
Function Approximation in Hierarchical Relational Reinforcement

Learning

Silvana Roncagliolo silvana�ucv�cl

Escuela de Ingenieria Informatica� Universidad Catolica de Valparaiso� Chile

Prasad Tadepalli tadepall�eecs�orst�edu

School of Electrical Engineering and Computer Science� Oregon State University� Corvallis� OR� USA

Abstract

Recently there have been a number of dif�
ferent approaches developed for hierarchi�
cal reinforcement learning in propositional
setting� We propose a hierarchical version
of relational reinforcement learning �HRRL��
We describe a value function approximation
method inspired by logic programming which
is suitable for HRRL�

�� Introduction

Hierarchical methods appear crucial to scale rein�
forcement learning to large real�world domains� The
MAXQ value function decomposition is one of the
ways in which hierarchical methods can be imple�
mented in a principled manner� Decomposing the
value function of a state into sub�value functions that
belong to subtasks allows the learning algorithm to
choose subtasks at each level using their own value
functions� While this does not guarantee a globally
optimal policy� or an optimal policy that can be rep�
resented hierarchically� it does learn a recursively op�
timal policy� i�e�� a policy which is optimal given all
the lower level subtasks are optimal� Extending hier�
archical reinforcement learning to relational domains
is thus an important problem�

The relative merits of policy�based and value�function�
based methods have been a point of debate in the re�
inforcement learning community� This issue is par�
ticularly pressing in relational reinforcement learning
�RRL�� because it has been found that value�function
based methods do not take advantage of the vari�
able number of objects present in relational domains

Appearing in Proceedings of the ICML��� workshop on Re�
lational Reinforcement Learning� Ban�� Canada� ����� The
second author acknowledges the support of NSF under
grant number IIS������	
�

and hence do not generalize well� For example� the
value function approximation algorithm called TILDE�
which was used in relational Q�learning� is unable to
generalize a policy from � blocks to � blocks� This led
researchers to develop policy learning methods based
on inductive logic programming and approximate pol�
icy iteration �D�zeroski et al�� ���	
 Fern et al�� ������
Unfortunately� the rules learned by these methods can
sometimes be complicated� or unable to represent a
near�optimal policy�

One reason for the policies learned by policy�search
methods to be complicated is that they are expressed
as constraints on low level operators� In many com�
plex domains� it is more natural and easier to ex�
press the target policy as constraints on higher level
goal�subgoal decompositions� For example� to achieve
on�A�B�� all that one needs to do is to �rst achieve
clear�A� and clear�B�� and then apply the operator
puton�A�B�� To achieve clear�A�� when on�C�A� is
true� one has to �rst achieve clear�C�� which implies
that the blocks above C must be recursively cleared�
This gives a simple set of recursive rules that can al�
ways achieve on�A�B�� Goal�subgoal �or task�subtask�
hierarchies also naturally and frequently arise in most
other planning domains including logistics� informa�
tion integration� cooking� etc�

In the current paper� we explore this hypothesis by
presenting a natural extension of hierarchical rein�
forcement learning �Dietterich� ����
 Sutton et al��
	���
 Parr Russell� 	���
 Kaelbling� 	���� to re�
lational setting� We also present a relational func�
tion approximator in the form of Prolog�like rules with
linear functions� We describe an algorithm to learn
these rules and present some preliminary results in the
blocks world domain� We conclude with some possible
future extensions�

�� Hierarchical Relational MDPs

We consider a relational markov decision problem
�RMDP� framework �O�P� S�A� T�R� where O is a set
of objects� P is a set of predicates over objects� S is the
set of all possible complete state speci�cations over O
and P � A is the set of all possible instantiated actions�
T is a state transition function that speci�es the prob�
ability of the next state given the state and the �in�
stantiated� action� and R is the immediate reward as a
function of the current state and �instantiated� action�
We assume that the set of objects O and the predicate
symbols and their arities are known� Similarly� the
action schema names� e�g�� puton� and their numbers
of parameters are known� The transition probabilities
of actions and their immediate rewards are unknown�
The goal is to optimize the expected total reward re�
ceived�

