
Learning Horn De�nitions: Theory and an Appli-cation to PlanningChandra REDDY and Prasad TADEPALLIDearborn 303, Department of Computer ScienceOregon State University, Corvallis, OR-97331. USAfreddyc,tadepallig@cs.orst.eduReceived 31 May 1998AbstractA Horn de�nition is a set of Horn clauses with the same head literal. In this paper, weconsider learning non-recursive, �rst-order Horn de�nitions from entailment. We show thatthis class is exactly learnable from equivalence and membership queries. It follows then thatthis class is PAC learnable using examples and membership queries. Finally, we apply ourresults to learning control knowledge for e�cient planning in the form of goal-decompositionrules.Keywords Horn De�nition, Horn Program, Horn Sentence, Horn Clause, Learning fromEntailment, Planning, Control Knowledge, Queries, PAC-learning.x1 IntroductionHorn clauses is one of the popular ways of representing �rst order knowledge. In thispaper, we consider learning Horn de�nitions|multiple Horn clauses with the same predicate inthe heads of all clauses|in the learning from entailment setting.15, 8) In this setting, the targetconcept is a Horn de�nition. A positive (negative) example is a Horn clause (not) entailed by thetarget. Learning Horn de�nitions is a fundamental problem both in Inductive Logic Programming(ILP) and in Computational Learning Theory. Since it is NP-hard to test membership in thisconcept class, it immediately follows that even non-recursive Horn de�nitions are hard to learn fromexamples alone.33) Using only equivalence queries, single non-recursive Prolog clauses are learnablewith restrictions such as determinacy and bounded arity.5, 10) Restricted versions of single recursiveclauses are also shown to be learnable.6) However, learning multiple clauses or even slightly more1



general versions of either recursive or non-recursive clauses is shown to be hard without furtherhelp.7) Page has shown that non-recursive Horn de�nitions with predicates having �xed arity andwith the restriction that the clauses be \simple," i.e., only the variables and terms that occur in thehead literal of a clause appear in the body of the clause, are learnable using equivalence and subsetqueries.25) In this paper, we examine the learnability of a more general class.In particular, we show that �rst-order non-recursive Horn de�nitions are exactly learnablefrom membership and equivalence queries with no other restrictions. In particular, the target con-cepts may have arbitrary number of clauses with the number and the arity of the literals in eachclause also being unbounded. The literals might also contain functions. Learning from equivalenceand membership queries is one of the standard models (also called \minimally adequate teacher" byAngluin2)) used in Computational Learning Theory literature. This is a natural model to considerwhen the learner has a choice of asking whether a given instance is positive, i.e., entailed by thetarget. Some languages such as deterministic �nite state automata and propositional Horn sentenceswhich appear not to be learnable from examples alone are learnable in this model. At the sametime, it is a nontrivial model in that there are many languages, even apparently \simple" ones, suchas arbitrary Boolean formulas, which are not learnable in this model (under some cryptographicassumptions). It is also known that for some languages such as DNF, membership queries do nothelp. Thus, learning a �rst-order language such as Horn de�nitions in this learning model is animportant problem, left open by by Angluin, et al.3) Most previous theoretical work in ILP relies onthe corresponding propositional algorithms, and hence does not really show the importance of usinga �rst-order language. Our work is almost unique in that the hypothesis space we consider cannotbe reduced to one that a propositional learner can learn e�ciently. This is discussed in more detailin Section x5.Our algorithm combines the ideas of several previous learning algorithms that use mem-bership queries.2, 15, 17, 16) It maintains a set of hypothesis clauses, each of which is subsumed by acorresponding target Horn clause. Given a new positive example, it either combines it with oneof its hypothesis clauses producing a least general generalization (lgg) of the example and the hy-pothesis clause, or stores it as a new hypothesis clause. It uses membership queries to decide whichhypothesis clause, if any, should an example be combined with. An example is combined with thatclause which yields an lgg that is entailed by the target. The algorithm exploits the fact that thereis at most one positive literal in a Horn clause, which makes it possible to show that any clausewhich is entailed by the target must be subsumed by one of the clauses in the target|a propertycalled \strong compactness." This guarantees that the membership queries, in e�ect, check whethera hypothesis clause is subsumed by a target clause. After combining the example with a hypothesisclause, the resulting lgg is pruned of redundant literals using membership queries. Without thisstep, the number of literals in the hypothesis clause can grow geometrically with each new example,2



exceeding any polynomial bound.Learnability in our \exact-learning model" that uses equivalence and membership queries,implies learnability in the PAC-learning model that uses random examples and membership queries.2)On the practical side, our research is motivated by an application that involves learning goal-decomposition rules (d-rules) in planning. We show that this problem can be reduced to one oflearning Horn de�nitions, which enabled us to apply our learning algorithm for Horn de�nitions toe�ciently learn d-rules. We implemented a system called ExEL that employs the learning algorithmfor Horn de�nitions to learn d-rules. We demonstrate ExEL's success in learning d-rules in theSTRIPS-world and a simpli�ed version of Air Tra�c Control domain.The rest of the paper is organized as follows: Section 2 presents some formal preliminariesabout Horn de�nitions. Section 3 describes the learning problem, proves some properties of Hornde�nitions, describes the learning algorithm and proves its correctness. Section 4 employs this resultto show that goal-decomposition rules are learnable. This section also gives experimental results forlearning d-rules by ExEL. Section 5 concludes the paper by relating it to previous work in this areaand discussing its implications.x2 PreliminariesIn this section, we de�ne and describe the terms we use in the rest of the paper, omittingsome of the standard terminology and notation of logic (as given in standard books22)).De�nition 2.1 A term is de�ned recursively as follows: (1) a variable is a term; (2) a constantis a term; and (3) if f is an n-ary function symbol and t1; t2; : : : ; tn are terms, then f(t1; t2; : : : ; tn)is also a term.De�nition 2.2 If p is an n-ary predicate symbol, and t1; t2; : : : ; tn are terms, then p(t1; t2; : : : ; tn)is called an atom. A literal is an atom (positive literal), or a negation of an atom (negative literal).De�nition 2.3 A de�nite Horn clause (Horn clause or clause, for short) is a �nite set of literalsthat contains exactly one positive literal. It is treated as a disjunction of the literals in the set withuniversal quanti�cation over all the variables. The positive literal is called the head of the clause,and the set of negative literals is called the body. A Horn clause is non-recursive if the predicatesymbol of the head literal of the Horn clause does not occur in its body.We usually denote a Horn clause as body ! head.De�nition 2.4 A Horn de�nition is a set of Horn clauses where the heads of all clauses havethe same predicate symbol.�1 It is non-recursive if the head predicate symbol does not occur in�1 A Horn de�nition is also called a predicate de�nition.3



