
Multi-Task Reinforcement Learning:

A Hierarchical Bayesian Approach

Aaron Wilson wilsonaa@eecs.oregonstate.edu

Alan Fern afern@eecs.oregonstate.edu

Soumya Ray sray@eecs.oregonstate.edu

Prasad Tadepalli tadepall@eecs.oregonstate.edu

School of Electrical Engineering and Computer Sciences, Oregon State University, USA

Abstract

We consider the problem of multi-task re-
inforcement learning, where the agent needs
to solve a sequence of Markov Decision Pro-
cesses (MDPs) chosen randomly from a fixed
but unknown distribution. We model the
distribution over MDPs using a hierarchical
Bayesian infinite mixture model. For each
novel MDP, we use the previously learned
distribution as an informed prior for model-
based Bayesian reinforcement learning. The
hierarchical Bayesian framework provides a
strong prior that allows us to rapidly infer the
characteristics of new environments based on
previous environments, while the use of a
nonparametric model allows us to quickly
adapt to environments we have not encoun-
tered before. In addition, the use of infinite
mixtures allows for the model to automati-
cally learn the number of underlying MDP
components. We evaluate our approach and
show that it leads to significant speedups in
convergence to an optimal policy after ob-
serving only a small number of tasks.

1. Introduction

Reinforcement Learning (RL) based on the framework
of Markov Decision Processes (MDPs) is an attractive
paradigm for learning by interacting with a stochas-
tic environment and receiving rewards and penalties.
In this paper, we consider Multi-Task Reinforcement
Learning (MTRL), where an agent is confronted with
a sequence of MDPs chosen independently from a fixed

Appearing in Proceedings of the 24 th International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

distribution. The agent’s goal is to quickly find an op-
timal policy for each MDP. It is, of course, possible
to solve each MDP from scratch. Indeed, there is no
better way if the MDPs do not share any structure.
In our work, we are interested in cases where differ-
ent MDPs share aspects of the model, so that learning
about one MDP can help to solve the other MDPs.

As a motivating example, consider a prospecting agent
who is interested in finding gold. Depending on the
type of the environment, the indicators for gold might
differ. Perhaps certain kinds of rocks might be good
indicators of the presence of gold in some environ-
ments. In some other environments, gold may be more
abundant along the river beds. Moreover, the agent
does not know a priori what the indicators of gold are,
and what type of environment it currently is in. We
would like the agent to learn the distribution of differ-
ent types of environments and the indicators of gold in
each of them after exploring a few such environments.
After this, given a small amount of experience in a new
environment, the agent could quickly make inferences
about the environment type, and use that information
to explore more efficiently. For example, if an agent
finds that there is no gold near the typical indicator
rocks, it might conclude that the river beds might be
better places to explore next.

A näıve approach to multi-task reinforcement learn-
ing is for the agent to treat all of its observations as
coming from a single MDP. In this case, the agent
would estimate the most likely set of MDP parame-
ters that generate the given observations. If in fact
the MDPs generating the observations are not sim-
ilar to each other, this might hurt exploration in a
new MDP, because the learned model will generalize
poorly. It may even result in slower learning than if
the agent assumes nothing about the model. Our goal
is to take advantage of the similar structure between
MDPs when it exists, while at the same time avoid-

Multi-Task Reinforcement Learning: A Hierarchical Bayesian Approach

ing or limiting knowledge transfer between dissimilar
MDPs. In our work, we do this by using a hierarchi-
cal infinite mixture model with a potentially unknown
and growing set of mixture components. Each compo-
nent captures uncertainty in both the MDP structure
and parameter values and stands for a class of “simi-
lar MDPs.” After exploring a set of MDPs, the agent
learns the distribution of different classes and their
model characteristics. We evaluate our approach on
two gridworld domains and demonstrate that (i) our
approach can use the learned hierarchical model to
explore more efficiently in a new environment than an
agent with no prior knowledge, (ii) it can successfully
learn the number of underlying MDP classes, and (iii)
it can quickly adapt to the case when the new MDP
does not belong to a class it has seen before.

2. Multi-Task Reinforcement Learning

We formulate Multi-Task Reinforcement Learning in
the framework of Markov Decision Processes (MDPs).

