Function Approximation in Hierarchical Relational Reinforcement
Learning

Silvana Roncagliolo

SILVANAQUCV.CL

Escuela de Ingenieria Informatica, Universidad Catolica de Valparaiso, Chile

Prasad Tadepalli

TADEPALLQEECS.ORST.EDU

School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, USA

Abstract

Recently there have been a number of dif-
ferent approaches developed for hierarchi-
cal reinforcement learning in propositional
setting. We propose a hierarchical version
of relational reinforcement learning (HRRL).
We describe a value function approximation
method inspired by logic programming which
is suitable for HRRL.

1. Introduction

Hierarchical methods appear crucial to scale rein-
forcement learning to large real-world domains. The
MAXQ value function decomposition is one of the
ways in which hierarchical methods can be imple-
mented in a principled manner. Decomposing the
value function of a state into sub-value functions that
belong to subtasks allows the learning algorithm to
choose subtasks at each level using their own value
functions. While this does not guarantee a globally
optimal policy, or an optimal policy that can be rep-
resented hierarchically, it does learn a recursively op-
timal policy, i.e., a policy which is optimal given all
the lower level subtasks are optimal. Extending hier-
archical reinforcement learning to relational domains
is thus an important problem.

The relative merits of policy-based and value-function-
based methods have been a point of debate in the re-
inforcement learning community. This issue is par-
ticularly pressing in relational reinforcement learning
(RRL), because it has been found that value-function
based methods do not take advantage of the vari-
able number of objects present in relational domains
Appearing in Proceedings of the ICML’04 workshop on Re-
lational Reinforcement Learning, Banff, Canada, 2004. The

second author acknowledges the support of NSF under
grant number IIS-0329278.

and hence do not generalize well. For example, the
value function approximation algorithm called TILDE,
which was used in relational Q-learning, is unable to
generalize a policy from 2 blocks to 3 blocks. This led
researchers to develop policy learning methods based
on inductive logic programming and approximate pol-
icy iteration (Dzeroski et al., 2001; Fern et al., 2003).
Unfortunately, the rules learned by these methods can
sometimes be complicated, or unable to represent a
near-optimal policy.

One reason for the policies learned by policy-search
methods to be complicated is that they are expressed
as constraints on low level operators. In many com-
plex domains, it is more natural and easier to ex-
press the target policy as constraints on higher level
goal-subgoal decompositions. For example, to achieve
on(A,B), all that one needs to do is to first achieve
clear(A) and clear(B), and then apply the operator
puton(A,B). To achieve clear(A), when on(C,A) is
true, one has to first achieve clear(C), which implies
that the blocks above C must be recursively cleared.
This gives a simple set of recursive rules that can al-
ways achieve on(A,B). Goal-subgoal (or task-subtask)
hierarchies also naturally and frequently arise in most
other planning domains including logistics, informa-
tion integration, cooking, etc.

In the current paper, we explore this hypothesis by
presenting a natural extension of hierarchical rein-
forcement learning (Dietterich, 2000; Sutton et al.,
1999; Parr & Russell, 1998; Kaelbling, 1993) to re-
lational setting. We also present a relational func-
tion approximator in the form of Prolog-like rules with
linear functions. We describe an algorithm to learn
these rules and present some preliminary results in the
blocks world domain. We conclude with some possible
future extensions.



2. Hierarchical Relational MDPs

We consider a relational markov decision problem
(RMDP) framework (O, P, S, A, T, R) where O is a set
of objects, P is a set of predicates over objects, S is the
set of all possible complete state specifications over O
and P, A is the set of all possible instantiated actions,
T is a state transition function that specifies the prob-
ability of the next state given the state and the (in-
stantiated) action, and R is the immediate reward as a
function of the current state and (instantiated) action.
We assume that the set of objects O and the predicate
symbols and their arities are known. Similarly, the
action schema names, e.g., puton, and their numbers
of parameters are known. The transition probabilities
of actions and their immediate rewards are unknown.
The goal is to optimize the expected total reward re-
ceived.