any negative literal in any clause in the de�nition.De�nition 2.5 A clause D subsumes a clause E if there exists a substitution � such thatD� � E. We denote this as D � E, and read it as D subsumes E or as D is more general than E.De�nition 2.6 If D and E are clauses such that D � E, then a literal l in a clause E is relevant(irrelevant) w.r.t the clause D, if D 6� E � flg (D � E � flg, respectively).De�nition 2.7 If D and E are two clauses such that D � E, then a condensation of E w.r.t.D is a clause E0 such that E0 � E, D � E0, and for any l 2 E0, D 6� E0 � flg.For example, ifD = f:p1(x); p2(y)g andE = f:p1(a); p2(b); p2(c); p3(c)g, then both f:p1(a);p2(b)g and f:p1(a); p2(c)g are condensations of E w.r.t. D.De�nition 2.8 Least general generalization of a set of clauses S over � is a clause D suchthat (1) for every E in S, D � E, and (2) if there exists a clause F such that for every E in S,F � E, then F � D.The de�nitions 2.5 and 2.8 are due to Plotkin.27) The existence of least general generalizationis shown by Plotkin27), and by Nienhuys-Cheng and de Wolf.24)We follow the description by Muggleton and Feng23) of Plotkin's algorithm to �nd the leastgeneral generalizations (lgg) of a set of clauses. The lgg of two clauses C1 and C2 is [l12C1;l22C2 lgg(l1; l2).The lgg of two literals p(a1; a2; : : : ; an) and p(b1; b2; : : : ; bn) is fp(lgg(a1; b1); lgg(a2; b2); : : : ; lgg(an; bn))g;if the predicate symbols are not equal, their sign di�ers or their arity di�ers, then their lgg is fg,the empty set. The lgg of two terms f(s1; : : : ; sn) and g(t1; : : : ; tm), if f = g and n = m, isf(lgg(s1; t1); : : : ; lgg(sn; tn)); else, it is a variable ?x, where ?x stands for the lgg of that pair ofterms throughout the computation of the lgg of the pair of clauses. We use symbols that start witha `?' to denote variables.For example, let C1 = f:p1(f(a); b);:p2(a; c); p3(b)g and C2 = f:p1(f(c); d);:p1(b; a);:p2(c; c); p3(a)g. Then lgg(C1; C2) = f:p1(f(?x); ?y);:p1(?z; ?u);:p2(?x; c); p3(?u)g, where thevariables ?x, ?y, ?z and ?u stand for the pairs lgg(a; c), lgg(b; d), lgg(f(a); b) and lgg(b; a), respec-tively. Note that jlgg(C1; C2)j can be equal to jC1j � jC2j.Lemma 2.1 Let C1, C2 and C3 be Horn clauses. Then C1 � C2 and C1 � C3 if and only ifC1 � lgg(C2; C3).Proof. The only-if part follows from the property (2) of the de�nition of least-general generalization.The if part follows from the transitive property of �. utWe state the following fact explicitly, although it is straightforward, for it is useful later.4



Proposition 2.1 If C1 � C2 then C1 � C3 for any C3 such that C2 � C3.x3 Learning Horn De�nitionsIn this section, we �rst specify our learning problem. Next we describe the learning algorithmand then give the learnability result.3.1 Learning ProblemOur learning problem is motivated by learning control knowledge for planning in structuraldomains. The following de�nitions re
ect that motivation.De�nition 3.1 A scene is a conjunction of positive ground literals describing a set of objects.�2We call the predicates that occur in scenes base predicates. We di�erentiate the base predicatesfrom a special predicate called the goal predicate. An instance is a 2-tuple comprising a scene sceneand a ground goal literal g, meaning that g is true whenever scene is true. We alternately write aninstance as a clause scene! g.We consider the hypothesis space of Horn de�nitions for the goal predicate. Following thelearning from entailment model, an instance hscene; gi is in a hypothesis H i� the minimal modelof H with respect to the literals in scene satis�es g. In other words, hscene; gi is an instance of Hi� H j= (scene! g). Such an instance is a positive example of H . All other instances are negativeexamples.Henceforth, � denotes the target concept in the hypothesis space.Example 3.1 The following illustrates the above de�nitions in a toy version of an air-tra�ccontrol domain.� = fplane-at(?p,?loc), level(L1,?loc), free-runway(?r), short-runway(r), land-short?(?p) ! land-plane(?p);plane-at(?p,?loc), level(L1,?loc), free-runway(?r), long-runway(?r) ! land-plane(?p)g The �rst clause in � gives the conditions under which a plane can land on short runways.The second clause is for long-runway landing. The following is a positive example of � (for thesecond clause):plane-at(P737, 10), level(L1, 10), free-runway(R1), long-runway(R1), short-runway(R2),wind-speed(high), wind-dir(south), free-runway(R2) ! land-plane(P737). utBefore stating the learning problem, we de�ne the queries we will need.2)�2 We employ closed-world assumption and assume that all other literals are negative.5