An MDP M is defined by a 5-tuple (S,A,C, T, I, F),
where S is a set of states and A is a set of actions.
C(s, a) is the immediate cost of executing action a in
state s, and the transition function T (s, a, s′) is the
probability of reaching state s′ given that action a is
taken in state s. I is a distribution of initial states and
F is a set of final or terminating states. A policy π

for M is a (possibly stochastic) mapping from S to A.
The expected cost of a policy π starting from a state
s is the sum of the costs of the actions starting from
state s until the policy reaches a final or terminating
state. We are interested in finding an optimal policy
that minimizes the total expected cost from all states.
The minimum expected cost from state s is the unique
solution to the following Bellman equations:

V ∗(s) =

{

0 if s is a terminal state
mina C(s, a) +

∑

s′(T (s, a, s′)V ∗(s′)), else

The actions that minimize the right hand side of the
above equation constitute the optimal policy. In RL,
the goal is to compute such a policy by acting in the
environment and observing the state transitions and
rewards. In model-based reinforcement learning, we
first learn an approximate model of the MDP and use
algorithms such as value iteration (Sutton & Barto,
1998) to compute an optimal value function V ∗ with
respect to the learned model.

In this work, we focus on the problem of multi-task

reinforcement learning (MTRL). An MTRL prob-
lem is defined by a distribution D over a potentially in-
finite set of MDPs or tasks (we use “MDP” and “task”
synonymously in this work). Given an MTRL problem

a multi-task learner L is provided with a potentially
infinite random sequence of MDPs M1,M2, . . . drawn
i.i.d. from D and is allowed to act in each MDP until
the termination state is reached.

Intuitively our objective is to develop a multi-task
learning algorithm that is able to leverage experience
in previous MDPs M1, . . . Mn to more quickly learn
an optimal policy in a newly drawn MDP Mn+1 com-
pared to a algorithm that ignores the previous MDPs.
Clearly if the MDPs drawn from D do not share com-
mon structure, then on a newly drawn MDP the multi-
task learner will have no leverage over a single-task
learner that is applied to each MDP in isolation. At
the other extreme, if D assigns probability one to a
single MDP, then the multi-task learner will be able
to perform much better than a single-task learner af-
ter experiencing the first MDP. The most interesting
MTRL problems are where D lies somewhere in be-
tween these two extremes.

In our work, we consider a particular class of MTRL
problems where the MDPs share some components of
the model. In particular, we assume a generative pro-
cess for the models of MDPs drawn from D. To de-
fine the process we first associate each state s in each
MDP with a descriptive feature vector f(s). For ex-
ample, in the motivating prospector problem, the fea-
tures of a state might indicate the types of rocks and
other geographic features in a window around the cur-
rent location of the agent. The generative process first
draws a class c from some unknown distribution over
an unknown number of possible classes. Conditioned
on c, functions over f(s) are then drawn that define
the reward and/or transition dynamics of an MDP.
This generative model allows for there to be different
but shared classes of model structures in the generated
MDPs. For example, in the prospecting example, one
class of MDP may have a high probability of locating
rewards next to a river bank, and another class might
be more likely to assign rewards next to certain rocks.
The class of an MDP is unobservable to the learner
and the number of classes is unknown. It is up to the
multi-task learner to hypothesize the possible classes
of MDPs based on experience and to use this to infer
the likely reward and/or transition structure of a new
MDP after some experience in it.

3. Related Work

Recently, knowledge transfer in the MTRL setting has
attracted a great deal of interest, and several methods
have been proposed that enable RL agents to take ad-
vantage of solutions and observations from prior tasks.
Some of these methods assume that successive tasks

Multi-Task Reinforcement Learning: A Hierarchical Bayesian Approach

share similar dynamics and reward structure, for ex-
ample methods that use approximations of prior opti-
mal value functions as initial value functions for new
tasks (Konidaris & Barto, 2006). Other approaches at-
tempt to automatically construct general features that
enable mapping substantially different tasks together,
and transferring value functions defined in terms of
these features (Banerjee & Stone, 2007). Yet other ap-
proaches (Mehta et al., 2005) assume that the reward
function of the new task is given, and maintain value
functions for several different prior tasks and initialize
the value function of a new task with one that yields
the most reward. The current work differs from these
previous approaches in that we adopt a more princi-
pled hierarchical Bayesian framework to formalize the
similarities between the different MDPs. By maintain-
ing probabilistic models at multiple levels of the MDP
class hierarchy, we can naturally take advantage of the
common structure between different RL tasks, while
also learning specialized knowledge in a single task.