We extend the above framework to a hierarchical
setting similar to the MAXQ framework (Dietterich,
2000). We now have a task graph G = (N, E) that
specifies the task hierarchy. Each node u € N repre-
sents a parameterized task with subtasks {v|(u,v) €
E}. The subtasks are the possible actions at the dis-
posal of the task, a set of subroutines it can call in some
order. The graph G itself may be implicitly specified
by a set of “decomposition rules” that describe how a
task is to be decomposed into subtasks. For the pur-
poses of this paper, we assume that this graph is an
explicit input to the system.

Unlike the MAXQ framework of hierarchical RL (Di-
etterich, 2000), we do not restrict the task graph to
be acyclic, thus facilitating recursion. A task can be
achieved by repeatedly choosing an appropriate sub-
task in the current state that helps achieve the task.
For example, the goal of on(A,B) may be achieved
by achieving clear(A), clear(B) and puton(A,B) in
some order. The goal of clear(A) may be achieved
by clear(X) and puton(X,table) in some order with
suitable instantiations of the variable X (X should be
above A for this move to be useful).

Consider a task ¢ and its subtask j in the task graph.
The Bellman equation for the value of task ¢, i.e., the
expected total reward received during the task i, for
state s with j as the first subtask is represented by
the @-function Q(i, s, j), and is given by the following
equation for expected total reward optimization.

Qi,s,j) = E(V(s,j) + V(s',1)) (1)
where s’ is the state where the subtask j terminates

starting from s, F(.) represents the expected value,
and V(s, ) is the expected value of completing task j

starting from s and is given by:
Vi(s,j7) = E(R(s,j)) if j is primitive,

maxy, Q(s, j, k) otherwise. (2)

The above equation is analogous to the definition of
the Q-function, except that the first term in the first
equation represents the reward obtained in solving the
subtask 7, which in turn is expressed recursively as a
function of the rewards obtained during its subtasks.
It can be turned into an update equation in the fol-
lowing way:

Q(is5,5) + (1=a)Qi,s,5) +a(V(s,§)+V(s',4)) (3)

An average-reward version of the above method is de-
scribed in (Seri & Tadepalli, 2002). It is found to
be more efficient than the more standard MAXQ-Q
learning in our experiments, partly because it caches
the values of all subtasks and uses them to update the
parent task’s values rather than recursively descending
all the way to the leaf nodes. Unfortunately, neither
of these methods can work without proper abstrac-
tion of the state at each task level. In relational RL,
the abstraction is more complicated because it relies
on the relationships between different features rather
than the presence or absence of a single feature. We
make use of a full-fledged relational function approxi-
mator to make MAXQ-learning effective in relational
domains.

3. Value Function Approximation

Previous experience with value function approxima-
tion in relational settings indicates that the value func-
tion generalizes poorly when it is not sufficiently ex-
pressive. For example, TILDE uses relational regres-
sion trees, whose leaves are assigned constant values
(Dzeroski et al., 2001). Thus, the value function is
piecewise constant, an inappropriate choice for rela-
tional domains like blocks world, where the number
of time steps to do something usually depends on the
number of blocks that satisfy a condition, such as be-
ing above a certain block. For example, the number of
steps necessary to clear a block is a linear function of
the number of blocks above that block. Approximat-
ing it with a constant will not allow it to be applicable
to a different number of blocks.

In many domains including the blocks world, it is per-
haps more natural to learn piecewise linear functions.
We represent the Q-values using a 3-place predicate,
Q(Task,Subtask,Val) which means that the value of



q(clear(X),_,0) :- clear(X).

q(clear(X),clear(Y),V) :- on(Y,X),
q(clear(Y),_,V1), V is Vi-1.

q(on(X,Y),clear(Y),V) :- clear(X),
q(clear(Y),_,V1), V is V1-1.

Table 1. A set of rules that compute the Q-values

achieving Task by achieving the Subtask is Val. The
state is an implicit parameter in that all the predicates
in the rule are evaluated at the same state. This pred-
icate may in turn be expanded by a set of rules, which
might include linear functions. For example, one such
rule set is given in Table 1 in Prolog notation. Note
that the reward for each step is assumed to be -1 and
the reward for the goal state is 0.

