real-world problems. Moreover,
good policies are likely to be highly complex and not eas-
ily representable as relational decision lists [Khardon, 1999;
Yoon et al., 2002]. To overcome these limitations, we employ
two ideas. First, instead of a deterministic policy, we learn
a stochastic policy where the probability of an action given
a state is represented by a sum of potential functions. Sec-
ond, we leverage the recently developed functional-gradient
boosting approach to learn a set of regression trees, each of
which represents a potential function. The functional gra-
dient approach has been found to give state of the art re-
sults in many relational problems [Gutmann and Kersting,
2006; Karwath et al., 2008; Kersting and Driessens, 2008;
Natarajan et al., 2011]. Together, these two ideas allow us
to overcome the limited representational capacity of earlier
approaches, while also giving us an effective learning algo-
rithm.

Indeed, the functional-gradient approach to boosting has
already been found to yield excellent results in imitation
learning in robotics in propositional setting [Ratliff et al.,
2009]. The contributions of this work are to generalize this
approach to relational setting, and give empirical results in
multiple domains, including the blocksworld, a simple traf-
fic control domain that involves multiple agents, a resource
gathering subdomain of a real-time strategy game that in-
volves learning hierarchical relational policies, and the break-
away subtask of the Robocup soccer that requires handling of
continuous relational features such as distance between ob-
jects, angles etc. We show that our approach outperforms
both learning a single relational regression tree and perform-
ing propositional functional gradient to represent the policy
in all domains.

The rest of this paper is organized as follows. Section 2
formally introduces the problem of imitation learning. Sec-
tion 3 describes our functional gradient approach to imitation
learning. Section 4 describes the experimental results in sev-
eral domains, followed by Section 5 which summarizes the
conclusions and future work.

2 Background
An MDP is described by a set of discrete states S, a set of ac-
tions A, a reward function rs(a) that describes the expected

immediate reward of action a in state s, and a state transition
function pass′ that describes the transition probability from
state s to state s′ under action a. A policy, π, is defined as
a mapping from states to actions, and specifies what action to
execute in each state. In the learning from imitations setting,
we assume that the reward function is not directly obtained
from the environment. Our input consists of S, A and super-
vised trajectories is generated by a Markov policy, and we try
to match it using a parameterized policy.

Following Ratliff et al. [2009], we assume that the dis-
count factor are absorbed into the transition probabilities and
policies are described by µ ∈ G where G is the space of all
state-action frequency counts. We assume a set of features
F that describe the state space of the MDP and the expert
chooses the action ai at any time step i based on the set of
feature values 〈fi〉 according to some function. For simplic-
ity, we denote the set of features at any particular time step i
of the jth trajectory as f ji and we drop j whenever it is fairly
clear from the context.

The goal of our algorithm is to learn a policy that suitably
mimics the expert. More formally, we assume a set of train-
ing instances {〈f ji , ai〉m

j

i=1}nj=1 that is provided by the expert.
Given these training instances, the goal is to learn a policy µ
that is a mapping from f ji to aji for each set of features f ji . The
key aspect of our setting is that the individual features are re-
lational i.e., objects and relationships over these objects. The
features are denoted in standard logic notation where p(X)
denotes the predicate p whose argument is X . The problem
of imitation learning given these relational features and ex-
pert trajectories can now be posed as a regression problem or
a supervised learning problem over these trajectories. Before
we present our algorithm in the next section, we introduce the
functional-gradient boosting method.

2.1 Functional-Gradient Boosting:
Functional-gradient methods have been used previously to
train conditional random fields (CRF) [Dietterich et al., 2004]
and their relational extensions (TILDE-CRF) [Gutmann and
Kersting, 2006]. Assume that the training examples are of
the form (xi, yi) for i = 1, ..., N and yi ∈ {1, ...,K}. The
goal is to fit a model P (y|x) ∝ eψ(y,x). The standard method
of supervised learning is based on gradient-descent where the
learning algorithm starts with initial parameters θ0 and com-
putes the gradient of the likelihood function. Dietterich et al.
used a more general approach to train the potential functions
based on Friedman’s [2001] gradient-tree boosting algorithm
where the potential functions are represented by sums of re-
gression trees that are grown stage-wise. Since the stage-wise
growth of these regression trees are similar to the Adaboost
algorithm [Freund and Schapire, 1996], Friedman called this
as gradient-tree boosting.