Hierarchical Bayesian RL is also related to Bayesian
Reinforcement Learning (Dearden et al., 1998a; Dear-
den et al., 1998b; Strens, 2000; Duff, 2003), where the
goal is to give a principled solution to the problem of
exploration by explicitly modeling the uncertainty in
the rewards, state-transition models, and value func-
tions. Here, a distribution is maintained over possi-
ble true MDPs rather than a single maximum likeli-
hood estimate. This distribution is used to select ac-
tions of high expected utility. However, in standard
Bayesian RL, it is difficult to choose an informed prior
distribution over MDPs. In the MTRL setting, how-
ever, a Bayesian approach facilitates knowledge trans-
fer across MDPs by providing a much more informed
starting point. Thus, we believe the multi-task set-
ting and our hierarchical approach better highlights
the potential utility of Bayesian RL.

4. Hierarchical Bayesian MTRL

In this section, we outline our hierarchical Bayesian
approach to multi-task reinforcement learning.

4.1. Overview

Our approach to multi-task reinforcement learning can
be viewed as extending Bayesian RL to a multi-task
setting. In (single-task) Bayesian model-based RL, a
posterior probability distribution P (M |Θ, O) is main-
tained over possible MDPs, where M denotes a ran-
dom variable over MDPs, O is the current set of ob-
servations from the underlying MDP, and Θ denotes
the parameters of the probability model (Figure 1(a)).
This distribution is used to select actions and is refined

(a)

(b)

MDPMDP MDP MDP MDP MDP

Induced Distribution Induced Distribution

MDP MDP MDP

Over Task Class 2
Induced Distribution

Task prior

Models Models Models
Over Task Class 1 Over Task Class N

Task Class
Prior

MDPMDP MDP

Figure 1. (a) Single task (i.e., MDP) Bayesian RL vs. (b)
Hierarchical Bayesian MTRL. The number N and param-
eters of the induced distributions are learned from data.

as the agent acts and observes the environment.

Our MTRL approach follows this Bayesian framework,
adding to it the key idea of using hierarchical Bayes
to model “classes” of MDPs. Figure 1(b) depicts the
general form of our generative model. We introduce
a (hidden) random variable C over “possible MDP
classes” where each class C = c in turn induces a distri-
bution over the probability parameters Θ above. Sam-
pling from this induced distribution results in an MDP
M = m with probability Pr(M = m|Θ = θ, C = c).
This addition of a “class layer” makes the probabil-
ity model hierarchical. Intuitively, the hierarchical
Bayesian approach allows us to explicitly reason about
the shared structure of certain MDPs and to transfer
knowledge to a new MDP from those in the same class.

To achieve the above behavior it is critical that our
system be able to automatically learn the class-level
model and to allow for class inference of newly ob-
served MDPs. Therefore, we utilize a nonparametric
infinite mixture model at the class layer. This allows
us to (a) model a potentially unbounded number of
classes, (b) adapt to and make inferences about classes
we have not seen before, and (c) learn the shared struc-
ture that constitutes each class on the fly, rather than
providing a rigid specification for each class (of course,
the shared structure needs to conform to the assump-
tions we make about the probabilistic model).

The key steps in our approach are outlined in Algo-
rithm 1. Our algorithm uses a hierarchical Bayesian
model to estimate the MTRL distribution over MDPs,
which is used as a strong prior for Bayesian RL in

Multi-Task Reinforcement Learning: A Hierarchical Bayesian Approach

Algorithm 1 Hierarchical Bayesian MTRL Algorithm

1: Initialize the hierarchical model parameters Ψ
2: for each MDP Mi from i = 1, 2, . . . do
3: Oi = ∅ //Oi is the set of observations for Mi

4: while policy π has not converged do

5: M̂i ← SampleMAP(Pr(M | Oi, Ψ)) // Section 4.4

6: π = Solve(M̂i) //e.g. by value iteration
7: Run π in Mi for k steps
8: Oi = Oi ∪ {observations from k steps}
9: end while