The first rule in Table 1 says that the if a block X is
already clear, then the value of the current state during
the task of clearing it is 0. The second rule says that
if a block Y is on X, then the total reward for clearing
X is the total reward for clearing Y minus 1. The third
rule says that if a block X is clear, then the the total
reward for putting X on Y is the reward for clearing Y
minus 1.

We have implemented a batch learning algorithm to
learn rules of the above kind from user-given examples
of Q-values. We have yet to integrate this batch func-
tion approximator with reinforcement learning. Our
algorithm is similar to the FOR algorithm of (Karalic
& Bratko, 1997) and works with a FOIL-like greedy
search (Quinlan, 1990) coupled with linear regression.

Currently, the input to our algorithm is a set of exam-
ples, each of which consists of a fully specified state,
the task, the first subtask, and the Q-value (see Table
2). The state is described as a conjunction of literals.
The task and the subtask are currently single desig-
nated literals. The value is a real number that repre-
sents the total reward obtained in the given examples.

In addition, the input includes the task-subtask hi-
erarchy. So for the blocks world domain, we have the
hierarchy list (clear, clear), (on, on), (on, clear), mean-
ing that “clear” only has “clear” as its subgoal, while
“on” has both “on” and “clear” as subgoals. Also in-
put to the algorithm is the maximum number of terms
that can be part of the conditions of the learned rules.

The “basis functions” (features) for the value func-
tion of a task consists of numerical arguments as well
as the results of value functions of its subtasks. The
value function is assumed to be piece-wise linear in the
basis functions and includes a bias (constant) term.
Learning is done for the tasks in the hierarchy in a

State: [clear(a), on(a,b), on(b,c),
on(c,d), on(d,table), clear(e),
on(e,f), on(f,g), on(g,table),
clear(table)]

task: clear(c)

subtask: clear(b)

value: -2

task: on(c,f)

subtask: clear(c)

value: -4

Table 2. Two Examples for Function Approximation

Learn(Examples)
For each task-subtask pair
Let Exs := Examples for the current task-subtask
Repeat
Rule := LearnBestRule(Exs);
Exs := Exs - {ex | ex matches Rule’s condition }
Until Exsis { }

Table 3. The top-level greedy algorithm

bottom-up manner.

We use a greedy covering algorithm like FOIL (Quin-
lan, 1990) to learn the value function as a set of rules.
It separates the examples for each task-subtask pair,
and finds the best rule that minimizes the squared
error with respect to those examples (see Table 3).
Thus a list of rules is learned for each task-subtask
pair. Each rule has an applicability condition (if part)
which binds some variables, and a linear function of
these variables (the then part) which predicts the value
function of the state.

The best rule is found by incrementally adding condi-
tions to the if-part of the rule, collecting all the bound
numeric variables as features and then doing a linear
regression on the resulting features (see Table 4). The
appropriate condition literals include all the predicates
applicable in the state as well as the value functions for
the subtasks of the given task. The variables for doing
linear regression include all the count variables that
were bound in the if-part, and also the values of the
subtasks of the given task. All possible extensions of
the current if-part are considered, and for each possible
extension, linear regression is performed on the result-
ing variables. The literal that yields the least possible
regression error is finally chosen to be added to the
condition, the examples are updated to match the rule
constructed so far, and the algorithm continues to find



LearnBestRule(Examples)
Rule := Empty;
Repeat
for each possible condition
determine the possible features
exs := the examples that satisfy the condition
regressionError, linearFunction := Regress(exs,
features)
if regressionError < minError then
minError := regressionError
bestCondition := condition
bestFunction := linearFunction
end for;
add bestCondition to the if-part of the rule;
Examples := Examples that match bestCondition;
until minError < €
add the bestFunction to the then-part of the rule.

Table 4. The Greedy Regression Algorithm

1 qg(clear(X),clear(X),V):- clear(X), V is O.

2 q(clear(X),clear(Z),V):- on(Z,X),
q(clear(Z),_,V1), V is V1 - 1.

3 q(on(X,Y),clear(X),V):- clear(Y),
q(clear(X),_,V1), V is V1 - 1.

4 q(on(X,Y),clear(X),V):- below (Y,X),
q(clear(Y),_,V1), V is V1 - 1.