De�nition 3.2 A membership query takes as input an instance x, and outputs yes if x is in �,and no otherwise. An equivalence query takes as input a hypothesis H , and outputs yes if H and �are logically equivalent; otherwise, returns a counterexample from H � � |i.e., an instance that isin one but not in the other.The above combination of queries is called a \minimally adequate teacher" by Angluin. Thelearning problem in the exact learning model2) is as follows:De�nition 3.3 An algorithm exactly learns a concept class C if for every concept � 2 C, if itasks equivalence and membership queries, terminates in time polynomial in the size of � and thesize of the largest counterexample, and outputs a hypothesis which is logically equivalent to �.In the rest of this section, we will be showing that the class of non-recursive Horn de�nitionsis exactly learnable from equivalence and membership queries. Note that learning exactly does notmean learning a syntactically equivalent de�nition, but only a semantically equivalent one. In otherwords, the learner must ask an equivalence query for which there is no counterexample.3.2 Strong Compactness of Non-recursive Horn De�nitionsIn this section we describe a property of non-recursive Horn de�nitions, which is called strongcompactness by Lassez, et al.20) and Page25), and relate this property to membership queries.Strong compactness says that for non-recursive Horn de�nitions if we know that a clauseis logically implied by a set of clauses �, then we can conclude that that clause is subsumed by aclause in �. The following lemma, in addition, says that the converse is true. This is useful to showlater that each clause in the current hypothesis of our algorithm is always a specialization of sometarget clause.Lemma 3.1 Let � be a non-recursive Horn de�nition, and h be a Horn clause which is not atautology. Then, � j= h if and only if there exists a clause C in � such that C � h. We call C thetarget clause of h, and h the hypothesis clause of C.Proof. The if part follows from the conjunctive interpretation of all the clauses in �. The only-ifpart is a direct consequence of the Subsumption theorem.19) We give a brief sketch of the proof here.Since � j= h and h is not a tautology, there must be a non-trivial proof of h from the clauses of�. However, since the head predicate symbol of the clauses in � does not appear in the body ofany clause, there can be no chaining of the clauses in the proof of h. This implies that h must besubsumed by a single clause in �. utIf a clause h has variables, determining � j= h is equivalent to determining whether allinstances in h are also in �|which is the same as a subset query.2) However, by substituting eachvariable in h by a unique constant|skolemization|we can form a fully ground clause that is an6



instance of h. Now, determining whether � j= h is equivalent to asking whether � j= Skolemize(h).Asking whether � j= Skolemize(h) is the same as a membership query, since Skolemize(h) is ground.In e�ect, this membership query simulates a subset query.3.3 Learnability of Non-recursive Horn De�nitionsHorn-learn is an algorithm to learn non-recursive Horn de�nitions using equivalence andmembership queries (Fig. 1). Horn-learn makes use of Generalize algorithm. Generalize takes as inputa Horn clause and generalizes it by eliminating literals from that Horn clause. It removes a literalfrom the Horn clause and checks whether the resultant Horn clause is overgeneral. It can do this bysubstituting each variable in the hypothesis clause with a unique constant and asking a membershipquery. If it is overgeneral the literal is retained; otherwise, it is eliminated to form a new, moregeneral Horn clause.Horn-learn starts with hypothesis H that is initially empty. As long as H is not equivalentto the target concept C, the equivalence query returns an example e that is not included in H ,and the algorithm modi�es H to cover e. To include e in H , Horn-learn checks each Horn clause hiof H whether generalizing hi to cover e would not make the hypothesis overgeneral|i.e., whetherlgg(hi; e) is in the target concept. If so, concluding that it has found the right Horn clause hi toinclude e in, Horn-learn further generalizes h = lgg(hi; e), by removing irrelevant literals, i.e., thoseliterals whose removal preserves the entailment relation between � and h. The entailment relationis checked by using the membership oracle on the result of skolemizing h (see Generalize in Fig. 1).Horn-Learn �nally replaces hi in H by the new generalized h. If there is no hi such that lgg(hi; e) isentailed by the target, it generalizes e and makes it a new Horn clause of H .Example 3.2Let � be f! q(f(f(?x))); ?x); p1(?x; ?y); p1(?y; ?z) ! q(?x; ?z); p1(?x; ?y); p2(?y; ?z) ! q(?x; ?z)g.Let the �rst example be e1: p1(a; b); p1(a; d); p1(b; z); p2(c; b); p2(c; d); p2(d; e)! q(a; e).Since H is empty, next step is Generalize(e1).In Generalize:� j= p1(a; d); p1(b; z); p2(c; b); p2(c; d); p2(d; e)! q(a; e)?yes, so drop p1(a; b).� j= p1(b; z); p2(c; b); p2(c; d); p2(d; e)! q(a; e)?no, keep p1(a; d).: : :Finally, h0 = p1(a; d); p2(d; e)! q(a; e)h1 = p1(a; d); p2(d; e)! q(a; e)Let the next example be e2: p1(a; b); p1(a; d); p1(b; z); p2(c; b); p2(c; d); p2(d; e)! q(a; z).7



Horn-learn1. Let � be the target concept.2. H := fg /* empty hypothesis, initially */3. m := 0 /* number of clauses in the hypothesis */4. while equivalence(H , �) is not true and e is a counterexample do/* fix the clause in H for the example e */5. if (m > 0) then, Let H be fh1; h2; : : : ; hmg6. found := false; i := 17. while (i � m) and found is false do8. h := lgg(e; hi)9. if � j= h then found := true; /* Member?(Skolemize(h)) implements � j= h */10. else i := i+ 111. endwhile /* i � m */12. if found = false then h := e; m := m+ 1;13. hi := Generalize(h) /* further generalize h */14. endwhile15. return HGeneralize(h)1. h0 := h2. for each literal l in h do3. if � j= h0 � flg then h0 := h0 � flg /* Implemented by Member?(Skolemize(h0 � flg)) */4. Return h0. Fig. 1 Horn-learn: An algorithm to learn Horn de�nitionslgg(h1; e2) = p1(a; ?db); p1(a; d); p1(?ab; ?dz); p2(?dc; ?eb); p2(?dc; ?ed); p2(d; e)! q(a; ?ez)� j= lgg(h1; e2)? no.So, Generalize(e2) = h2 = p1(a; b); p1(b; z)! q(a; z).Let the next example be e3: p1(r; s); p2(s; t); p1(r; u); p2(u; v)! q(r; t).lgg(h1; e3) = p1(?ar; ?ds); p2(?ds; ?et); p1(?ar; ?du); p2(?du; ?ev)! q(?ar; ?et)� j= lgg(h1; e3)? yes.h1 = Generalize(lgg(h1; e3)) = p1(?ar; ?ds); p2(?ds; ?et)! q(?ar; ?et).Let the next example be e4: p1(a; b)! q(f(f(a)); a)lgg(h1; e4) = p1(?ar; ?ds)! q(?arf; ?eta)� j= lgg(h1; e4)? no.lgg(h2; e4) = p1(a; b)! q(?af; ?za) 8



