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Abstract

A Horn definition is a set of Horn clauses with the same head literal. In this paper, we
consider learning non-recursive, first-order Horn definitions from entailment. We show that
this class is exactly learnable from equivalence and membership queries. It follows then that
this class is PAC learnable using examples and membership queries. Finally, we apply our
results to learning control knowledge for efficient planning in the form of goal-decomposition
rules.
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Entailment, Planning, Control Knowledge, Queries, PAC-learning.

§1 Introduction

Horn clauses is one of the popular ways of representing first order knowledge. In this
paper, we consider learning Horn definitions—multiple Horn clauses with the same predicate in
the heads of all clauses—in the learning from entailment setting.'®® 1In this setting, the target
concept is a Horn definition. A positive (negative) example is a Horn clause (not) entailed by the
target. Learning Horn definitions is a fundamental problem both in Inductive Logic Programming
(ILP) and in Computational Learning Theory. Since it is NP-hard to test membership in this
concept class, it immediately follows that even non-recursive Horn definitions are hard to learn from
examples alone.*” Using only equivalence queries, single non-recursive Prolog clauses are learnable
with restrictions such as determinacy and bounded arity.” ' Restricted versions of single recursive

clauses are also shown to be learnable.”” However, learning multiple clauses or even slightly more



general versions of either recursive or non-recursive clauses is shown to be hard without further
help.” Page has shown that non-recursive Horn definitions with predicates having fixed arity and
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with the restriction that the clauses be “simple,” i.e., only the variables and terms that occur in the
head literal of a clause appear in the body of the clause, are learnable using equivalence and subset
queries.”® In this paper, we examine the learnability of a more general class.

In particular, we show that first-order non-recursive Horn definitions are exactly learnable
from membership and equivalence queries with no other restrictions. In particular, the target con-
cepts may have arbitrary number of clauses with the number and the arity of the literals in each
clause also being unbounded. The literals might also contain functions. Learning from equivalence
and membership queries is one of the standard models (also called “minimally adequate teacher” by
Angluin®) used in Computational Learning Theory literature. This is a natural model to consider
when the learner has a choice of asking whether a given instance is positive, i.e., entailed by the
target. Some languages such as deterministic finite state automata and propositional Horn sentences
which appear not to be learnable from examples alone are learnable in this model. At the same
time, it is a nontrivial model in that there are many languages, even apparently “simple” ones, such
as arbitrary Boolean formulas, which are not learnable in this model (under some cryptographic
assumptions). It is also known that for some languages such as DNF, membership queries do not
help. Thus, learning a first-order language such as Horn definitions in this learning model is an
important problem, left open by by Angluin, et al.* Most previous theoretical work in ILP relies on
the corresponding propositional algorithms, and hence does not really show the importance of using
a first-order language. Our work is almost unique in that the hypothesis space we consider cannot
be reduced to one that a propositional learner can learn efficiently. This is discussed in more detail
in Section §5.

Our algorithm combines the ideas of several previous learning algorithms that use mem-
bership queries.> '* '™ ' It maintains a set of hypothesis clauses, each of which is subsumed by a
corresponding target Horn clause. Given a new positive example, it either combines it with one
of its hypothesis clauses producing a least general generalization (lgg) of the example and the hy-
pothesis clause, or stores it as a new hypothesis clause. It uses membership queries to decide which
hypothesis clause, if any, should an example be combined with. An example is combined with that
clause which yields an Igg that is entailed by the target. The algorithm exploits the fact that there
is at most one positive literal in a Horn clause, which makes it possible to show that any clause
which is entailed by the target must be subsumed by one of the clauses in the target a property
called “strong compactness.” This guarantees that the membership queries, in effect, check whether
a hypothesis clause is subsumed by a target clause. After combining the example with a hypothesis
clause, the resulting lgg is pruned of redundant literals using membership queries. Without this

step, the number of literals in the hypothesis clause can grow geometrically with each new example,



exceeding any polynomial bound.

Learnability in our “exact-learning model” that uses equivalence and membership queries,
implies learnability in the PAC-learning model that uses random examples and membership queries.?
On the practical side, our research is motivated by an application that involves learning goal-
decomposition rules (d-rules) in planning. We show that this problem can be reduced to one of
learning Horn definitions, which enabled us to apply our learning algorithm for Horn definitions to
efficiently learn d-rules. We implemented a system called ExEL that employs the learning algorithm
for Horn definitions to learn d-rules. We demonstrate ExEL’s success in learning d-rules in the
STRIPS-world and a simplified version of Air Traffic Control domain.

The rest of the paper is organized as follows: Section 2 presents some formal preliminaries
about Horn definitions. Section 3 describes the learning problem, proves some properties of Horn
definitions, describes the learning algorithm and proves its correctness. Section 4 employs this result
to show that goal-decomposition rules are learnable. This section also gives experimental results for
learning d-rules by ExEL. Section 5 concludes the paper by relating it to previous work in this area

and discussing its implications.

§2 Preliminaries
In this section, we define and describe the terms we use in the rest of the paper, omitting

some of the standard terminology and notation of logic (as given in standard books®*).

Definition 2.1 A term is defined recursively as follows: (1) a variable is a term; (2) a constant
is a term; and (3) if f is an n-ary function symbol and ¢1, ¢, ..., t, are terms, then f(t1,ta,...,t,)
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is also a term.

Definition 2.2  If pis an n-ary predicate symbol, and ¢, o, ..., 1, are terms, then p(t1, s, ..., )
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is called an atom. A literal is an atom (positive literal), or a negation of an atom (negative literal).

Definition 2.3 A definite Horn clause (Horn clause or clause, for short) is a finite set of literals
that contains exactly one positive literal. It is treated as a disjunction of the literals in the set with
universal quantification over all the variables. The positive literal is called the head of the clause,
and the set of negative literals is called the body. A Horn clause is non-recursive if the predicate

symbol of the head literal of the Horn clause does not occur in its body.
We usually denote a Horn clause as body — head.