10: Ψ← SampleMAP(Ψ|M̂1, . . . , M̂i−1) // Section 4.3
11: end for

a new MDP. Initially before any MDPs are experi-
enced, the hierarchical model parameters Ψ are initial-
ized to uninformed values. The procedure SampleMAP

(line 5) generates a set of MDPs sampled according to
Pr(M |Ψ) and then returns the one, M̂i, that has the
highest probability. M̂i is then solved (for example,
using value iteration) for the optimal policy π (line 6)
and then π is followed for k steps in the environment
(line 7). This is similar to Thompson sampling which
has been employed with success in prior work (Thomp-
son, 1933; Strens, 2000; Wang et al., 2005), but differs
in that instead of sampling a single MDP and solving
it, we draw a set of MDPs and select the one with
highest probability. We have observed that this ap-
proach tends to give better performance compared to
pure Thompson sampling.

The observations gathered during the k steps of π are
then stored in the observation database Oi for Mi. The
agent then uses the newly updated Oi to update the
posterior distribution Pr(M |Ψ, Oi), and computes a
new M̂i. This loop is repeated for MDP M̂i until the
policy has converged. After convergence, we update
the hierarchical model parameters Ψ based on the pa-
rameter estimates M̂i. This update is also done using
the SampleMAP procedure, where the sample is gener-
ated using the Gibbs sampling procedure described in
Section 4.3. The resulting estimate for Ψ specifies the
(approximately) most likely class assignment to MDPs
along with the parameters associated with each class
distribution. Note that the SampleMAP procedure will
automatically determine the number of distinct classes
to utilize. Intuitively, this step will result in a Ψ that
captures the inherent class structure of the sequence
of MDPs before and including Mi.

In what follows, we give details of our approach. First,
we describe our hierarchical probability model. Next,
we describe the computation of the model parameters
Ψ given a sequence of previously experienced MDPs,
followed by the sampling procedure for MDPs given
the model parameters Ψ and observations.

4.2. Hierarchical Bayesian Model

We propose a generative model corresponding to the
class structure illustrated in Figure 1(b). Each class
C = c is associated with a vector of parameters
θc. These parameter vectors define distributions from
which individual MDPs will be drawn. It is impor-
tant to note that our approach is not tied to a spe-
cific form for these distributions, or specific form of a
(shared) prior distribution G0 over all θc’s. Rather,
our approach is generic in that we can utilize any form
of MDP distribution as long as we are able to sam-
ple from the posteriors of these distributions. As an
example, assume that θc = (µc, σc), defining a Gaus-
sian distribution. Then the generative process draws a
class assignment using the Dirichlet Process described
below, uses the assignment as an index to the corre-
sponding Gaussian distribution, and samples an MDP
from that distribution. When doing inference about
an MDP, assume that the prior G0 is uniform over all
µ and σ. Then, given a sequence of MDP observations,
we use the Dirichlet Process to hypothesize a class as-
signment, update the corresponding θc (incorporating
G0 into the update), and iterate this procedure till
convergence.

To understand the role of the Dirichlet Process, first
consider the case when there are a finite, known num-
ber of MDP classes. Suppose we observe a set of N

MDPs from a set of k classes. In this case, it is natu-
ral to use a multinomial model over class assignments,
with parameter vector β. The probability of the ob-
served data will be proportional to

∏k
j=1

β
cj

j where cj

is the number of MDPs observed to be in class j and
∑

j cj = N . If we wish to infer β, we can use an infor-
mative Dirichlet prior. The Dirichlet prior indicates
our prior belief about the prevalence of each class in
the data—if we expect that most MDPs will be drawn
from class c, the Dirichlet parameter (count) corre-
sponding to c should be large. This will mean that
our initial MAP estimates of βc will be larger than for
other classes.

Now consider the case when we do not know how many
classes there are. In this case, we cannot explicitly es-
timate or use the multinomial distribution, since the
number of parameters |β| is unknown. However, using
Dirichlet Process priors, it is possible to estimate the
conditional distribution of the class of a new observa-
tion given the class assignment for previous observa-
tions, using the equations:

Pr(Ci = c|c1, . . . , ci−1) ∝
n−i,c

i − 1 + α

Pr(Ci 6= cj∀j < i|c1, ..., ci−1) ∝
α

i − 1 + α
(1)

Multi-Task Reinforcement Learning: A Hierarchical Bayesian Approach

N

ci

G0

c

R

iM

(s,a,r,s’,a’)

Figure 2. Infinite Mixture Model (Parameter set Ψ). There
are N MDPs. For each MDP the agent has made R observa-
tions. Parameters θc capture the class distributions (level
2 in Figure 1) and the parameter set G0 is a hyperprior
over classes (the root in Figure 1). The class assignments
ci assign each MDP to a class. The parameter α influences
the probability with which new classes are considered.