� j= lgg(h2; e4)? no.Generalize(e4) = h3 =! q(f(f(a)); a).: : : utThe generalization process of Generalize serves a critical purpose. Recall that the size oflgg grows as a product of the sizes of the hypotheses being generalized. Unless the hypothesissize is limited, it can grow exponentially in the number of examples used to create the hypothesis.Lemma 3.2 and Lemma 3.3 together show that Generalize guarantees that the sizes of the hypothesisclauses are at most the sizes of their corresponding target clauses. Lemma 3.2 shows that Generalizedoes not over-generalize in the process.Lemma 3.2 If the argument h of Generalize is such that � j= h then, at the end of Generalize, h0has a target Horn clause Cj|i.e., Cj � h0. Moreover, h0 in line 4 of Generalize is a condensation ofh w.r.t. Cj .Proof. In the beginning of Generalize, h0, which is the same as the argument h, is not overgeneral.h0 is modi�ed only when the modi�cation still leaves the result inside �. That is, � j= h0. ByLemma 3.1, there exists a target Horn clause for h0, say Cj , and Cj � h0.To show that h0 in line 4 of Generalize is a condensation of h w.r.t. Cj , we need only toshow that for any literal l 2 h0, Cj 6� (h0 � flg). Suppose that for some l 2 h0, Cj � (h0 � flg).Let h00 be the value of h0 when l is considered for removal in the loop of lines 2|3. Since h0 � h00,by Proposition 2.1, Cj � (h00 � flg). From Lemma 3.1, � j= (h00 � flg). In that case, l would havebeen removed by line 3 of Generalize. But, l 2 h0, a contradiction. Therefore, for any literal l 2 h0,Cj 6� (h0 � flg). utLemma 3.3 If h0 is a condensation of h w.r.t. Cj , then Cj� = h0 for some substitution �.Moreover, jh0j � jCj j.Proof. Suppose h0 is a condensation of h w.r.t. Cj . Then there exists a � such that Cj� � h0.Suppose Cj� � h0. Then, for some l 2 h0 � Cj�, Cj� � h0 � flg. Hence, Cj � (h0 � flg). Thisis a contradiction, since h0 is a condensation w.r.t. Cj . Therefore, Cj� = h0. This implies thatjh0j = jCj�j � jCj j. utThe following de�nition relates an example to a hypothesis clause and to a target clause.De�nition 3.4 If C1; C2; : : : ; Cn are the Horn clauses in the target concept �, and h1; h2; : : : ; hmare the Horn clauses in the hypothesis H , then a correct hypothesis Horn clause in H for an examplee is a Horn clause hi such that for some 1 � j � n, Cj � e and Cj � hi.Lemma 3.4 In Horn-learn, suppose that e is a counterexample returned by the equivalence query9



such that e is covered by �, but not by H . Then Horn-learn includes e in a correct hypothesis Hornclause in H for e if and only if one exists.Proof. First the only-if part. Horn-learn includes e in hi of H if � j= lgg(e; hi). If � j= lgg(e; hi),then, by Lemma 3.1, Cj � lgg(e; hi) for some Cj of C. Then, by Lemma 2.1, Cj � e and Cj � hi.Therefore, if Horn-learn includes e in hi of H , then hi is a correct hypothesis Horn clause for e.Now, the if part of the claim. Let hi be a correct hypothesis Horn clause for e in H suchthat no hk such that k < i is one. Then there exists a Cj of C such that Cj � e and Cj � hi.This implies, by Lemma 2.1, that Cj � lgg(e; hi). By Lemma 3.1, � j= lgg(e; hi). Also, for k < i,Cj 6� hk, which implies � 6j= lgg(e; hk). Therefore, hi is the �rst clause in the hypothesis H forwhich � j= lgg(e; hi). Then, by lines 7{13 in Fig. 1, e is included in hi by assigning the result ofGeneralize(lgg(e; hi)) to hi. utLemma 3.5 Suppose that e is a counterexample such that e is covered by �, but not by H . ThenHorn-learn adds a new Horn clause to H that includes e if and only if H does not already have acorrect hypothesis Horn clause for e.Proof. By line 12 and Lemma 3.4. utLemma 3.6 The following are invariant conditions of Horn-learn:1. Every Horn clause hi in the hypothesis H has a target clause;2. Every Horn clause Cj in the target concept � has at most one hypothesis clause. C.Proof.Proof of (1). For every Horn clause hi in H , � j= hi. This is true because (a) the input h toGeneralize is checked to be such that � j= h, (by lines 7{13 of Horn-learn), and (b) by Lemma 3.2the output of Generalize, which replaces hi, preserves this condition. Therefore, by Lemma 3.1, hihas a target Horn clause.Proof of (2). First, we show that any new hypothesis clause added to H has a target clause distinctfrom the target clauses of the other hypothesis clauses in H . Next, we show that if two hypothesisclauses have distinct target clauses at the beginning of an iteration of the loop of lines 4{14, thenthey still have distinct target clauses at the end of the iteration.Let hi be the �rst hypothesis Horn clause in H for Cj . That is, there is no hk such that k < iand hk is a hypothesis Horn clause in H for Cj . Another hypothesis clause hi0 with the target clauseCj would have been added to H such that i0 > i, only if there was a counterexample e belongingto Cj for which hi is not the correct hypothesis Horn clause (by Lemma 3.5). That means Cj � eand Cj 6� lgg(hi; e). This implies, by Lemma 2.1, Cj 6� hi. That is a contradiction, because hi is ahypothesis Horn clause for Cj . Therefore, such a hi0 cannot exist in H . That is, hi0 could have beenadded only if it had a distinct target clause. 10