Definition 2.4 A Horn definition is a set of Horn clauses where the heads of all clauses have

the same predicate symbol.*" Tt is non-recursive if the head predicate symbol does not occur in

*1 A Horn definition is also called a predicate definition.



any negative literal in any clause in the definition.

Definition 2.5 A clause D subsumes a clause E if there exists a substitution # such that
D@ C E. We denote this as D > F, and read it as D subsumes E or as D is more general than F.

Definition 2.6 If D and E are clauses such that D > E, then a literal [ in a clause FE is relevant
(irrelevant) w.r.t the clause D, if D ¥ E — {l} (D = E — {l}, respectively).

Definition 2.7 If D and E are two clauses such that D > E, then a condensation of F w.r.t.
D is a clause E' such that E' C E, D = E', and for any l € E', D # E' — {I}.

For example, if D = {=p: (), p2(y)} and E = {=p1(a), p2(b), p2(c), p3(c)}, then both {-p: (a),
p2(b)} and {—p1(a),p2(c)} are condensations of E w.r.t. D.

Definition 2.8 Least general generalization of a set of clauses S over > is a clause D such
that (1) for every E in S, D > E, and (2) if there exists a clause F' such that for every E in S,
F > E, then F > D.

The definitions 2.5 and 2.8 are due to Plotkin.”” The existence of least general generalization
is shown by Plotkin®*”, and by Nienhuys-Cheng and de Wolf.**

We follow the description by Muggleton and Feng*® of Plotkin’s algorithm to find the least
general generalizations (Igg) of a set of clauses. The lgg of two clauses Cy and Cs is Uj, ey o0 199(l1, 12).
The lgg of two literals p(ay, as, . . ., a,) and p(by, ba, ..., b,) is {p(lgg(a1,b1),lgg(az, b)), ..., lgg(an,bn))};
if the predicate symbols are not equal, their sign differs or their arity differs, then their lgg is {},
the empty set. The lgg of two terms f(s1,...,8,) and g(t1,...,tm), if f = g and n = m, is

terms throughout the computation of the lgg of the pair of clauses. We use symbols that start with
a ‘7’ to denote variables.

For example, let Cy = {-pi1(f(a),b),p2(a,c),ps(b)} and Co = {-p1(f(c),d), —p:1(b,a),
—p2(c,¢), pa(a)}. Then lgg(Cr,C2) = {-p1(f(?2),7y),~p1(?z, 7u), =p2(?x,c), p3(?u)}, where the
variables 7z, 7y, 7z and ?u stand for the pairs lgg(a,c), lgg(b,d), lgg(f(a),b) and lgg(b, a), respec-
tively.

Note that |lgg(C1, C2)| can be equal to |Cy] x |Ca.

Lemma 2.1 Let C;, Cs and C3 be Horn clauses. Then C; > Cs and Cy > (3 if and only if
C1 = lgg(Ca, C3).

Proof. The only-if part follows from the property (2) of the definition of least-general generalization.
The if part follows from the transitive property of >. ad
We state the following fact explicitly, although it is straightforward, for it is useful later.



Proposition 2.1 If 4 > C, then C; > C3 for any C3 such that Cy C Cj.

§3 Learning Horn Definitions
In this section, we first specify our learning problem. Next we describe the learning algorithm

and then give the learnability result.

3.1 Learning Problem
Our learning problem is motivated by learning control knowledge for planning in structural

domains. The following definitions reflect that motivation.

Definition 3.1 A scene is a conjunction of positive ground literals describing a set of objects.*?
We call the predicates that occur in scenes base predicates. We differentiate the base predicates
from a special predicate called the goal predicate. An instance is a 2-tuple comprising a scene scene
and a ground goal literal g, meaning that g is true whenever scene is true. We alternately write an

instance as a clause scene — g.

We consider the hypothesis space of Horn definitions for the goal predicate. Following the
learning from entailment model, an instance (scene, g) is in a hypothesis H iff the minimal model
of H with respect to the literals in scene satisfies g. In other words, (scene, g) is an instance of H
iff H |= (scene — g). Such an instance is a positive example of H. All other instances are negative
examples.

Henceforth, ¥ denotes the target concept in the hypothesis space.

Example 3.1 The following illustrates the above definitions in a toy version of an air-traffic
control domain.
v=A
plane-at(?p,?loc), level(Ll,?loc), free-runway(?r), short-runway(r), land-short?(?p) — land-plane(?p);
plane-at(?p,?loc), level(Ll,?loc), free-runway(?r), long-runway(?r) — land-plane(?p)
}

The first clause in ¥ gives the conditions under which a plane can land on short runways.
The second clause is for long-runway landing. The following is a positive example of ¥ (for the

second clause):

plane-at(P737, 10), level(L1, 10), free-runway(R1), long-runway(R1), short-runway(R2),

wind-speed(high), wind-dir(south), free-runway(R2) — land-plane(P737). O

Before stating the learning problem, we define the queries we will need.”

*2 'We employ closed-world assumption and assume that all other literals are negative.



Definition 3.2 A membership query takes as input an instance x, and outputs yes if z is in X,
and no otherwise. An equivalence query takes as input a hypothesis H, and outputs yes if H and ¥
are logically equivalent; otherwise, returns a counterexample from H &Y  i.e., an instance that is

in one but not in the other.

The above combination of queries is called a “minimally adequate teacher” by Angluin. The

learning problem in the exact learning model® is as follows:

Definition 3.3  An algorithm ezactly learns a concept class C if for every concept X € C, if it
asks equivalence and membership queries, terminates in time polynomial in the size of ¥ and the

size of the largest counterexample, and outputs a hypothesis which is logically equivalent to X.