More formally, functional-gradient ascent starts with an
initial potential ψ0 and iteratively adds gradients ∆i. This
is to say that after m iterations, the potential is given by

ψm = ψ0 + ∆1 + ...+ ∆m (1)

Here, ∆m is the functional-gradient at episode m and is

∆m = ηm × Ex,y[∂/∂ψm−1log P (y|x;ψm−1)] (2)



where ηm is the learning rate. Dietterich et al. [2004] sug-
gested evaluating the gradient at every position in every train-
ing example and fitting a regression tree to these derived ex-
amples i.e., fit a regression tree hm on the training examples
[(xi, yi),∆m(yi;xi)]. Dietterich et al. [2004] point out that
although the fitted function hm is not exactly the same as the
desired ∆m, it will point in the same direction (assuming that
there are enough training examples). So ascent in the direc-
tion of hm will approximate the true functional-gradient. The
same idea has later been used to learn relational dependency
networks [Natarajan et al., 2011] and policies [Sutton et al.,
2000] and their relational extensions [Kersting and Driessens,
2008], relational CRFs [Gutmann and Kersting, 2006] and re-
lational sequences [Karwath et al., 2008].

3 Tree-Boosting for Relational Imitation
Learning (TBRIL)

Recall that the goal of this work is to find a policy µ that is
captured using the trajectories (i.e., features f ji and actions aji )
provided by the expert, i.e., the goal is to determine a policy
µ =P (ai|fi;ψ) ∀a, i where the features are relational. These
features could define the objects in the domain (squares in a
gridworld, players in robocup, blocks in blocksworld etc.),
their relationships (type of objects, teammates in robocup
etc.), or temporal relationships (between current state and
previous state) or some information about the world (traffic
density at a signal, distance to the goal etc.). We assume a
functional parametrization over the policy and consider the
conditional distribution over actions ai given the features to
be,

P (ai|fi;ψ) = eψ(ai;fi)/
∑
a′
i

eψ(a
′
i;fi),∀ai ∈ A (3)

where ψ(ai; fi) is the potential function of ai given the
grounding fi of the feature predicates at state si and the nor-
malization is over all the admissible actions in the current
state.

Note that in the functional-gradient presented in Equa-
tion 2, the expectation Ex,y[..] cannot be computed as the
joint distribution P (x,y) is unknown (in our case, y’s are
the actions while x’s are the features). Since the joint dis-
tribution is unknown, functional-gradient methods treat the
data as a surrogate for the joint distribution. Hence, instead
of computing the functional-gradient over the potential func-
tion, the functional-gradients are computed for each training
example (i.e., trajectories):

∆m(aji ; f
j
i ) = ∇ψ

∑
j

∑
i

log(P (aji |f
j
i ;ψ))|ψm−1

(4)

These are point-wise gradients for examples 〈f ji , a
j
i 〉 on each

state i in each trajectory j conditioned on the potential from
the previous iteration(shown as |ψm−1 ). Now this set of local
gradients form a set of training examples for the gradient at
stage m. Recall that the main idea in the gradient-tree boost-
ing is to fit a regression-tree on the training examples at each
gradient step. In this work, we replace the propositional re-
gression trees with relational regression trees.

Proposition 3.1. The functional-gradient w.r.t ψ(aji ; f
j
i ) of

the likelihood for each example 〈f ji , a
j
i 〉 is given by:

∂ logP (aji |f
j
i ;ψ)

∂ψ(âji ; f
j
i )

= I(aji = âji |f
j
i )− P (aji |f

j
i ;ψ) (5)

where âji is the action observed from the trajectory and I is
the indicator function that is 1 if aji = âij and 0 otherwise.