Let Cj and Cj0 be two distinct target clauses for the clauses hi and hi0 in H , respectively,at the beginning of an iteration of the loop of lines 4{14. That means, Cj � hi and Cj 6� hi0 . Also,Cj0 � hi0 and Cj0 6� hi.At most one of hi and hi0 can change in an iteration of the loop. If neither changes, weare done with the proof. Suppose that hi changes without loss of generality. hi can change inthe lines 8 and 13. We need to show that both these changes maintain that Cj0 6� hi. SinceCj0 6� hi, Cj0 6� lgg(hi; e) (by Lemma 2.1). Therefore, line 8 maintains the property. In line13, Generalize returns a subset of its argument. By the contrapositive of Proposition 2.1, Cj0 6�Generalize(lgg(hi; e)), thus maintaining the property. Therefore, hi and hi0 have di�erent targetclauses at the end of the iteration. utNow to the main theorem on the exact learnability.Theorem 3.1 Non-recursive Horn de�nitions are exactly learnable using equivalence and mem-bership queries.Proof. We prove this theorem by showing that Horn-learn exactly learns non-recursive Horn de�ni-tions. Part 1 of Lemma 3.6 implies that for every hi of H , there is a Cj such that Cj � hi. Thatmeans, H covers no example that is not covered by the target concept C. In other words, H is neverover-general in Horn-learn. Therefore, every counterexample is an example that is covered by �, butnot by H .Equivalence query guarantees that whenever Horn-learn gets a new example, it is not alreadycovered by the hypothesis H . At the end of each iteration, before asking an equivalence query, byLemma 3.4 and Lemma 3.5, Horn-learn guarantees that all the previous examples are covered byH . Each example, either modi�es an existing hypothesis Horn clause (its correct hypothesis Hornclause) or adds a new Horn clause. The minimum change in H that is required to cover a newexample is a change of a variable in its correct hypothesis Horn clause if one exists. That is, eachnew example, except the ones that add new Horn clauses, contributes at least one variable. Let nbe the number of Horn clauses in a concept, l be the maximum number of literals in a clause in theconcept, v be the maximum number of variables in a clause in the concept, and k be the numberof literals in the largest counterexample. Because Generalize guarantees that each Horn clause inthe hypothesis has at most as many literals as there are in its target Horn clause (by Lemma 3.2and Lemma 3.3), the number of variables in each Horn clause is at most v. Part 1 of Lemma 3.6guarantees that H has at most n Horn clauses. Therefore, the total number of variables is at mostnv. Horn-learn requires n examples to add each of the n Horn clauses in H . It requires at most nvexamples to variablize all the Horn clauses in H . Therefore, Horn-learn requires n(v + 1) examples,and, hence, n(v + 1) equivalence queries. 11



Let m be the number of hypothesis clauses in the hypothesis H at any time. Then, for eachof the base examples that form new Horn clause in H , Horn-learn asks at most m membership queriesfor deciding that there is no correct hypothesis Horn clause in H , and at most k membership queriesto simplify and generalize using Generalize (because there are at most k literals in an example). Eachnew Horn clause has at most l literals (by Lemma 3.2). For each of the other examples, at mostm membership queries are needed to determine a correct hypothesis Horn clause, and kl (which isthe size of lgg) number of membership queries to generalize using Generalize. Therefore, the totalnumber of queries is at most mn+ kn+ nv(m+ kl), which is at most n2 + kn+nv(n+ kl). This isalso an upper bound on the running time of the algorithm. utBy the above theorem and the transformation result from the exact learning model to thePAC model2), we have the following.Corollary 3.1 Non-recursive Horn de�nitions are polynomial-time PAC-learnable using mem-bership queries.x4 Learnability of Goal-Decomposition RulesIn AI planning, domain-speci�c control knowledge is necessary to make the planning taskcomputationally feasible. Goal-decomposition rules (d-rules) is a natural method for representingcontrol knowledge.32) They are similar to hierarchical transition networks.11)A d-rule is a 3-tuple hg; c; sgi that decomposes a goal g into a sequence of subgoals sg,provided condition c holds in the initial state. Goal g is a positive �rst-order literal, condition c isa conjunction of positive �rst-order literals. Subgoals sg are �rst-order positive literals.The following is an example of a simple d-rule from Blocks-world (BW) domain:goal: on(?x, ?y)subgoals: clear(?x), clear(?y), put-on(?x, ?z, ?y)conditions: block(?x), block(?y), table(?z)A goal may have multiple d-rules|i.e., multiple condition-and-subgoals pairs. For example,there could be some other rules for the goal on(?x, ?y) with di�erent condition-and-subgoals pairs.We call these disjunctive d-rules. If a goal does not appear anywhere in the conditions or subgoals,then we refer to them as non-recursive d-rules. The above example is a non-recursive d-rule.So far, we have looked at d-rules for a single goal. In a general planning domain, there canbe several goals each with their own set of d-rules. Each goal has subgoals, which themselves can beregarded as goals, having their own d-rules. That is, in general, there are goal-subgoal hierarchies,and, correspondingly, d-rule hierarchies.First, we look at how d-rules for a goal can be seen as Horn de�nitions. Next, we adapt thealgorithm for learning Horn de�nitions to learn a d-rule hierarchy.12