In the rest of this section, we will be showing that the class of non-recursive Horn definitions
is exactly learnable from equivalence and membership queries. Note that learning exactly does not
mean learning a syntactically equivalent definition, but only a semantically equivalent one. In other

words, the learner must ask an equivalence query for which there is no counterexample.

3.2 Strong Compactness of Non-recursive Horn Definitions
In this section we describe a property of non-recursive Horn definitions, which is called strong
compactness by Lassez, et al.”” and Page®, and relate this property to membership queries.
Strong compactness says that for non-recursive Horn definitions if we know that a clause
is logically implied by a set of clauses ¥, then we can conclude that that clause is subsumed by a
clause in X. The following lemma, in addition, says that the converse is true. This is useful to show
later that each clause in the current hypothesis of our algorithm is always a specialization of some

target clause.

Lemma 3.1 Let ¥ be a non-recursive Horn definition, and A be a Horn clause which is not a
tautology. Then, ¥ |= h if and ouly if there exists a clause C' in X such that C = h. We call C the
target clause of h, and h the hypothesis clause of C.

Proof. The if part follows from the conjunctive interpretation of all the clauses in ¥. The only-if
part is a direct consequence of the Subsumption theorem.'® We give a brief sketch of the proof here.
Since ¥ |= h and h is not a tautology, there must be a non-trivial proof of h from the clauses of
Y. However, since the head predicate symbol of the clauses in ¥ does not appear in the body of
any clause, there can be no chaining of the clauses in the proof of h. This implies that h must be
subsumed by a single clause in X. O

If a clause h has variables, determining ¥ = h is equivalent to determining whether all
instances in h are also in ¥ which is the same as a subset query.” However, by substituting each

variable in A by a unique constant—skolemization—we can form a fully ground clause that is an



instance of h. Now, determining whether ¥ |= h is equivalent to asking whether ¥ |= Skolemize(h).
Asking whether ¥ |= Skolemize(h) is the same as a membership query, since Skolemize(h) is ground.

In effect, this membership query simulates a subset query.

3.3 Learnability of Non-recursive Horn Definitions

Horn-learn is an algorithm to learn non-recursive Horn definitions using equivalence and
membership queries (Fig. 1). Horn-learn makes use of Generalize algorithm. Generalize takes as input
a Horn clause and generalizes it by eliminating literals from that Horn clause. It removes a literal
from the Horn clause and checks whether the resultant Horn clause is overgeneral. It can do this by
substituting each variable in the hypothesis clause with a unique constant and asking a membership
query. If it is overgeneral the literal is retained; otherwise, it is eliminated to form a new, more
general Horn clause.

Horn-learn starts with hypothesis H that is initially empty. As long as H is not equivalent
to the target concept C, the equivalence query returns an example e that is not included in H,
and the algorithm modifies H to cover e. To include e in H, Horn-learn checks each Horn clause h;
of H whether generalizing h; to cover e would not make the hypothesis overgeneral—i.e., whether
lgg(hi,e) is in the target concept. If so, concluding that it has found the right Horn clause h; to
include e in, Horn-learn further generalizes h = lgg(h;, ), by removing irrelevant literals, i.e., those
literals whose removal preserves the entailment relation between ¥ and h. The entailment relation
is checked by using the membership oracle on the result of skolemizing h (see Generalize in Fig. 1).
Horn-Learn finally replaces h; in H by the new generalized h. If there is no h; such that lgg(h;,e) is

entailed by the target, it generalizes e and makes it a new Horn clause of H.

Example 3.2

Let ¥ be {— q(f(f(?x))),?x);p1 (?x,?y), p1(?y,72) = q(?2,72); p1(?x, 7y),p2(7y, 72) = q(?z,72)}.
Let the first example be el: pi(a,b). pi(a,d),p1 (b, ), p2(c, b), p2(c, d), p2(d, €) = q(a, €).
Since H is empty, next step is Generalize(el).

In Generalize:
Y E pi(a,d), p1(b,2),p2(c,b), p2(c. d), pa(d, €) = g(a,e)?
yes, so drop pi(a, b).
Y = pi(b, 2),p2(c, b), pa(c,d), p2(d, e) = q(a,e)?
no, keep pi(a,d).

Finally, h' = P (az d):pQ(d7 6) - q(az 6)

hy = b1 (a7 d)ap2 (d/ 6) - q(a7 6)
Let the next example be e2: b1 ((l, b)apl (a7 d)apl (b7 Z),p2 (Ca b),pQ({J, d),pg(d, 6) - q(”‘: Z)



Horn-learn

1.  Let ¥ be the target concept.

2. H:={}/* empty hypothesis, initially */

3. m:=0/* number of clauses in the hypothesis */

4.  while equivalence(H, ¥) is not true and e is a counterexample do

/* fix the clause in H for the example e */

5. if (m > 0) then, Let H be {hy,h2,...,hpn}

6. found := false; i :=1

7. while (i < m) and found is false do

8. h = lgg(e, h;)

9. if ¥ = h then found := true; /* Member?(Skolemize(h)) implements X = h */
10. elsei:=i+1

11. endwhile /* i < m */

12. if found = false then h :=¢e; m := m + 1;

13. hi := Generalize(h) /* further generalize h */

14. endwhile
15. return H

Generalize(h)

1. h:=h

2 for each literal [ in h do

3. if ¥ Eh' — {i} then 1’ := h' — {I} /* Implemented by Member?(Skolemize(h' — {i})) */
4 Return h'.

Fig. 1 Horn-learn: An algorithm to learn Horn definitions

lgg(hla 62) =N ((l, ?db),pl (a7 d)apl (?aba ?dz),p2(?dc, ?Eb),pg(?dc, ?Ed)7p2 (d/ 6) - q(a7 762)
Y = lgg(h1,€e2)? no.
So, Generalize(e2) = hy = p1(a, b), p1(b, 2) = q(a, 2).