Here, Ci a random variable over possible class assign-
ments to the ith (last) datapoint, c1, . . . , ci−1 are class
assignments to the previous i−1 observations, n−i,c is
the number of data points, excluding point i, currently
assigned to class c, and α is a parameter of the Dirich-
let Process, referred to as the “concentration param-
eter.” The parameter α governs the probability with
which the Dirichlet Process hypothesizes that the ith

observation comes from a new class (sometimes called
an “auxiliary class”). Using Equation 1, we can de-
fine a Gibbs sampling procedure that repeatedly sam-
ples class assignments until convergence. Observe that
this procedure implicitly defines a multinomial distri-
bution, but now the parameter vector for this distribu-
tion can vary in size as we observe more data. Thus,
the Dirichlet Process prior can be used to specify a dis-
tribution over an unbounded, potentially infinite set of
classes from which our observations are drawn.

In Figure 2, we show our model in plate notation.
Rectangles indicate probability distributions that are
replicated a certain number of times, shown in the
bottom-right corner. The set of learned model param-
eters Ψ consists of the class parameters θc, the number
of which is unbounded and the class assignments ci.
The figure shows a distribution over N MDPs in each
of which the agent has made R observations.

4.3. Updating the Hierarchical Model

Here we describe how we update the hierarchical model
parameters Ψ (line 10 in algorithm 1) given a set of pa-
rameter estimates M̂1, . . . , M̂i−1 and a new parameter
estimate for the ith MDP, M̂i. We use a Gibbs sam-
pling routine (Neal, 2000) described in Algorithm 2 to
sample the posterior distribution Pr(Ψ|M̂1, . . . , M̂i−1)

Algorithm 2 Auxiliary Class Gibbs Sampler

1: Let m = Number of auxiliary classes.
2: Let F be the MDP distribution given a class: M ∼

F (θc)
3: Let Mj be the final estimates for the MDP j’s param-

eters, for all j
4: Initialize the Markov chain state (Θ = Θ0, C = C0)
5: repeat
6: Let K = |Θ|
7: for c = K + 1 : K + m do
8: Draw θc from G0

9: end for
10: Let Ψ̂ = {C, Θ, G0, α}
11: for j=1:i do

12: cj = SampleAssignment(Ψ̂, Mj , F, m)
13: end for
14: Remove all classes with zero MDPs.
15: Θ← Sample(Pr(Θ′|c1, . . . , ci))
16: until convergence

and select the most probable parameters.

Algorithm 2 is an auxiliary class Markov Chain Monte
Carlo sampling technique for Dirichlet process models
where the hyperprior distribution G0 is not conjugate
to the component distribution. In our case the state of
the Markov chain includes the set of class assignment
variables C0 = {c1, c2, . . . , ci} and the class parame-
ters Θ0 = {θ1, θ2, . . . , θk} (if we have seen k classes
so far). Auxiliary classes are introduced to allow the
set of components to grow as the data requires. We
found setting the number of auxiliary classes m to a
small value gave good performance. Such a Gibbs sam-
pling procedure requires conditional distributions for
the discrete class assignment variables, which are given
in Equation 1, and a procedure for sampling the pos-
terior distribution for the class parameters θc given
the class assignments. It takes as input the current
parameter estimates M̂1, . . . , M̂i−1 and model param-
eters (C0,Θ0) and outputs updated model parameters
(C,Θ). The update is made by running the sampling
routine until the chain has burned in, and then gener-
ating a large sample and selecting the most probable
parameters (Line 10 in Algorithm 1).