4.1 D-rules as Horn de�nitionsIn this section, we show that non-recursive disjunctive d-rules are learnable by convertingthem into a set of non-recursive Horn clauses.Recall that a d-rule is comprised of three parts: goal, initial conditions, and a sequenceof subgoals. The examples for this purpose are positive examples, each of which has a goal, and asequence of successive states starting from an initial state and leading to a goal state. To represent thenotion of state, which is missing in the Horn clause, we add special symbols that denote \situations"to the literals. In particular, the �rst two parameters of each literal are new, and denote the names ofthe situations in between which that literal must be true. The �rst parameter speci�es the startingsituation in which the literal must be true. The second parameter speci�es the situation up to whichthe literal must be true. We call these two parameters of a literal the situation parameters. Whenwe mean that a literal is true in a particular situation alone, that situation is mentioned in both thesituation parameters of the annotation of the literal. When the situation parameters in a literal aredi�erent, it means that the literal is true throughout the duration between the situations representedby the situation parameters. In addition, the two situation parameters in a literal implicitly indicatethat the �rst situation occurs before the second situation or that both the situations are the same.However, this in itself may not fully represent all the relative orderings between situations we wantto specify. Therefore, to explicitly represent the relative ordering of two situations Si and Sj, weuse a special predicate symbol not-after and add the literal not-after(Si, Sj), meaning thatthe situation Si does not occur after the situation Sj.A d-rule can be declaratively read as follows: starting from a state that satis�es the initialconditions of the d-rule, if each of the subgoals is achieved one by one in sequence, then the goal ofthe d-rule would be true in the state that achieved the last subgoal in the sequence. This declarativereading makes the connection between d-rules and Horn clauses explicit. The goal of a d-rulecorresponds to the head literal of the corresponding Horn clause and is true in the �nal situation.The initial conditions, which are conjunctions of positive literals, and the subgoals, which are singlepositive literals, when properly annotated with situation variables, correspond to the body of theHorn clause. In addition, we might need to add some not-after literals to constrain the relativeorderings between di�erent situation variables that correspond to di�erent subgoals.The d-rule in BW domain, mentioned at the beginning of this section, translates into thefollowing Horn clause.block(?S0, ?S0, ?x), block(?S0, ?S0, ?y), table(?S0, ?S0, ?z), clear(?S1, ?S2, ?x),clear(?S2, ?S3, ?y), put-on(?S3, ?S4, ?x, ?z, ?y), not-after(?S0, ?S1) ! on(?S4, ?S4, ?x, ?y)The �rst three literals in the body of the Horn clause correspond to the initial conditionsof the d-rule. Since these literals must be true in the initial state, they are given the situation13



parameters corresponding to the initial state (?S0). Next three literals in the body of the Hornclause correspond to the subgoals of the d-rule. They are given situations such that they are trueone after the other. The last literal in the body, explicitly states that the situation ?S0 does notcome after the situation ?S1. This, with the implicit orderings between the situations present in theother literals, suggests that ?S0 is the initial situation or state. Finally, in ?S4, the goal literal istrue. It is mentioned as the head of the clause.Note that it is possible to express partial orders using this notation, by simply not specifyingnot-after relation between situations. For instance, if we would like to specify that clear(?x)and clear(?y) can be achieved in any order, we can replace the literal clear(?S1, ?S2, ?x) byclear(?S1, ?S3, ?x), and add not-after(?S0, ?S2). By this, we say that ?S1 and ?S2 are notrelatively ordered, but both of them are preceded by ?S0, and succeeded by ?S3.Since the objective is learning d-rules via learning Horn clauses, training examples for d-rules should be converted to training examples for Horn clauses. A training example for learningd-rules has a sequence of states, S0, S1,: : :, Sn and a goal. An example can be viewed as a fullyinstantiated (ground) d-rule specifying the initial condition and a sequence of subgoals, with bothincluding several irrelevant literals. It can then be converted into a Horn-clause as described above.In particular, each state of the example is a set of positive literals describing the relationshipsbetween objects in a state. A state may have literals corresponding to subgoals achieved in thatstate. Along with a sequence of states the example has an instance of a goal that is true in thelast state. Each state is given a situation number. In the corresponding Horn-clause form, eachliteral is annotated with situation parameters Si and Sj as its �rst two parameters, where Si and Sjrepresent a maximal duration in which the literal is true. For example, suppose the literal clear(?x)is true in S0, S1, S2, and S3, and again in S5 and S6, but nowhere else. Then, its correspondingHorn-clause form would have only the literals clear(S0, S3, ?x) and clear(S5, S6, ?x). Then,for each state Si, there is a set of literals comprising the literal not-after(Si, Si) and the literalsnot-after(Si, Sj) for each Sj such that i < j � n. These two sets of literals form the body ofthe corresponding Horn-clause example. The goal literal annotated with the situation number ofthe state in which the goal is true, becomes the head of the Horn-clause example.Thus a target d-rule and its examples can be converted to Horn clauses. Target d-rules fora goal can then be represented as Horn de�nitions.However, there is a glitch here. There is a dependency among the not-after literals inthat they are transitive: not-after(?Si, ?Sj), not-after(?Sj, ?Sk)! not-after(?Si, ?Sk).This makes the Lemmas 3.1 and 3.2 inapplicable. Following our work on Horn programs31), we orderthe not-after literals in the input h of Generalize such that the literals that match not-after(?Si,?Sj) and not-after(?Sj, ?Sk) come earlier than the literals that are implied by them, such asnot-after(?Si, ?Sk). Hence, Generalize considers the literals for removal in that order. This14