Let the next example be e3: pi(r,s),p2(s,t), p1(r,u), p2(u,v) = q(r,t).
lgg(h1,e3) = p1(?ar,?ds), p2(?ds, Tet), p1 (Tar, ?du), p2(?du, Tev) — q(?ar, ?et)
Y |=lgg(h1,e3)? yes.

hy = Generalize(lgg(h1,e3)) = p1(Tar, 7ds), p2(?ds, Tet) — q(?ar, Tet).

Let the next example be e4: py(a,b) — q(f(f(a)),a)
lgg(h1,ed) = p1(?ar,?ds) — q(?ar f, ?eta)

Y = lgg(hi,e4)? no.

lgg(hy,e4) = pi(a,b) = q(?af,?za)



Y = lgg(ha,ed)? no.
Generalize(ed) = hy =— q(f(f(a)),a).
O

The generalization process of Generalize serves a critical purpose. Recall that the size of
lgg grows as a product of the sizes of the hypotheses being generalized. Unless the hypothesis
size is limited, it can grow exponentially in the number of examples used to create the hypothesis.
Lemma 3.2 and Lemma 3.3 together show that Generalize guarantees that the sizes of the hypothesis
clauses are at most the sizes of their corresponding target clauses. Lemma 3.2 shows that Generalize

does not over-generalize in the process.

Lemma 3.2  If the argument h of Generalize is such that ¥ = h then, at the end of Generalize, h’'
has a target Horn clause C; i.e., C; = h'. Moreover, h' in line 4 of Generalize is a condensation of
hwrt. Cj.

Proof. In the beginning of Generalize, h', which is the same as the argument h, is not overgeneral.
h' is modified only when the modification still leaves the result inside ¥. That is, ¥ = h'. By
Lemma 3.1, there exists a target Horn clause for ', say C;, and C; = h'.

To show that h' in line 4 of Generalize is a condensation of h w.r.t. C;, we need only to
show that for any literal [ € h', C; # (h' — {l}). Suppose that for some | € b', C; = (h' — {I}).
Let h" be the value of A’ when [ is considered for removal in the loop of lines 2 3. Since h' C A",
by Proposition 2.1, C; > (h" — {i}). From Lemma 3.1, ¥ |= (" — {i}). In that case, [ would have

been removed by line 3 of Generalize. But, I € h', a contradiction. Therefore, for any literal I € h',

Ci o (W =A{1}). O

Lemma 3.3 If i’ is a condensation of h w.r.t. Cj, then C;6 = h' for some substitution 6.
Moreover, |h'| < |C}].

Proof. Suppose h' is a condensation of h w.r.t. C;. Then there exists a 6 such that C;6 C h'.
Suppose C;6 C h'. Then, for some | € h' — C;6, C;6 C h' — {l}. Hence, C; = (h' — {l}). This
is a contradiction, since h' is a condensation w.r.t. C;. Therefore, C;6 = h'. This implies that
1] = 1C;8| <151 =

The following definition relates an example to a hypothesis clause and to a target clause.

Definition 3.4 If Cy,Cs,...,C), are the Horn clauses in the target concept X, and hy, ha, ..., hy,
are the Horn clauses in the hypothesis H, then a correct hypothesis Horn clause in H for an example

e is a Horn clause h; such that for some 1 < j <n, C; > e and C; > h;.

Lemma 3.4 In Horn-learn, suppose that e is a counterexample returned by the equivalence query



such that e is covered by X, but not by H. Then Horn-learn includes e in a correct hypothesis Horn

clause in H for e if and only if one exists.

Proof. First the only-if part. Horn-learn includes e in h; of H if ¥ = lgg(e, h;). If £ = lgg(e, h;),
then, by Lemma 3.1, C; > lgg(e, h;) for some C; of C. Then, by Lemma 2.1, C; > e and C; > h;.
Therefore, if Horn-learn includes e in h; of H, then h; is a correct hypothesis Horn clause for e.
Now, the if part of the claim. Let h; be a correct hypothesis Horn clause for e in H such
that no hj such that £ < ¢ is one. Then there exists a C; of C such that C; > e and C; > h;.
This implies, by Lemma 2.1, that C; > lgg(e, h;). By Lemma 3.1, ¥ = lgg(e, h;). Also, for k < i,
C; % hi, which implies ¥ % lgg(e, hi,). Therefore, h; is the first clause in the hypothesis H for
which ¥ |= lgg(e, h;). Then, by lines 7-13 in Fig. 1, e is included in h; by assigning the result of
Generalize(lgg(e, h;)) to h;. O

Lemma 3.5 Suppose that e is a counterexample such that e is covered by X, but not by H. Then
Horn-learn adds a new Horn clause to H that includes e if and only if H does not already have a

correct hypothesis Horn clause for e.

Proof. By line 12 and Lemma 3.4. a

Lemma 3.6 The following are invariant conditions of Horn-learn:
1. Every Horn clause h; in the hypothesis H has a target clause;

2. Every Horn clause Cj in the target concept X has at most one hypothesis clause. C.

Proof.

Proof of (1). For every Horn clause h; in H, ¥ | h;. This is true because (a) the input h to
Generalize is checked to be such that ¥ = h, (by lines 7 13 of Horn-learn), and (b) by Lemma 3.2
the output of Generalize, which replaces h;, preserves this condition. Therefore, by Lemma 3.1, h;
has a target Horn clause.

Proof of (2). First, we show that any new hypothesis clause added to H has a target clause distinct
from the target clauses of the other hypothesis clauses in H. Next, we show that if two hypothesis
clauses have distinct target clauses at the beginning of an iteration of the loop of lines 4-14, then
they still have distinct target clauses at the end of the iteration.