The expression is very similar to the one derived in [Diet-
terich et al., 2004]. The key feature of the above expression
is that the functional-gradient at each state of the trajectory is
dependent on the observed action â. If the example is posi-
tive (i.e., it is an action executed by the expert), the gradient
(I − P ) is positive indicating that the policy should increase
the probability of choosing the action. On the contrary if the
example is a negative example (i.e., for all other actions), the
gradient is negative implying that it will push the probability
of choosing the action towards 0.

Following prior work [Gutmann and Kersting, 2006;
Natarajan et al., 2011; Kersting and Driessens, 2008], we
use Relational Regression Trees (RRTs)[Blockeel, 1999] to fit
the gradient function at every feature in the training example.
These trees upgrade the attribute-value representation used
within classical regression trees. In RRTs, the inner nodes
(i.e., test nodes) are conjunctions of literals and a variable
introduced in some node cannot appear in its right sub-tree
(variables are bound along left-tree paths). Each RRT can
be viewed as defining several new feature combinations, one
corresponding to each path from the root to a leaf. The result-
ing potential functions from all these different RRTs still have
the form of a linear combination of features but the features
can be quite complex [Gutmann and Kersting, 2006].

At a fairly high level, the learning of RRT proceeds as fol-
lows: The learning algorithm starts with an empty tree and
repeatedly searches for the best test for a node according to
some splitting criterion such as weighted variance. Next, the
examples in the node are split into success and failure ac-
cording to the test. For each split, the procedure is recur-
sively applied further obtaining subtrees for the splits. We
use weighted variance on the examples as the test criterion.
In our method, we use a small depth limit (of at most 3) to
terminate the search. In the leaves, the average regression
values are computed. We augment RRT learner with aggre-
gation functions such as count, max, average that are used
in the standard Statistical Relational Learning (SRL) litera-
ture [Getoor and Taskar, 2007] in the inner nodes thus mak-
ing it possible to learn complex features for a given target.
These aggregators are pre-specified and the thresholds of the
aggregators are automatically learned from the data. We re-
strict our aggregators to just the three mentioned earlier. In
the case of continuous features such as distance between ob-
jects or angles between objects, we discretize them into bins.
The data is used to automatically define the bins.

The key idea in this work is to represent the distribution
over each action as a set of RRTs on the features. These trees
are learned such that at each iteration the new set of RRTs
aim to maximize the likelihood of the distributions w.r.t ψ.
Hence, when computing P (a(X)|f(X)) for a particular value



of state variable X (say x), each branch in each tree is con-
sidered to determine the branches that are satisfied for that
particular grounding (x) and their corresponding regression
values are added to the potential ψ. For example, X could be
a certain block in the blocksworld, a player in Robocup or a
square in the gridworld.

Algorithm 1 TBRIL
1: function TBOOST(Trajectories T)
2: for 1 ≤ k ≤ | A| do . Iterate through each action
3: for 1 ≤ m ≤M do . M gradient steps
4: Sk := GenExamples(k;T ; Λkm−1)
5: ∆m(k) := FitRRT (Sk;L) . Gradient
6: Λkm := Λkm−1 + ∆m(k) . Update models
7: end for
8: P (A = k|f) ∝ ψk
9: end for

10: return
11: end function
12: function GENEXAMPLES(k, T,Λ)
13: S := ∅
14: for 1 ≤ j ≤ |T | do . Trajectories
15: for 1 ≤ i ≤ |Sj | do . States of trajectory
16: Compute P (âji = k|f ji ) . Probability of user

action being the current action
17: ∆m(k; f ji ) = I(âji = k)− P (âji = k|f ji )

18: S := S ∪ [(âji , f
j
i ),∆(âji ; f

j
i ))] . Update

relational regression examples
19: end for
20: end for
21: return S . Return regression examples
22: end function

Our algorithm for imitation learning using functional-
gradient boosting is called as TBRIL and is presented in Algo-
rithm 1. Algorithm TBoost is the main algorithm that iterates
over all actions. For each action (k), it generates the examples
for our regression tree learner (called using function FitRRT)
to get the new regression tree and updates its model (Λkm).
This is repeated up to a pre-set number of iterations M (typi-
cally, M = 20). We found empirically that increasing M has
no effect on the performance as the example weights nearly
become 0 and the regression values in the leaves are close
to 0 as well. Note that the after m steps, the current model
Λkm will have m regression trees each of which approximates
the corresponding gradient for the action k. These regression
trees serve as the individual components (∆m(k)) of the final
potential function.