way, the output of Generalize would be a condensation, as was the case without the not-after liter-als. The idea here is that, in Generalize, if we removed not-after(?Si, ?Sk), before we removednot-after(?Si, ?Sj) and not-after(?Sj, ?Sk), the membership query would be answered yes,and we would remove not-after(?Si, ?Sk). This may cause Generalize to leave over two liter-als not-after(?Si, ?Sj) and not-after(?Sj, ?Sk), instead of just not-after(?Si, ?Sk). Thisway the output of Generalize may neither be a condensation nor be subsumed by a clause in thetarget. Ordering the removal of literals in the above manner, overcomes this problem.With the above change, and from Theorem 3.1, it follows that d-rules can be learned fromexamples and membership queries.4.2 ImplementationThere is a problem in utilizing the algorithm for learning Horn de�nitions to the task oflearning d-rules. A d-rule hierarchy, for a planning domain, when converted into Horn clause no-tation, is a Horn program rather than a Horn de�nition. That is, literals appearing as heads alsoappear in the bodies of clauses.Since a hierarchy of d-rules is equivalent to Horn programs, to learn a hierarchy of d-rules,we need a way to learn Horn programs. As far as we know, excepting the work of Arimura4) whichlearns Horn programs, most ILP methods that guarantee correctness are directed towards learningHorn de�nitions. In Arimura's work, among other restrictions, the clauses in a Horn program arerequired to be \simple"|that is, only the terms in the head of a clause can appear in the body ofthe clause. This is too restrictive for our purposes. Instead, we use the Horn-de�nition learningalgorithm to learn Horn programs.In Horn programs, since the head literal of a clause can appear in the body of another clause,the resulting interactions between clauses make Lemma 9 inapplicable. Hence, the Horn-de�nitionlearner cannot be used directly to learn Horn programs. However, if clauses for each head literalare learned separately, assuming that the other clauses are known, we can use the Horn-de�nitionlearner. In our implementation, we learned d-rules for each goal separately|i.e., assuming thatd-rules for lower-level (sub)goals are already known.[ 1 ] Experimental ResultsThe algorithm discussed so far has been implemented in Common Lisp as a system calledExEL. It has been tested using two domains|a variation of STRIPS world and a simpli�ed air-tra�ccontrol domain.For the purpose of experiments, the teacher is implemented by providing a set of targetd-rules for each domain. Training and test problems are randomly chosen. Each training problemand its solution make several training examples for learning, for a problem may require several15



applications of a d-rule. Similarly a test problem tests several learned d-rules. The membershipqueries are answered by syntactic match with the teacher's d-rules.STRIPS World (SW). This is a minor variation of the STRIPS-world domain13); thecon�guration of the rooms in this domain is a grid, whereas in the standard STRIPS world it couldbe of any shape. The domain consists of rooms which are connected to each other by doors. Thedoors can be open or closed. Each room has zero or more boxes. There is a robot that can opendoors, move around and push a box from room to room. A typical goal for the robot is to movea box that is in some room to some other room. This goal required six d-rules. It has subgoalssuch as moving from one room to another room, holding a box, releasing a box, opening a door,and closing a door. The subgoal for moving from one room to another room had six d-rules, andthe rest of the subgoals had one d-rule each. Eight of these 16 d-rules are recursive. The Horn-learn algorithm is not applicable for recursive Horn de�nitions|because Lemma 3.1 is not validfor recursive de�nitions. However, since the queries are answered by syntactic match with theteacher's d-rules in the implementations, the need for Lemma 3.1 is obviated.�3 In other words, ourmembership query is answered yes if and only if there is a single target clause that subsumes thegiven hypothesis clause, and no attempt is made to prove it by chaining di�erent instances of targetclauses. The con�guration has 12 rooms (4� 3 grid) with 17 doors connecting them. There are also5 to 10 boxes distributed among the 12 rooms. The robot is placed randomly in one of the rooms.Fig. 2 plots the number of training problems and their solutions versus percentage of test problemsExEL successfully solves in SW. Each data point is a mean of 5 runs. The error bars show onestandard deviation on either side of the mean for these runs. The d-rules generated were useful forcon�gurations other than the 4� 3 grid ExEL learned from.Air-Tra�c Control (ATC) domain. This domain is a simpli�ed version of Kanfer-Ackerman air-tra�c control task.1) The main task is to land a plane from any con�guration. Thetask has a queue of incoming planes, holding patterns and runways. The planes are accepted into theholding patterns, and then are landed on the runways. The type of a plane, the current wind speedand direction, and the runway conditions impose restrictions on landing a plane. The operatorsselect a plane to land, deposit a plane either on a runway or in a holding position, or move thecursor on the screen. There are 13 d-rules for this domain, including multiple d-rules for some goals.The main goal to land a plane from any holding pattern required three d-rules. Its subgoal to takethe plane to the correct runway required four d-rules. Depositing a plane on a runway needed threed-rules. Moving a plane between holding patterns, and its subgoals moving the cursor and selectinga plane all required one d-rule each. Fig. 2 plots the number of training problems and their solutionsversus percentage of test problems ExEL successfully solves in ATC. Each data point is a mean of�3 For more details on this, see the discussion on self-testing in Section x5.16
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Fig. 2 Performance of ExEL in SW & ATC domains20 runs. The error bars show one standard deviation on either side of the mean for these runs.There are a few other systems that learn control knowledge for planning using ILP methods,such as DOLPHIN34), Grasshopper21) and SCOPE.12) One crucial di�erence between the abovelearning systems and ExEL is in the form of control knowledge being learned. They learn controlrules that choose among various operators to apply in solving a planning problem, whereas ExELlearns d-rules that transform a planning problem into a hierarchical one and specify rules on howto decompose hierarchies. Because of this di�erence, we cannot compare these systems againstExEL in a meaningful way. Also, these systems embed FOIL28) for inducing control rules. FOIL,as well as another ILP system GOLEM23), require negative examples in batch, instead of queries.Such negative examples are di�cult to obtain in our setting. However, if we substitute queries byself-testing (see Section x5), the test examples generated can be thought of as negative examples,but they are of \near-miss" kind|that is, they are generated to test a particular hypothesis d-rulelearner has constructed.x5 DiscussionIn this work, we have shown that �rst-order non-recursive Horn de�nitions are learnableutilizing reasonable amount of resources and queries. As a special case, it follows that �rst-ordermonotone DNF is PAC-learnable using membership queries. A generalization of the class of Hornde�nitions is Horn sentences (or Horn programs). Horn sentences allow di�erent predicate symbolsfor head literals in a set of Horn clauses, as opposed to a single predicate symbol as in Horn de�ni-tions. In fact, as mentioned in Section 4.2, our d-rules are equivalent to �rst-order Horn programs.Angluin, Frazier and Pitt have shown that propositional Horn sentences are exactly learnable fromequivalence and membership queries.3) They use the model of learning from interpretations, wherepositive examples are models of the target, and negative examples are negative interpretations. Weused the learning from entailment model studied by Frazier and Pitt.15) When membership queriesare available, learning from interpretations reduces to learning from entailment. This is because we17