Let h; be the first hypothesis Horn clause in H for C;. That is, there is no hy, such that k& <
and hy, is a hypothesis Horn clause in H for C;. Another hypothesis clause h; with the target clause
C; would have been added to H such that i > i, only if there was a counterexample e belonging
to C; for which h; is not the correct hypothesis Horn clause (by Lemma 3.5). That means C; > e
and C; % lgg(hi,e). This implies, by Lemma 2.1, C; ¥ h;. That is a contradiction, because h; is a
hypothesis Horn clause for C;. Therefore, such a h; cannot exist in H. That is, h; could have been

added only if it had a distinct target clause.

10



Let C; and Cj be two distinct target clauses for the clauses h; and h; in H, respectively,
at the beginning of an iteration of the loop of lines 4 14. That means, C; > h; and C; ¥ hy. Also,
Cj > hy and Cj ¥ h;.

At most one of h; and h; can change in an iteration of the loop. If neither changes, we
are done with the proof. Suppose that h; changes without loss of generality. h; can change in
the lines 8 and 13. We need to show that both these changes maintain that Cj % h;. Since
Cjy % hi, Cj % lgg(hs,e) (by Lemma 2.1). Therefore, line 8 maintains the property. In line
13, Generalize returns a subset of its argument. By the contrapositive of Proposition 2.1, Cj #
Generalize(lgg(h;, €)), thus maintaining the property. Therefore, h; and h; have different target
clauses at the end of the iteration. O

Now to the main theorem on the exact learnability.

Theorem 3.1  Non-recursive Horn definitions are exactly learnable using equivalence and mem-

bership queries.

Proof. We prove this theorem by showing that Horn-learn exactly learns non-recursive Horn defini-
tions.

Part 1 of Lemma 3.6 implies that for every h; of H, there is a C; such that C; > h;. That
means, H covers no example that is not covered by the target concept C. In other words, H is never
over-general in Horn-learn. Therefore, every counterexample is an example that is covered by X, but
not by H.

Equivalence query guarantees that whenever Horn-learn gets a new example, it is not already
covered by the hypothesis H. At the end of each iteration, before asking an equivalence query, by
Lemma 3.4 and Lemma 3.5, Horn-learn guarantees that all the previous examples are covered by
H. Each example, either modifies an existing hypothesis Horn clause (its correct hypothesis Horn
clause) or adds a new Horn clause. The minimum change in H that is required to cover a new
example is a change of a variable in its correct hypothesis Horn clause if one exists. That is, each
new example, except the ones that add new Horn clauses, contributes at least one variable. Let n
be the number of Horn clauses in a concept, [ be the maximum number of literals in a clause in the
concept, v be the maximum number of variables in a clause in the concept, and k& be the number
of literals in the largest counterexample. Because Generalize guarantees that each Horn clause in
the hypothesis has at most as many literals as there are in its target Horn clause (by Lemma 3.2
and Lemma 3.3), the number of variables in each Horn clause is at most v. Part 1 of Lemma 3.6
guarantees that H has at most n Horn clauses. Therefore, the total number of variables is at most
nv. Horn-learn requires n examples to add each of the n Horn clauses in H. It requires at most nv
examples to variablize all the Horn clauses in H. Therefore, Horn-learn requires n(v + 1) examples,

and, hence, n(v + 1) equivalence queries.

11



Let m be the number of hypothesis clauses in the hypothesis H at any time. Then, for each
of the base examples that form new Horn clause in H, Horn-learn asks at most m membership queries
for deciding that there is no correct hypothesis Horn clause in H, and at most & membership queries
to simplify and generalize using Generalize (because there are at most k literals in an example). Each
new Horn clause has at most [ literals (by Lemma 3.2). For each of the other examples, at most
m membership queries are needed to determine a correct hypothesis Horn clause, and kI (which is
the size of lgg) number of membership queries to generalize using Generalize. Therefore, the total
number of queries is at most mn + kn + nv(m + kl), which is at most n® + kn + nv(n + kl). This is
also an upper bound on the running time of the algorithm. a

By the above theorem and the transformation result from the exact learning model to the
PAC model®, we have the following.

Corollary 3.1 Non-recursive Horn definitions are polynomial-time PAC-learnable using mem-

bership queries.

84 Learnability of Goal-Decomposition Rules

In AT planning, domain-specific control knowledge is necessary to make the planning task
computationally feasible. Goal-decomposition rules (d-rules) is a natural method for representing
control knowledge.*® They are similar to hierarchical transition networks.'"

A d-rule is a 3-tuple (g, ¢, sg) that decomposes a goal g into a sequence of subgoals sg,
provided condition ¢ holds in the initial state. Goal g is a positive first-order literal, condition c is
a conjunction of positive first-order literals. Subgoals sg are first-order positive literals.

The following is an example of a simple d-rule from Blocks-world (BW) domain:

goal: on(?x, 7y)
subgoals:  clear(?x), clear(?y), put-on(?x, ?z, ?y)
conditions:  block(?x), block(?y), table(?z)

A goal may have multiple d-rules—i.e., multiple condition-and-subgoals pairs. For example,
there could be some other rules for the goal on(7x, 7y) with different condition-and-subgoals pairs.
We call these disjunctive d-rules. If a goal does not appear anywhere in the conditions or subgoals,
then we refer to them as non-recursive d-rules. The above example is a non-recursive d-rule.

So far, we have looked at d-rules for a single goal. In a general planning domain, there can
be several goals each with their own set of d-rules. Each goal has subgoals, which themselves can be
regarded as goals, having their own d-rules. That is, in general, there are goal-subgoal hierarchies,
and, correspondingly, d-rule hierarchies.

First, we look at how d-rules for a goal can be seen as Horn definitions. Next, we adapt the

algorithm for learning Horn definitions to learn a d-rule hierarchy.
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4.1 D-rules as Horn definitions

In this section, we show that non-recursive disjunctive d-rules are learnable by converting
them into a set of non-recursive Horn clauses.