The algorithm works as follows. The Markov chain
is initialized with the current parameters. Parame-
ters for the m auxiliary classes are drawn from the
hyperprior G0. Then, the SampleAssignment routine
(Algorithm 3) is used to propose a new class assign-
ment to the i MDPs. Given an assignment, a new set
of class parameters are computed. We do not give de-
tails on this step because it depends on the form of
the MDP distribution, and we do not assume any spe-
cific distribution in this algorithm. As long as there
is a procedure to sample from the posterior distribu-
tion over Θ, we can define some suitable update for

Multi-Task Reinforcement Learning: A Hierarchical Bayesian Approach

the class parameters. The class assignment and pa-
rameter updates are repeated until we have a suffi-
ciently large sample from the posterior. The assign-
ment, Ψ = (C,Θ), that maximizes the posterior prob-
ability is then returned.

4.4. Sampling an MDP

In this section, we describe the procedure for sam-
pling an MDP from the current hierarchical model.
To do this, at each step, the agent must have a good
idea about which class the current MDP is drawn. A
computationally expensive method of maintaining the
accuracy of the current hypothesis is to update the pa-
rameter estimate, using Algorithm 2 above, after each
observation. However, this is unnecessary in practice.
We need only sample the full posterior once between
environments as this is sufficient to maintain a good
estimate. Instead, the output from Algorithm 2, the
updated estimate Ψ, including the class assignments
C, and class parameters Θ are assumed to be an in-
formed prior and remain fixed during exploration of
the subsequent MDP. To take advantage of this infor-
mation the agent need only determine which current
class, if any, Mi belongs. If Mi belongs to a known
class, (ci ∈ 1..k), then the information in θci

is use-
ful for exploration. Otherwise, the agent performs no
worse than if it used the prior G0.

To do this properly we need to maintain a sample M̂i

for the MDP model parameters, and a current hypoth-
esis for the class assignment. We initialize M̂i by sam-
pling from the informed prior, and initialize Ci sim-
ilarly. These two quantities will constitute the state
used for our sampling procedure. After each obser-
vation, given Ψ, the algorithm samples a sequence of
assignments using Algorithm 3 for Ci = c. In this case
we also allow a number of auxiliary components, since
the current MDP may belong to a novel class. Given
the sample the algorithm selects the most probable
class assignment c, and then samples an MDP from
class c using the posterior distribution P (Mi|θc, Oi).
The sampled MDP parameters are used to update
M̂i (Line 5 of Algorithm 1). Note that the specific
sampling procedure may depend on the exact form of
F (θc,Mi). Given M̂i the algorithm solves for the opti-
mal policy and acts for a fixed number of steps (Lines
6 and 7 of Algorithm 1). After the final observation
the inner loop of Algorithm 1 returns the estimate M̂i.

5. Empirical Evaluation

In this section, we evaluate our approach on two do-
mains. We hypothesize that, after seeing a few training
environments, our hierarchical Bayesian MTRL algo-

Algorithm 3 SampleAssignment(Ψ̂,Mj , F,m)

1: Let i be the total number of MDPs seen so far
2: Let i−j,c be the number of MDPs assigned to class

c after class j is removed for all j, c

3: Let Fc,j denote F (θc,Mj), the probability of Mj

in the class c for all c, j

4: Sample Cj according to:

Pr(Cj = c) ∝

{

i−j,c

i−1+αFc,j , 1 ≤ c ≤ K
α/m

i−1+αFc,j , K + 1 ≤ c ≤ K + m

rithm will (i) successfully learn the underlying number
of MDP classes and (ii) use the learned priors to ex-
plore efficiently in a new environment, thus converging
more rapidly to the optimal policy than an algorithm
which solves the new algorithm from scratch.

To evaluate our hypotheses we consider a colored maze
domain. Each square of the domain is randomly col-
ored with one of n colors and the agent may navi-
gate in any of four directions to adjacent squares. In
the first instance of this domain the agent is tasked
with navigating from the top left corner to the bot-
tom right corner by following the least cost path to
that goal. The objective is to maximize the total re-
ward per episode. Episodes end only after the goal is
reached. In this domain, we assume that the transition
function is the usual deterministic transition function.
The unknown MDP parameters are the parameters of
the reward function. Thus, each task is characterized
by the parameters of the reward function w. We de-
fine the reward to be a linear Gaussian function of the
colors surrounding the agent. Define a “color vector”
Q = {qd,j} where each qd,j is a boolean variable which
is true if the dth square relative to the agent’s current
location (d can be current, up, down, left or right)
is colored by jth color. Then, when the agent enters
a state, it receives a reward drawn from a Gaussian
distribution with µ = w · Q and known diagonal co-
variance matrix. To define the true class distributions
that govern the class parameters θc, we use a set of
fixed Gaussian distributions. The hyperprior G0 over
θc (used in inference) is set to be a Normal Inverse
Wishart distribution. The true distribution over class
assignments is a fixed multinomial distribution. Thus,
to draw individual MDPs we first select a class by sam-
pling from the multinomial distribution over the (true)
set of classes, and then sample a task, which is a weight
vector w, using the Gaussian distribution associated
with that class.