A key point about our regression trees is that they are not
large trees. Generally, in our experiments, we limit the depth
of the trees to be 3 and the number of leaves in each tree
is restricted to be about 8 (the parameter L in FitRRT). The
initial potential Λ1

0 is usually set to capture the uniform dis-
tribution in all our experiments. The function GenExamples
(line 4) is the function that generates the examples for the
regression-tree learner. As can be seen, it takes as input the
current predicate index (k), the data, and the current model
(Λ). It iterates over all the examples and for each example,

computes the gradient based on the observed user action us-
ing the expression from Proposition 3.1 .

Our algorithm is attractive for imitation learning due to
several reasons: (1) The trees allow for complex features for
predicting the user policy as against the standard gradient
descent. (2) The use of aggregators such as count,max,min
allow for richer features to be used in the model. (3) The
tree learner is able to handle continuous domains by auto-
matically discretizing the space based on the data. (4) The
regression tree learner allows to include background knowl-
edge (such as most relevant predicates, less relevant predi-
cates etc.) that can guide the search through the space of
trees as with any logic-based learner such as Aleph [Srini-
vasan, 2004] or TILDE [Blockeel, 1999].

To summarize, our setting extends Ratliff et al.’s [2009]
propositional “learning to search” setting to the relational
case. In a sense, it establishes “learning to search at a lifted
level.” On the other hand, it is much simpler than the rela-
tional reinforcement learning setting considered e.g. in [Ker-
sting and Driessens, 2008], which is to find a policy that max-
imizes reward. Whereas Kersting and Driessens’ relational
boosting approach receives feedback on the performance only
in terms of a reward at the end of an action sequence and in
turn faces the problem of estimating the value functions, we
learn to directly imitate the expert and side-step the problems
of both reward estimation and value optimization. As we will
see, this approach can be quite powerful in domains where
value optimization is significantly more difficult than policy
imitation.

4 Experiments
For our experiments we chose four domains. These domains
range from blocksworld which has a long tradition in proba-
bilistic planning, to a grid world domain that has a rich rela-
tional hierarchical structure to a multi-agent system for traffic
control to Robocup domain that has continuous features. We
compare the performance of our TBRIL system to a classical
RRT learner, TILDE [Blockeel, 1999] and to propositional
functional-gradient boosting (PFGB) and empirically show
the superiority of our method. PFGB is the method proposed
by Dietterich et al. [2004] where regression trees are learned
instead of relational regression trees. For each domain, we
obtained traces of an expert’s policy for training and test sets.

Our performance metric is the area under the precision-
recall (PR) curve in the test set. The key reason for employ-
ing this metric is due to the fact in several domains it is not
possible to evaluate the exact performance of the imitation
learner. In these cases, it would suffice to emulate the expert
as much as possible. Hence, we used the area under the PR
curve to measure the closeness of the learned policy to that
of the expert policy. Recent work has indicated PR curves
to be a more conservative measure of performance than ROC
curves [Davis and Goadrich, 2006]. The goal of our experi-
ments is to answer two specific questions:

1. Is the proposed boosting based approach (TBRIL) bet-
ter than a non-boosted relational learning approach (i.e.,
does boosting really help)?



2. Is the proposed approach better than the propositional
boosting approach (i.e., are relational models neces-
sary)?

4.1 Blocksworld
This domain (Figure 1) and its variants have a long history in
Planning research and has consistently featured as one of the
domains at the biennial International Planning Competition
(IPC). The world consists of blocks stacked into towers on
the table in some configuration. The objective is to start from
one configuration and act sequentially to achieve a target, typ-
ically specified in terms of certain conditions that have to be
true (e.g. block a has to be on top of block b). The action set
typically includes actions where the agent can pick up blocks
(from other blocks or from the table) and put them down (on
other blocks that are clear or on the table).