Recall that a d-rule is comprised of three parts: goal, initial conditions, and a sequence
of subgoals. The examples for this purpose are positive examples, each of which has a goal, and a
sequernce of successive states starting from an initial state and leading to a goal state. To represent the
notion of state, which is missing in the Horn clause, we add special symbols that denote “situations”
to the literals. In particular, the first two parameters of each literal are new, and denote the names of
the situations in between which that literal must be true. The first parameter specifies the starting
situation in which the literal must be true. The second parameter specifies the situation up to which
the literal must be true. We call these two parameters of a literal the situation parameters. When
we mean that a literal is true in a particular situation alone, that situation is mentioned in both the
situation parameters of the annotation of the literal. When the situation parameters in a literal are
different, it means that the literal is true throughout the duration between the situations represented
by the situation parameters. In addition, the two situation parameters in a literal implicitly indicate
that the first situation occurs before the second situation or that both the situations are the same.
However, this in itself may not fully represent all the relative orderings between situations we want
to specify. Therefore, to explicitly represent the relative ordering of two situations Si and Sj, we
use a special predicate symbol not-after and add the literal not-after(Si, Sj), meaning that
the situation Si does not occur after the situation Sj.

A d-rule can be declaratively read as follows: starting from a state that satisfies the initial
conditions of the d-rule, if each of the subgoals is achieved one by one in sequence, then the goal of
the d-rule would be true in the state that achieved the last subgoal in the sequence. This declarative
reading makes the connection between d-rules and Horn clauses explicit. The goal of a d-rule
corresponds to the head literal of the corresponding Horn clause and is true in the final situation.
The initial conditions, which are conjunctions of positive literals, and the subgoals, which are single
positive literals, when properly annotated with situation variables, correspond to the body of the
Horn clause. In addition, we might need to add some not-after literals to constrain the relative
orderings between different situation variables that correspond to different subgoals.

The d-rule in BW domain, mentioned at the beginning of this section, translates into the

following Horn clause.

block(?S0, ?S0, ?x), block(?S0, ?S0, ?y), table(?S0, ?S0, ?z), clear(?S1, ?S2, ?x),

clear(?7S2, 7S3, ?y), put-on(?S3, 7?54, ?x, ?z, 7y), not-after(7SO, ?S1) — on(?S4, ?S4, ?x, 7y)

The first three literals in the body of the Horn clause correspond to the initial conditions

of the d-rule. Since these literals must be true in the initial state, they are given the situation
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parameters corresponding to the initial state (780). Next three literals in the body of the Horn
clause correspond to the subgoals of the d-rule. They are given situations such that they are true
one after the other. The last literal in the body, explicitly states that the situation 7SO does not
come after the situation 7S1. This, with the implicit orderings between the situations present in the
other literals, suggests that 7S0 is the initial situation or state. Finally, in 7S4, the goal literal is
true. It is mentioned as the head of the clause.

Note that it is possible to express partial orders using this notation, by simply not specifying
not-after relation between situations. For instance, if we would like to specify that clear(7x)
and clear(?y) can be achieved in any order, we can replace the literal clear(?S1, ?S2, 7x) by
clear(7S1, 7S3, ?7x), and add not-after(7S0, 7S2). By this, we say that 7S1 and 7S2 are not
relatively ordered, but both of them are preceded by 750, and succeeded by 7S3.

Since the objective is learning d-rules via learning Horn clauses, training examples for d-
rules should be converted to training examples for Horn clauses. A training example for learning
d-rules has a sequence of states, SO, S1,..., Sn and a goal. An example can be viewed as a fully
instantiated (ground) d-rule specifying the initial condition and a sequence of subgoals, with both
including several irrelevant literals. It can then be converted into a Horn-clause as described above.

In particular, each state of the example is a set of positive literals describing the relationships
between objects in a state. A state may have literals corresponding to subgoals achieved in that
state. Along with a sequence of states the example has an instance of a goal that is true in the
last state. Fach state is given a situation number. In the corresponding Horn-clause form, each
literal is annotated with situation parameters Si and Sj as its first two parameters, where Si and Sj
represent a maximal duration in which the literal is true. For example, suppose the literal clear (7x)
is true in SO, S1, S2, and S3, and again in S5 and S6, but nowhere else. Then, its corresponding
Horn-clause form would have only the literals clear (S0, S3, ?7x) and clear(S5, S6, 7x). Then,
for each state Si, there is a set of literals comprising the literal not-after(Si, Si) and the literals
not-after(Si, Sj) for each Sj such that ¢+ < j < n. These two sets of literals form the body of
the corresponding Horn-clause example. The goal literal annotated with the situation number of
the state in which the goal is true, becomes the head of the Horn-clause example.

Thus a target d-rule and its examples can be converted to Horn clauses. Target d-rules for
a goal can then be represented as Horn definitions.

However, there is a glitch here. There is a dependency among the not-after literals in
that they are transitive: not-after (?7Si, 7Sj), not-after(7Sj, 7Sk) — not-after(7Si, 7Sk).
This makes the Lemmas 3.1 and 3.2 inapplicable. Following our work on Horn programs®”, we order
the not-after literals in the input h of Generalize such that the literals that match not-after (?Si,
7Sj) and not-after(?Sj, 7Sk) come earlier than the literals that are implied by them, such as

not-after(?Si, 7Sk). Hence, Generalize considers the literals for removal in that order. This
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way, the output of Generalize would be a condensation, as was the case without the not-after liter-
als. The idea here is that, in Generalize, if we removed not-after(?Si, 7Sk), before we removed
not-after(?7Si, 7Sj) and not-after(?Sj, 7Sk), the membership query would be answered yes,
and we would remove not-after(?7Si, 7Sk). This may cause Generalize to leave over two liter-
als not-after(?Si, 7Sj) and not-after(7Sj, 7Sk), instead of just not-after(?Si, 7Sk). This
way the output of Generalize may neither be a condensation nor be subsumed by a clause in the
target. Ordering the removal of literals in the above manner, overcomes this problem.

With the above change, and from Theorem 3.1, it follows that d-rules can be learned from

examples and membership queries.

