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Abstract. Automatically tagging textual mentions with the 

concepts, types and entities that they represent are important 

tasks for which supervised learning has been found to be very 

effective. In this paper, we consider the problem of exploiting 

multiple sources of training data with variant ontologies. We 

present a new transfer learning approach based on embedding 

multiple label sets in a shared space, and using it to augment the 

training data.  
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I. INTRODUCTION  

Automatically tagging textual mentions with ontological 

concepts, types, and entities that they represent is useful in 

many knowledge-intensive fields such as biology and 

medicine. This problem is studied under the names of Named 

Entity Recognition, Entity Linking, and Wikification. 

Supervised learning from annotated training data has been 

found to be an effective method to tackle this task. However, 

in most fields in general, and biology in particular, there are 

often multiple ontologies. For example, different ontologies 

such as the Cell Type Ontology, the Protein Ontology, the 

Sequence Ontology, and the Gene Ontology might overlap, 

but use different vocabulary, and provide complementary 

information [11]. Each ontology comes with its own annotated 

training data, which presents the problem of reconciling the 

different ontologies and effectively using the training data for 

the old (source) ontologies in training for a new (target) 

ontology. 

The above problem is an instance of Transfer learning, which 

aims to leverage the training data from one or more source 

domains to improve the sample efficiency in a related target 

domain. Domain Adaptation is Transfer learning where the 

source and the target domains use the same label set but have 

different distributions [1]. Transfer learning where the label 

sets are variant across domains is far less studied. In many real 

world applications, the ontologies or label sets of different 

tasks could be (implicitly) overlapping and/or intricately 

related. For example, one biological application of natural 

language processing is to tag natural texts with proteins from a 

given protein ontology. In a related task, we might need to tag 

the text with genes based on a specific gene ontology. The two 

ontologies are clearly related and may provide useful 

information toward one another. For such tasks, we need a 

transfer learning approach that can be applied with variant 

ontologies/label sets, which will learn simultaneously from 

both domains and thus enhance the efficiency of learning. 

Standard Domain adaptation techniques [3,4] are not directly 

applicable to this problem because they assume that the label 

sets are invariant. Recent work proposed a solution based on 

finding a mapping between the labels using Canonical 

Correlation Analysis (CCA), and then reducing the problem to 

the standard domain adaptation setting [5]. 

We develop a method that embeds the source and target labels 

in a shared space and takes advantage of the shared space to 

transfer the knowledge. Instead of using the label embedding to 

produce a mapping between the source and target labels, we 

directly employ the label embeddings to augment the feature 

representation of the target examples by the predicted source 

label embeddings. After that, a model is trained on the target 

side. We conducted a preliminary study on the task of Named 

Entity Recognition in which we used a two dataset  that use 

different but related annotation scheme. We ashow that our 

approach significantly outperforms several baselines. 

II. PROBLEM SETUP 

A domain Di = (Xi, P(Xi)) consists of two components: the 

feature space Xi and the corresponding marginal distribution 

P(Xi). Let Ti = (Yi, fi(.)) be the task i where Yi is the label set of 

the domain i, and let fi(.) = Xi →Yi be a function that maps Xi to 

Yi. The goal of transfer learning is to use the knowledge of fs 

learned from source domain-task pair (Ds, Ts) to improve the 

learning of ft  on the target side (Dt, Tt). 

In standard domain adaptation (aka transductive transfer 

learning [3,4,6]),  the source and the target tasks are the same , 

i.e., Ts  =  Tt., while the domains differ (either Xs = Xt  or P(Xs) 

= P(Xt) ). On the other hand, in the inductive transfer learning 

setting [7,5], which includes our work, the domains are the 

same or closely related, but the tasks differ, i.e, Ts  ≠  Tt. . 