5 q(on(X,Y),clear(X),V):- q(clear(X),_,V1),
q(clear(Y),_,V2), V is V1 + V2 - 1.

6 q(on(X,Y),clear(Y),V):- below(X,Y),
q(clear(X),_,V1), V is V1 - 1.

7 q(on(X,Y),clear(Y),V):- clear(X),
q(clear(Y),_,V1), V is V1 - 1.

8 q(on(X,Y),on(X,Y),V):- on(X,Y), V is 0.

Table 5. The Rules Learned by Greedy Regression

the next literal to be added. If the regression error is
less than a preset parameter €, the algorithm termi-
nates the condition part of the rule and adds the best
linear function found to the then-part of the rule.

4. Results and Future Work

So far we only have done preliminary experiments in
the blocks world domain. We generated all possible
examples from 1, 2, and 3 states. The total number of
examples ranged from 70 in the 1-state case to about
130 in the case of 3 states. We then ran our function
approximation algorithm on it to learn a set of rules.
Our system was able to learn the rules shown in Table
5 for the goals of “clear” and “on” in the blocks world.

Note that some of the rules, e.g., rule 4 and 6 use the
high-level predicate “below”. All predicates are given
to the system as prior knowledge. Rule 4 says that if
Y is below X, then putting X on Y takes only one more
step after clearing Y. Rule 5 covers the default case of
having to clear both blocks and then put one on the
other.

There is much that remains to be done. We need to do
a bigger experimental study in the blocks world and
other domains and evaluate the algorithm more thor-
oughly. It appears that the condition selection can be
made more efficient by adding heuristics. Rather than
having to specify the first subtask explicitly, we would
like to learn it from the examples. This seems possi-
ble by the strategies we have previously explored to
learn goal decomposition rules from user-given exam-
ples (Reddy et al., 1996; Reddy & Tadepalli, 1999).
We assume that predicates like “below” are already
known to the system. Introducing such useful new
predicates automatically is an important open prob-
lem. Finally, we need to incorporate this algorithm
into a full reinforcement learner that generates its own
examples rather than being supplied with solved ex-
amples. Generalizing the algorithms to stochastic do-
mains is another important direction.

References

Dietterich, T. (2000). Hierarchical reinforcement
learning with the maxq value function decomposi-
tion. Journal of Artificial Intelligence Research, 13,
227-303.

Dzeroski, S., De Raedt, L., & Driessens, K. (2001). Re-
lational reinforcement learning. Machine Learning,
483, 7-52.

Fern, A., Yoon, S., & Givan, R. (2003). Approximate
policy iteration with a policy language bias. Ad-
vances in Neural Information Processing Systems,
16.

Kaelbling, L. (1993). Hierarchical learning in stochas-
tic domains: Preliminary results. Proceedings of the
Tenth International Conference on Machine Learn-
ing (pp. 167-173).

Karalic, A., & Bratko, I. (1997). First order regression.
Machine Learning, 26, 147-176.

Parr, R., & Russell, S. (1998). Reinforcement learning
with hierarchies of machines. Advances in Neural
Information Processing Systems, 10.

Quinlan, J. (1990). Learning logical definitions of from
relations. Machine Learning, 5, 239-266.



Reddy, C., & Tadepalli, P. (1999). Learning Horn defi-
nitions: Theory and an application to planning. New
Generation Computing, 17, 77-98.

Reddy, C., Tadepalli, P., & Roncagliolo, S. (1996).
Theory-guided empirical speedup learning of goal-
decomposition rules. Proceedings of the 13th Inter-
national Conference on Machine Learning (pp. 409—
417). Bari, Italy: Morgan Kaufmann.

Seri, S., & Tadepalli, P. (2002). Model-based hierarchi-
cal average-reward reinforcement learning. Proceed-
ings of International Machine Learning Conference.
Sydney, Australia: Morgan Kaufmann.

Sutton, R. S., Precup, D., & Singh, S. (1999). Between
mdps and semi-mdps: A framework for temporal
abstraction in reinforcement learning. Artificial In-
telligence, 112, 181-211.