4.2 Implementation

There is a problem in utilizing the algorithm for learning Horn definitions to the task of
learning d-rules. A d-rule hierarchy, for a planning domain, when converted into Horn clause no-
tation, is a Horn program rather than a Horn definition. That is, literals appearing as heads also
appear in the bodies of clauses.

Since a hierarchy of d-rules is equivalent to Horn programs, to learn a hierarchy of d-rules,
we need a way to learn Horn programs. As far as we know, excepting the work of Arimura® which
learns Horn programs, most ILP methods that guarantee correctness are directed towards learning
Horn definitions. In Arimura’s work, among other restrictions, the clauses in a Horn program are
required to be “simple”’—that is, only the terms in the head of a clause can appear in the body of
the clause. This is too restrictive for our purposes. Instead, we use the Horn-definition learning
algorithm to learn Horn programs.

In Horn programs, since the head literal of a clause can appear in the body of another clause,
the resulting interactions between clauses make Lemma 9 inapplicable. Hence, the Horn-definition
learner cannot be used directly to learn Horn programs. However, if clauses for each head literal
are learned separately, assuming that the other clauses are known, we can use the Horn-definition
learner. In our implementation, we learned d-rules for each goal separately—i.e., assuming that

d-rules for lower-level (sub)goals are already known.

[1] Experimental Results

The algorithm discussed so far has been implemented in Common Lisp as a system called
ExEL. It has been tested using two domains a variation of STRIPS world and a simplified air-traffic
control domain.

For the purpose of experiments, the teacher is implemented by providing a set of target
d-rules for each domain. Training and test problems are randomly chosen. Each training problem

and its solution make several training examples for learning, for a problem may require several
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applications of a d-rule. Similarly a test problem tests several learned d-rules. The membership
queries are answered by syntactic match with the teacher’s d-rules.

STRIPS World (SW). This is a minor variation of the STRIPS-world domain'®; the
configuration of the rooms in this domain is a grid, whereas in the standard STRIPS world it could
be of any shape. The domain consists of rooms which are connected to each other by doors. The
doors can be open or closed. Each room has zero or more boxes. There is a robot that can open
doors, move around and push a box from room to room. A typical goal for the robot is to move
a box that is in some room to some other room. This goal required six d-rules. It has subgoals
such as moving from one room to another room, holding a box, releasing a box, opening a door,
and closing a door. The subgoal for moving from one room to another room had six d-rules, and
the rest of the subgoals had one d-rule each. Eight of these 16 d-rules are recursive. The Horn-
learn algorithm is not applicable for recursive Horn definitions—because Lemma 3.1 is not valid
for recursive definitions. However, since the queries are answered by syntactic match with the
teacher’s d-rules in the implementations, the need for Lemma 3.1 is obviated.*” In other words, our
membership query is answered yes if and only if there is a single target clause that subsumes the
given hypothesis clause, and no attempt is made to prove it by chaining different instances of target
clauses.

The configuration has 12 rooms (4 x 3 grid) with 17 doors connecting them. There are also
5 to 10 boxes distributed among the 12 rooms. The robot is placed randomly in one of the rooms.
Fig. 2 plots the number of training problems and their solutions versus percentage of test problems
ExEL successfully solves in SW. Each data point is a mean of 5 runs. The error bars show one
standard deviation on either side of the mean for these runs. The d-rules generated were useful for
configurations other than the 4 x 3 grid ExEL learned from.

Air-Traffic Control (ATC) domain. This domain is a simplified version of Kanfer-
Ackerman air-traffic control task.” The main task is to land a plane from any configuration. The
task has a queue of incoming planes, holding patterns and runways. The planes are accepted into the
holding patterns, and then are landed on the runways. The type of a plane, the current wind speed
and direction, and the runway conditions impose restrictions on landing a plane. The operators
select a plane to land, deposit a plane either on a runway or in a holding position, or move the
cursor on the screen. There are 13 d-rules for this domain, including multiple d-rules for some goals.
The main goal to land a plane from any holding pattern required three d-rules. Its subgoal to take
the plane to the correct runway required four d-rules. Depositing a plane on a runway needed three
d-rules. Moving a plane between holding patterns, and its subgoals moving the cursor and selecting
a plane all required one d-rule each. Fig. 2 plots the number of training problems and their solutions

versus percentage of test problems ExEL successfully solves in ATC. Each data point is a mean of

*3 For more details on this, see the discussion on self-testing in Section §5.
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Fig. 2 Performance of ExEL in SW & ATC domains
20 runs. The error bars show one standard deviation on either side of the mean for these runs.

There are a few other systems that learn control knowledge for planning using ILP methods,
such as DOLPHIN®* | Grasshopper®” and SCOPE."” One crucial difference between the above
learning systems and ExEL is in the form of control knowledge being learned. They learn control
rules that choose among various operators to apply in solving a planning problem, whereas ExEL
learns d-rules that transform a planning problem into a hierarchical one and specify rules on how
to decompose hierarchies. Because of this difference, we cannot compare these systems against
ExEL in a meaningful way. Also, these systems embed FOIL*® for inducing control rules. FOIL,
as well as another ILP system GOLEM®®, require negative examples in batch, instead of queries.
Such negative examples are difficult to obtain in our setting. However, if we substitute queries by
self-testing (see Section §5), the test examples generated can be thought of as negative examples,
but they are of “near-miss” kind—that is, they are generated to test a particular hypothesis d-rule

learner has constructed.