can convert every negative interpretation of the target into a a positive example in the entailmentmodel (a Horn clause entailed by the target). Since every negative interpretation violates some Hornclause, we can prune all but one negative literal in the interpretation, while making sure that the re-sult is still a negative interpretation. We can then convert that reduced negative interpretation intoa positive Horn clause by negating it. Hence, our results imply that Horn de�nitions are learnablefrom interpretations as well.Learnability of �rst-order Horn sentences from entailment queries is an important openquestion. Arimura4) showed that acyclic and simple Horn programs with predicates of �xed arityare learnable from entailment using equivalence and membership queries. The acyclicity constraintimplies that the literals in the language can be ordered such that the derivation of any literal dependsonly on the literals which occur before it. Elsewhere31), we have shown that �rst-order acyclic Hornsentences that have polynomial-time subsumption algorithms are exactly learnable. As in the case ofArimura, we too use entailment membership queries and assume that the derivation order of literalsis known. Unlike Arimura's case, we do not require that the clauses be simple, but require that theybe \non-generative"|only the terms that appear in the body of a clause can appear in the head ofa clause.Most of the positive results for PAC-learnability in ILP, so far, depended either on polynomial-time transformations of �rst-order clauses to propositional logic and propositional PAC-learningalgorithms10, 5, 26), or on exhaustively enumerating polynomially sized hypothesis spaces.14) There-fore, the classes considered were very restrictive. In comparison, the hypothesis space for the lan-guage class we considered is unbounded. Because the arity of the predicates is not constant, convert-ing the �rst order target to a propositional one yields an exponentially large target, which requiresexponentially large number of equivalence queries to learn it. The negative results by Cohen7) forPAC-learning interesting classes suggest that membership queries are necessary. Along with ourwork, the work by Page25) and the work by Haussler17) are signi�cant e�orts in making learningtractable using membership and subset queries.The algorithm in Fig. 1 is similar in spirit to an ILP system called CLINT9) in the sense thatthey both are incremental and interactive. Like in our algorithm, CLINT uses queries to eliminateirrelevant literals. CLINT raises the generality of hypotheses by proposing more complex hypothesisclauses, whereas our algorithm uses lgg.Several pieces of research have used the lgg idea in di�erent ways for the purpose of gener-alization. Haussler17) considers learning multiple conjunctive concepts. In the hypothesis languageconsidered by him where the number of objects per scene is �xed, lgg of two hypotheses is at most asbig as one of the hypotheses, but is not unique. Haussler uses queries to select an lgg which is in thetarget. On the other hand, in our case, lgg is unique, but its size grows exponentially in the numberof hypotheses of which it is lgg. We use queries to reduce the size of the hypothesis generated by the18



lgg (see Generalize procedure in Fig. 1). Frazier and Pitt16) also use a pruning procedure similar toour Generalize procedure to limit the size of lgg in Classic learning. GOLEM23) is another systemthat uses lgg to generalize hypotheses. GOLEM mitigates the problem of combinatorial explosiondue to lgg in two ways: (1) by restricting the hypothesis language to ij-determinate Horn clauseswhich guarantee polynomial-sized lgg; and (2) by using negative examples to eliminate literals fromthe hypotheses. In the case of the work by Page25), the simplicity and the �xed-arity restrictionsmake the size of lgg polynomial in the sizes of the hypotheses being generalized.The use of queries assumes that a teacher who knows the target concept is available. Re-quiring such a teacher in practice is unreasonably demanding. This presents a dilemma|since,as mentioned in earlier, without queries only a restricted classes are polynomially PAC-learnable.Elsewhere29, 30), we present a practical alternative for membership queries, called self-testing. Inself-testing, the d-rule learner automatically answers the queries by generating planning problemsthat must use the hypothesized d-rules, and then trying out these d-rules in solving the generatedproblems. If the generated problems can be solved using the hypothesized d-rules, then the queriesare answered yes; otherwise, the queries fail. This solution is practical if we restrict ourselves tolearning a subclass of Horn de�nitions for which subsumption is tractable|such as determinate,k-free or k-local Horn de�nitions.18) Determinate Horn de�nitions are not PAC-learnable withoutqueries, under cryptographic assumptions.5) Thus, even when limiting learning to languages forwhich subsumption is tractable, this method is strictly more general.For self-testing to be usable when learning d-rules for several goals (equivalent to learningHorn programs) or learning recursive d-rules (equivalent to learning recursive Horn de�nitions), thelearner should know how to solve the the subgoals addressed in a hypothesized d-rule. That meansthat the learner should have known d-rules for those subgoals. Thus, learning has to be orderedsuch that d-rules for subgoals appearing in a particular d-rule are learned before learning that d-rule.One way to order is following goal-subgoal hierarchies in the domain. In case of recursive d-rules fora goal (intra-goal), this, however, does not work. A solution we adopted in our work29, 30) is learningaccording to the number of recursive \calls" to a goal in a d-rule. The base-case d-rules (the oneswith zero recursive calls) are learned �rst. Then the ones with one recursive call are learned next,and so forth. The idea is that while learning d-rules with one recursive call, base-case d-rules canbe used by the self-testing method, and so on.This work is one of the �rst to theoretically demonstrate that the �rst-order learning ismore powerful than propositional learning. We believe that structural domains such as planningand scheduling are inherently relational and are better suited to �rst-order learning. However, tobuild practical systems, we need to generalize our results in many directions. These include learningmore general Horn sentences, handling noise, probabilities and real numbers, and incorporatingbackground theory. 19
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