In our experiments the goal is to reach a target configu-
ration where there is no tower of more than three blocks.
Thus, we restrict the action space to only two actions, namely
putdown(x) (move block x from its current location to the ta-
ble) and noop. The optimal policy is: putdown(x) where x
is a clear block with at least three blocks under it (choosing
uniformly at random among all such xs) and noop if there
is no such x. Such a policy can be very compactly captured
using a relational representation. A propositional representa-
tion, on the other hand, must represent all possible towers of
four blocks. We encoded this optimal stochastic policy as the
expert’s policy and generated training and test examples for
randomly generated planning problems. We used the random
problem generator from the IPC [Younes et al., 2005].

Training examples were generated with 5 to 15 blocks and
test examples were generated with 25 blocks (for which a
propositional policy would have to represent 303,600 tow-
ers). Hence, there is a need to learn the model at the relational
level. Figure 5(a) shows a comparison between the learning
curves generated by TBRIL and by TILDE. We did not plot
the performance of PFGB because it was consistently below
0.35. The plot shows the superiority of TBRIL over TILDE
to be consistent over the number of training examples. The
results were averaged over ten runs.

4.2 Gridworld
In this domain (Figure 2) the agent is in a grid of size 7 × 7.
Each grid cell has four doors and may contain resources (e.g.
gold, food), locations (e.g. enemy castles, granaries, banks)
or dragons. The agent’s objective is to gather resources and
kill enemies. To gather a resource it has to be collected and
deposited to a designated location (e.g. gold in a bank, food
in a granary). There are two locations for each resource and
its storage. There are two kinds of enemies, red and blue.
The agent has to kill the enemy dragon and destroy an enemy
castle of the same color as the dragon. The goals and subgoals
are specified using a relational hierarchy. The episode ends
when the user achieves the highest level goal. The actions
that the user can perform are to move in 4 directions, open
the 4 doors, pick up, put down and attack.

This domain is inherently relational as there are different
objects and relations between them. The “type” of the objects

constrain the goal-subgoal combination. It is also hierarchi-
cal since there are goals and subgoals. In our experiments,
the domain hierarchies and relations are provided as part of
the background knowledge and not learned from trajectories.
So the features of the state would include the current highest
level goal, the subgoal completed, its type information etc.
This domain is challenging as the learner must induce a “re-
lational hierarchical policy” from the trajectories given the
domain hierarchy. A propositional representation would re-
quire 25 times larger state space and hence at least as many
examples. We collected expert trajectories from 3 real users
who played the game. The data (100 trajectories) from two
users were used for training and the resulting imitated policy
was evaluated on the third user’s trajectories (40 trajectories).

As pointed out in [Li et al., 2004], when learning from tra-
jectories, not all the states (or actions) are equally important.
For instance, if the current state has a particular door open
(as a result of open action in the previous state), the obvious
optimal policy is to walk through it. Hence, we measure the
performance in only the non-move actions (opening different
doors) as the policy for the move actions is very trivial (i.e.,
walk through an open door). Figure 5(b) shows a compari-
son between TBRIL, TILDE and PFGB. The area under the
PR curve is averaged over the area for each action. As can
be seen, TBRIL is able to mimic the expert quite reasonably
in this domain and outperforms both TILDE and PFGB. It is
a particularly challenging problem as there could be several
different paths to navigate the grid and several goal-subgoal
combinations.

4.3 Traffic Signal domain
In this domain (Figure 3) the world consists of four traffic
lights. Each traffic light is an autonomous agent placed at
an intersection, whose objective is to reduce traffic conges-
tion as much as possible. There are four possible modes in
which traffic could be flowing - between north and south, be-
tween east and west, south to east and north to west, and east
to north and west to south. There are four actions available
to the traffic light corresponding to the four modes of traffic
flow. Each action allows traffic in one mode to proceed while
disallowing others. We discretize the density of traffic in each
mode to be an integer between 1 and 10 (1 being the lowest
density and 10 being the highest).