85 Discussion

In this work, we have shown that first-order non-recursive Horn definitions are learnable
utilizing reasonable amount of resources and queries. As a special case, it follows that first-order
monotone DNF is PAC-learnable using membership queries. A generalization of the class of Horn
definitions is Horn sentences (or Horn programs). Horn sentences allow different predicate symbols
for head literals in a set of Horn clauses, as opposed to a single predicate symbol as in Horn defini-
tions. In fact, as mentioned in Section 4.2, our d-rules are equivalent to first-order Horn programs.
Angluin, Frazier and Pitt have shown that propositional Horn sentences are exactly learnable from
equivalence and membership queries.” They use the model of learning from interpretations, where
positive examples are models of the target, and negative examples are negative interpretations. We
used the learning from entailment model studied by Frazier and Pitt." When membership queries

are available, learning from interpretations reduces to learning from entailment. This is because we
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can convert every negative interpretation of the target into a a positive example in the entailment
model (a Horn clause entailed by the target). Since every negative interpretation violates some Horn
clause, we can prune all but one negative literal in the interpretation, while making sure that the re-
sult is still a negative interpretation. We can then convert that reduced negative interpretation into
a positive Horn clause by negating it. Hence, our results imply that Horn definitions are learnable
from interpretations as well.

Learnability of first-order Horn sentences from entailment queries is an important open
question. Arimura® showed that acyclic and simple Horn programs with predicates of fixed arity
are learnable from entailment using equivalence and membership queries. The acyclicity constraint
implies that the literals in the language can be ordered such that the derivation of any literal depends
only on the literals which occur before it. Elsewhere®”, we have shown that first-order acyclic Horn
sentences that have polynomial-time subsumption algorithms are exactly learnable. As in the case of
Arimura, we too use entailment membership queries and assume that the derivation order of literals
is known. Unlike Arimura’s case, we do not require that the clauses be simple, but require that they
be “non-generative”—only the terms that appear in the body of a clause can appear in the head of
a clause.

Most of the positive results for PAC-learnability in ILP, so far, depended either on polynomial-
time transformations of first-order clauses to propositional logic and propositional PAC-learning

19529 " or on exhaustively enumerating polynomially sized hypothesis spaces.' There-

algorithms
fore, the classes considered were very restrictive. In comparison, the hypothesis space for the lan-
guage class we considered is unbounded. Because the arity of the predicates is not constant, convert-
ing the first order target to a propositional one yields an exponentially large target, which requires
exponentially large number of equivalence queries to learn it. The negative results by Cohen” for
PAC-learning interesting classes suggest that membership queries are necessary. Along with our
work, the work by Page® and the work by Haussler'” are significant efforts in making learning
tractable using membership and subset queries.

The algorithm in Fig. 1 is similar in spirit to an ILP system called CLINT? in the sense that
they both are incremental and interactive. Like in our algorithm, CLINT uses queries to eliminate
irrelevant literals. CLINT raises the generality of hypotheses by proposing more complex hypothesis
clauses, whereas our algorithm uses lgg.

Several pieces of research have used the lgg idea in different ways for the purpose of gener-
alization. Haussler'” considers learning multiple conjunctive concepts. In the hypothesis language
considered by him where the number of objects per scene is fixed, lgg of two hypotheses is at most as
big as one of the hypotheses, but is not unique. Haussler uses queries to select an lgg which is in the
target. On the other hand, in our case, lgg is unique, but its size grows exponentially in the number

of hypotheses of which it is lgg. We use queries to reduce the size of the hypothesis generated by the
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lgg (see Generalize procedure in Fig. 1). Frazier and Pitt'® also use a pruning procedure similar to
our Generalize procedure to limit the size of lgg in CLASSIC learning. GOLEM®® is another system
that uses lgg to generalize hypotheses. GOLEM mitigates the problem of combinatorial explosion
due to lgg in two ways: (1) by restricting the hypothesis language to ij-determinate Horn clauses
which guarantee polynomial-sized lgg; and (2) by using negative examples to eliminate literals from
the hypotheses. In the case of the work by Page®’, the simplicity and the fixed-arity restrictions
make the size of lgg polynomial in the sizes of the hypotheses being generalized.

The use of queries assumes that a teacher who knows the target concept is available. Re-
quiring such a teacher in practice is unreasonably demanding. This presents a dilemma—since,
as mentioned in earlier, without queries only a restricted classes are polynomially PAC-learnable.

Elsewhere?®- 3

, we present a practical alternative for membership queries, called self-testing. In
self-testing, the d-rule learner automatically answers the queries by generating planning problems
that must use the hypothesized d-rules, and then trying out these d-rules in solving the generated
problems. If the generated problems can be solved using the hypothesized d-rules, then the queries
are answered yes; otherwise, the queries fail. This solution is practical if we restrict ourselves to
learning a subclass of Horn definitions for which subsumption is tractable—such as determinate,
k-free or k-local Horn definitions."® Determinate Horn definitions are not PAC-learnable without
queries, under cryptographic assumptions.” Thus, even when limiting learning to languages for
which subsumption is tractable, this method is strictly more general.

For self-testing to be usable when learning d-rules for several goals (equivalent to learning
Horn programs) or learning recursive d-rules (equivalent to learning recursive Horn definitions), the
learner should know how to solve the the subgoals addressed in a hypothesized d-rule. That means
that the learner should have known d-rules for those subgoals. Thus, learning has to be ordered
such that d-rules for subgoals appearing in a particular d-rule are learned before learning that d-rule.
One way to order is following goal-subgoal hierarchies in the domain. In case of recursive d-rules for
a goal (intra-goal), this, however, does not work. A solution we adopted in our work®” * is learning
according to the number of recursive “calls” to a goal in a d-rule. The base-case d-rules (the ones
with zero recursive calls) are learned first. Then the ones with one recursive call are learned next,
and so forth. The idea is that while learning d-rules with one recursive call, base-case d-rules can
be used by the self-testing method, and so on.

This work is one of the first to theoretically demonstrate that the first-order learning is
more powerful than propositional learning. We believe that structural domains such as planning
and scheduling are inherently relational and are better suited to first-order learning. However, to
build practical systems, we need to generalize our results in many directions. These include learning
more general Horn sentences, handling noise, probabilities and real numbers, and incorporating

background theory.
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