Our experiments are set up as follows. Using the true

Multi-Task Reinforcement Learning: A Hierarchical Bayesian Approach

0 5 10 15 20 25 30 35 40 45 50

−132

−130

−128

−126

−124

−122

−120

Number of Steps X 50

C
um

ul
at

iv
e

R
ew

ar
d

15x15 Map, Fixed Goal Location

0 MDPs
4 MDPs
8 MDPs
16 MDPs

Figure 3. Total reward every 10 steps, averaged on the test
set, for gridworld problems with unknown reward parame-
ters.

distribution, we draw a set of training MDPs and draw
a fixed test set of 50 MDPs. To evaluate the agent’s
performance, we report the total reward per episode,
averaged over the test set, plotted against the number
of training environments seen by the agent. Figure 3
shows our results with 8 different colors and 4 under-
lying MDP classes on maps of size 15-by-15. From
these results we observe that in this domain, even the
algorithm that learns each new task from scratch con-
verges quite rapidly. This is because in this domain,
essentially every step the agent takes gives some infor-
mation about the parameters of the reward function.
Despite this, we observe that our MTRL algorithm
derives considerable benefit from the training MDPs.
After having experienced 16 training MDPs the agent
finds an optimal solution in approximately 100 steps.
In contrast, more than 2500 steps are required for the
uninformed algorithm to reach the same level of per-
formance. This also indicates that our algorithm’s es-
timate of the posterior closely approximates the true
distribution over tasks after a very few examples. Fur-
ther, we also observed in these experiments that, al-
though the true distributions over classes overlapped,
our inference procedure was able to find the true num-
ber of underlying classes.

In the second set of experiments, we consider a modifi-
cation of our domain that makes learning more difficult
without a strong prior on model parameters. In par-
ticular, we let the location of the goal vary between
environments. In this task, the agent is returned to
the starting state and the episode ends after finding
the goal location which may be any square on the
map. The objective is to maximize the total reward
per episode. The map construction algorithm and re-
ward function remain unchanged. The true distribu-

0 20 40 60 80 100
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1
x 10

4

Experienced Environments

T
ot

al
 R

ew
ar

d:
 E

pi
so

de
 1

20x20 Map,4 Locations,8 Colors

Single Task RL
HB MTRL Algorithm

Figure 4. Cumulative reward on the first episode plotted
against the number of training MDPs on 20 × 20 map, for
gridworld problems with unknown goal states.

tion over the goal locations is defined by a Gaussian
distribution centered around a different fixed location
for each class. Thus the probability that, for any new
map, a given location will be chosen as the goal is pro-
portional to the Gaussian probability with the mean
being the goal location for each class. The priors over
class reward parameters are specified as before. To
sample the posterior distribution for goal locations,
in line 5 in Algorithm 1, we use a rejection sampling
routine. This routine discards sampled goal locations
corresponding to previously visited areas.

In Figures 4 and 5, we show the the total reward
received during the first episode for our algorithm
and the baseline, which learns each environment from
scratch (this measure is sometimes called the “jump-
start”). On the x-axis is shown the number of previous
training environments for our algorithm (the baseline
algorithm’s performance is constant over the x-axis be-
cause it solves every task from scratch). We chose this
graph because in this domain, we observed that the
cost to find the goal dominates the exploration. By
the time the goal is found, the agent usually also has
a good estimate of the reward weights and converges
rapidly to the optimal policy. Since by our specifica-
tion an episode ends only after the goal is found, it
is reasonable to measure improvement by considering
the agent’s behavior in just the first episode.