III. TRANSFER LEARNING VIA LABEL EMBEDDING  

In this section, we describe our approach to learn label 

embeddings and use them to transfer the learning across the 

domains. We follow the method presented in Kim et al. [5] to 

induce the label embeddings. Specifically, we use Canonical 

Correlation Analysis (CCA)[8] to project both source and 

target labels to a shared space where the correlation between 

the projected vectors is maximized. Then, we employ these 

embeddings to transfer the knowledge from the source domain 

to the target domain. The projection vectors then can be used to 

reduce the dimensionality of the variables by projecting them 

into k-dimensional space, where k is a parameter to be tuned. 



    

To use the extracted embeddings in transferring the knowledge, 

we propose a method that works as follows: first, we train a 

model on the source domain, and use it to make predictions on 

the target domain. Then, we augment the feature space of each 

instance in the target domain with the label embedding 

corresponding to the predicted source label. Finally, a model is 

trained on the target domain. 

A nice property of this method is that it can be applied 

regardless the type of relationships between the source and the 

target labels. It works with 1-to-1, n-to-1, and 1-to-n 

relationships. It is also applicable if the label types overlap. 

IV. EXPERIMENTAL SETUP  

In this section, we describe our experimental setup and results 

on the task of Named Entity Recognition (NER).     

Dataset. We used CoNLL 20031 NER benchmark dataset as a 

source domain and a small dataset called TAC-KBP20152 NER 

dataset as a target. CoNLL2003 defines four entity types: 

Person (PER), Organization (ORG), Location (LOC), and 

Miscellaneous (MICS). TAC-KBP2015 defines six entity 

types: Person (PER), Title (TTL), Organization (ORG), 

Geopolitical Entities (GPE), Location (LOC), and Facilities 

(FAC). Our approach doesn’t need any prior knowledge of the 

matching types between CoNLL 2003 and TAC-KBP2015. 

Evaluation. We follow CoNLL exact match evaluation 

protocol for the NER task [9]. In particular, we calculate the 

recall, the precision, and the F1-score for each entity type, and 

then micro-average the recalls, the precisions, and the F1-

scores. 

Features and Training. We employ the standard set of 

features used by Stanford NLP group to train their NER3. The 

feature set includes: word features, orthographic features, 

feature conjunctions and others. We also train our model using 

Stanford NER system4. It provides a general implementation of 

Conditional Random Field [10]. We use label embeddings of 

size 5 in all of our experiments.  

Baselines.To investigate the effectiveness of our method 

AugmntTr, we compare it to two other baselines: 

 TargetOnly: train a model on the target dataset. 

 Pred: use the output of source predictor as an additional 
feature to train a model on the target dataset. 

V. RESULTS AND DISCUSSION  

In this section, we present the experimental results of all 

approaches under study. The results are summarized in Table 

1. it shows that our method AugmntTr produces about 7% and 

9% F1-score improvement  over TargetOnly and Pred 

methods. This illustrates the ability of CCA to discover the 

relationship between label types in CoNLL2003 and TAC-

KBP2015 datasets. Augmenting the feature space of TAC-

KBP2015 dataset with the label embedding of CoNLL2003 

labels transfers the knowledge from CoNLL2003 to TAC-

KBP2015 via these embeddings. 

TABLE I.  MICRO-AVERAGED AND MACRO-AVERAGED RECALL, 
PRECISION AND F1 -SCORES OF THE METHODS TARGETONLY, PRED, AND 

AUGMNTTR  ON THE TASK OF  NAMED ENTITY RECOGNITION. 

Baseline Avg-R Avg-P Avg-F1 

TargetOnly 
Pred 

0.618  
0.576  

0.753 
0.756 

0.679 
0.654 

AugmntTr 0.745   0.746  0.745 

CONCLUSION 

We present an approach to transfer the learning with different 

label sets between the source and the target domains. Our 

approach makes use of label embeddings induced by CCA. We 

augment the feature space of the target data with embeddings 

of the predicted source labels, and then, train a model on the 

target domain. We find that CCA is able to produce high 

quality label embeddings that are capable of transferring the 

knowledge across domains, this explains the superiority of our 

approach over the baselines. 
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