We employed a simulator that generates traffic at each step
in each mode according to a Poisson distribution. Our hand
coded expert policy simply allowed the traffic in the densest
mode to flow while blocking others. Ties were broken uni-
formly at random. We gathered data from four traffic lights
following the same expert stochastic policy. This domain is
an excellent example of “parameter sharing” i.e., the policies
can be shared across different agents while learning and can
be generalized across the different signals. For PFGB, we had
to have a separate state space for each light and hence the pa-
rameters cannot be directly shared. We ran 5-fold cross vali-
dation over all trajectories in this domain. Figure 5(c) shows a
comparison between the learning curves generated by TBRIL
and by TILDE. The performance of PFGB was never greater
than 0.27 and hence we do not show it explicitly in the Fig-
ure. As with the blocksworld domain, the results are obtained



Figure 1: Blocksworld Figure 2: Gridworld Figure 3: Traffic signal domain Figure 4: 2-on-1 Breakaway

Figure 5: AUC-PR vs. number of trajectories (a) Blocksworld (b) Gridworld (c) Traffic Signal (d) 2-on-1 Breakaway

over 10 runs. Again, TBRIL outperforms TILDE.

4.4 Robocup
The Robocup domain (Figure 4) [Stone and Sutton, 2001] is
a widely used domain for evaluating reinforcement learning
algorithms. The objective here is to create a soccer team of
robots. Programmed robots then compete with each other.
The state space is continuous and there is inherent uncertainty
in the effects of actions. An action could, therefore, take the
agent to one of a large number of next states. This is again
a good domain for imitation learning because it is hard to
explain what a good policy should look like but it is relatively
easy to obtain expert data. Simplified versions of this game
are run through a simulator which we use in this work.

For our experiments we collected data generated through
the simulation of an expert policy for the M-on-N BreakAway
subdomain of Robocup [Torrey et al., 2007] whereM attack-
ers try to score a goal against N defenders. In our experi-
ments,M = 2 andN = 1. The attacker who has the ball may
choose to move (ahead, away, left, or right with respect to the
goal center), pass to a teammate, or shoot (at the left, right, or
center part of the goal). RoboCup tasks are inherently multi-
agent games, but a standard simplification is to have only one
learning agent. This agent controls the attacker currently in
possession of the ball, switching its focus between attackers
as the ball is passed. Attackers without the ball follow sim-
ple hand-coded policies that position them to receive passes.
The state information specifies the distances and angles be-
tween players and the goal post. We used the policies learned
from an RL agent from the algorithm presented by Torrey et
al. [2007] as trajectories after the learner’s policy has stabi-
lized. This is particularly a challenging domain for RL since
it involves mainly continuous features such as distance and
angle between objects (players, ball and goal) and time which
can lead to a large state space. As mentioned, our RRT learner
can discretize these features into bins automatically based on

the distribution of the data.
Figure 5(d) shows a comparison between the learning

curves generated by TBRIL, TILDE and PFGB. The area un-
der the PR curve is averaged over the area for each of the
seven actions for ten runs. Yet again, the plot shows the su-
periority of TBRIL. The results in this problem show that, as
the problem complexity and hardness increase, so does the
difference between the methods. TILDE and PFGB converge
to a sub-optimal policy for the user while TBIRL has a very
high precision and recall (close to 1) indicating that it can
effectively mimic the user.

In summary, the two questions can be answered affirma-
tively. The fact that TBRIL dominates TILDE in all the exper-
iments shows that the boosting approach is indeed superior
to the other relational learning method. Similarly the signif-
icantly better performance over PFGB establishes that it is
necessary to model the objects and relations explicitly.

5 Conclusion
To our knowledge this is the first adaptation of a Statistical
Relational technique for the problem of learning relational
policies from an expert. In that sense, our work can be under-
stood as making a contribution both ways: applying gradient
boosting for relational imitation learning and identifying one
more potential application of SRL. We demonstrated that the
expert can be imitated in a variety of domains with varying
characteristics using a relational functional-gradient boosting
method. One of the key areas of future work is to general-
ize across multiple experts. For instance, each expert could
possess a different expertise in the domain and can act opti-
mally in certain situations. A key challenge will then be to
learn a single model from the different experts. Yet another
interesting problem is to combine the expert trajectories with
exploration. Finally, it will be useful to verify the generaliza-
tion capabilities of the algorithm in a transfer learning setting
where learning is performed from an expert on an easy prob-
lem and transferred to a harder problem.
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