From the figures, we observe that in this domain,
learning a strong prior on the goal locations (and the
rewards) using the previous MDPs has a large effect
on exploration in a new map. We observed that the al-
gorithm quickly discovers the set of classes, and then
focuses exploration on areas around the class goals.
This intelligent search process is much more efficient

Multi-Task Reinforcement Learning: A Hierarchical Bayesian Approach

0 5 10 15 20 25 30 35
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

5

Experienced Environments

T
ot

al
 R

ew
ar

d:
 E

pi
so

de
 1

30x30 Map,4 Locations,8 Colors

Single Task RL
HB MTRL Algorithm

Figure 5. Cumulative reward on the first episode plotted
against the number of training MDPs on 30 × 30 map, for
gridworld problems with unknown goal states.

than the nearly exhaustive search performed by the
uninformed agent. This is particularly true in larger
maps (Figure 5), and demonstrates the value of our
approach. Furthermore, The ability to propose new
classes prevents the algorithms past experience from
overwhelming the information in the current set of ob-
servations. Thus, in both domains, the algorithm finds
a good estimate of the true underlying prior and suc-
cessfully uses its estimate to improve exploration in
new MDPs.

6. Summary and Future Work

Our work is motivated by the goal of transferring
knowledge between different but related RL tasks.
Hierarchical Bayesian models provide an attractive
framework for representing, learning, and reasoning
about shared knowledge. To our knowledge this is
the first work that considers applying Bayesian RL
in the context of multi-task learning, which is ar-
guably the learning setting where Bayesian methods
may have the most impact. Our approach was based
on a straightforward, but novel, combination of hier-
archical Bayesian models and myopic action selection
strategies. Our experiments in a colored gridworld
MTRL problem demonstrated the potential for the
model to transfer knowledge across MDPs to speed up
convergence to the optimal policy in a new problem.

In future work, we plan to make our algorithm more
computationally efficient. The primary computational
bottleneck is our current action selection strategy,
where after each resampling step, we solve an MDP.
This works effectively for the domains we have consid-
ered and in many cases it may be possible to construct

domain specific planners that are efficient. However,
a more general solution requires additional considera-
tion of the action selection mechanism in the Bayesian
context. Another direction we are investigating is to
model shared structure in the optimal value functions
and policies. An eventual goal is to develop a single
Bayesian model that can coherently combine evidence
about all of these quantities and use the information
for effective transfer between MDPs.

Acknowledgements

We thank the reviewers for their helpful comments and
suggestions. We gratefully acknowledge the support
of Defense Advanced Research Projects Agency under
DARPA grant FA8750-05-2-0249.

References

Banerjee, B., & Stone, P. (2007). General game learning
using knowledge transfer. Proceedings of the 20th Inter-
national Joint Conference on Artificial Intelligence.

Dearden, R., Friedman, N., & Andre, D. (1998a). Model-
based Bayesian exploration. Proceedings of the 15th In-
ternational Conference on Machine Learning.

Dearden, R., Friedman, N., & Russell, S. (1998b). Bayesian
Q-learning. Proceedings of the Fifteenth National Con-
ference on Artificial Intelligence.

Duff, M. (2003). Design for an optimal probe. Proceed-
ings of the 20th International Conference on Machine
Learning.

Konidaris, G., & Barto, A. (2006). Autonomous shap-
ing: knowledge transfer in reinforcement learning. Pro-
ceedings of the 23rd international conference on Machine
Learning (pp. 489–496).

Mehta, N., Natarajan, S., Tadepalli, P., & Fern, A. (2005).
Transfer in variable-reward hierarchical reinforcement
learning. Workshop on Transfer Learning at Neural In-
formation Processing Systems.

Neal, R. M. (2000). Markov chain sampling methods for
Dirichlet process mixture models. Journal of Computa-
tional and Graphical Statistics, 9, 249–265.

Strens, M. J. A. (2000). A Bayesian framework for rein-
forcement learning. Proceeding of the 17th International
Conference on Machine Learning.

Sutton, R., & Barto, A. G. (1998). Reinforcement learning:
An introduction. MIT Press.

Thompson, W. R. (1933). On the likelihood that one un-
known probability exceeds another in view of the evi-
dence of two samples. Biometrika, 25, 285–294.

Wang, T., Lizotte, D., Bowling, M., & Schuurmans, D.
(2005). Bayesian sparse sampling for on-line reward op-
timization. Proceedings of the 22nd Internationl Confer-
ence on Machine Learning.