We extend the above framework to a hierarchical
setting similar to the MAXQ framework �Dietterich�
������ We now have a task graph G � �N�E� that
speci�es the task hierarchy� Each node u � N repre�
sents a parameterized task with subtasks fvj�u� v� �
Eg� The subtasks are the possible actions at the dis�
posal of the task� a set of subroutines it can call in some
order� The graph G itself may be implicitly speci�ed
by a set of �decomposition rules� that describe how a
task is to be decomposed into subtasks� For the pur�
poses of this paper� we assume that this graph is an
explicit input to the system�

Unlike the MAXQ framework of hierarchical RL �Di�
etterich� ������ we do not restrict the task graph to
be acyclic� thus facilitating recursion� A task can be
achieved by repeatedly choosing an appropriate sub�
task in the current state that helps achieve the task�
For example� the goal of on�A�B� may be achieved
by achieving clear�A�� clear�B� and puton�A�B� in
some order� The goal of clear�A� may be achieved
by clear�X� and puton�X�table� in some order with
suitable instantiations of the variable X �X should be
above A for this move to be useful��

Consider a task i and its subtask j in the task graph�
The Bellman equation for the value of task i� i�e�� the
expected total reward received during the task i� for
state s with j as the �rst subtask is represented by
the Q�function Q�i� s� j�� and is given by the following
equation for expected total reward optimization�

Q�i� s� j� � E�V �s� j� � V �s�� i�� �	�

where s� is the state where the subtask j terminates
starting from s� E��� represents the expected value�
and V �s� j� is the expected value of completing task j

starting from s and is given by�

V �s� j� � E�R�s� j�� if j is primitive�

maxkQ�s� j� k� otherwise� ���

The above equation is analogous to the de�nition of
the Q�function� except that the �rst term in the �rst
equation represents the reward obtained in solving the
subtask j� which in turn is expressed recursively as a
function of the rewards obtained during its subtasks�
It can be turned into an update equation in the fol�
lowing way�

Q�i� s� j�� �	���Q�i� s� j����V �s� j��V �s�� i�� ���

An average�reward version of the above method is de�
scribed in �Seri Tadepalli� ������ It is found to
be more e�cient than the more standard MAXQ�Q
learning in our experiments� partly because it caches
the values of all subtasks and uses them to update the
parent task�s values rather than recursively descending
all the way to the leaf nodes� Unfortunately� neither
of these methods can work without proper abstrac�
tion of the state at each task level� In relational RL�
the abstraction is more complicated because it relies
on the relationships between di�erent features rather
than the presence or absence of a single feature� We
make use of a full��edged relational function approxi�
mator to make MAXQ�learning e�ective in relational
domains�

�� Value Function Approximation

Previous experience with value function approxima�
tion in relational settings indicates that the value func�
tion generalizes poorly when it is not su�ciently ex�
pressive� For example� TILDE uses relational regres�
sion trees� whose leaves are assigned constant values
�D�zeroski et al�� ���	�� Thus� the value function is
piecewise constant� an inappropriate choice for rela�
tional domains like blocks world� where the number
of time steps to do something usually depends on the
number of blocks that satisfy a condition� such as be�
ing above a certain block� For example� the number of
steps necessary to clear a block is a linear function of
the number of blocks above that block� Approximat�
ing it with a constant will not allow it to be applicable
to a di�erent number of blocks�

In many domains including the blocks world� it is per�
haps more natural to learn piecewise linear functions�
We represent the Q�values using a ��place predicate�
Q�Task�Subtask�Val� which means that the value of

q�clear�X�� ��� �� clear�X��

q�clear�X��clear�Y��V� �� on�Y�X��
q�clear�Y�� �V��� V is V����

q�on�X�Y��clear�Y��V� �� clear�X��

q�clear�Y�� �V��� V is V����

Table �� A set of rules that compute the Q�values

achieving Task by achieving the Subtask is Val� The
state is an implicit parameter in that all the predicates
in the rule are evaluated at the same state� This pred�
icate may in turn be expanded by a set of rules� which
might include linear functions� For example� one such
rule set is given in Table 	 in Prolog notation� Note
that the reward for each step is assumed to be �	 and
the reward for the goal state is ��

The �rst rule in Table 	 says that the if a block X is
already clear� then the value of the current state during
the task of clearing it is �� The second rule says that
if a block Y is on X� then the total reward for clearing
X is the total reward for clearing Y minus 	� The third
rule says that if a block X is clear� then the the total
reward for putting X on Y is the reward for clearing Y

minus 	�

We have implemented a batch learning algorithm to
learn rules of the above kind from user�given examples
of Q�values� We have yet to integrate this batch func�
tion approximator with reinforcement learning� Our
algorithm is similar to the FOR algorithm of �Karalic
 Bratko� 	���� and works with a FOIL�like greedy
search �Quinlan� 	���� coupled with linear regression�

Currently� the input to our algorithm is a set of exam�
ples� each of which consists of a fully speci�ed state�
the task� the �rst subtask� and the Q�value �see Table
��� The state is described as a conjunction of literals�
The task and the subtask are currently single desig�
nated literals� The value is a real number that repre�
sents the total reward obtained in the given examples�

In addition� the input includes the task�subtask hi�
erarchy� So for the blocks world domain� we have the
hierarchy list �clear� clear�� �on� on�� �on� clear�� mean�
ing that �clear� only has �clear� as its subgoal� while
�on� has both �on� and �clear� as subgoals� Also in�
put to the algorithm is the maximum number of terms
that can be part of the conditions of the learned rules�

The �basis functions� �features� for the value func�
tion of a task consists of numerical arguments as well
as the results of value functions of its subtasks� The
value function is assumed to be piece�wise linear in the
basis functions and includes a bias �constant� term�
Learning is done for the tasks in the hierarchy in a

State� �clear�a�� on�a�b�� on�b�c��

on�c�d�� on�d�table�� clear�e��

on�e�f�� on�f�g�� on�g�table��

clear�table��

task� clear�c�

subtask� clear�b�

value� ��

task� on�c�f�

subtask� clear�c�

value� ��

Table �� Two Examples for Function Approximation

Learn�Examples�
For each task�subtask pair
Let Exs �� Examples for the current task�subtask
Repeat
Rule �� LearnBestRule�Exs�

Exs �� Exs � fex j ex matches Rule�s condition g

Until Exs is f g

Table �� The top�level greedy algorithm

bottom�up manner�

We use a greedy covering algorithm like FOIL �Quin�
lan� 	���� to learn the value function as a set of rules�
It separates the examples for each task�subtask pair�
and �nds the best rule that minimizes the squared
error with respect to those examples �see Table ���
Thus a list of rules is learned for each task�subtask
pair� Each rule has an applicability condition �if part�
which binds some variables� and a linear function of
these variables �the then part� which predicts the value
function of the state�

The best rule is found by incrementally adding condi�
tions to the if�part of the rule� collecting all the bound
numeric variables as features and then doing a linear
regression on the resulting features �see Table ��� The
appropriate condition literals include all the predicates
applicable in the state as well as the value functions for
the subtasks of the given task� The variables for doing
linear regression include all the count variables that
were bound in the if�part� and also the values of the
subtasks of the given task� All possible extensions of
the current if�part are considered� and for each possible
extension� linear regression is performed on the result�
ing variables� The literal that yields the least possible
regression error is �nally chosen to be added to the
condition� the examples are updated to match the rule
constructed so far� and the algorithm continues to �nd

LearnBestRule�Examples�
Rule �� Empty

Repeat
for each possible condition
determine the possible features
exs �� the examples that satisfy the condition
regressionError� linearFunction �� Regress�exs�

features�
if regressionError � minError then
minError �� regressionError
bestCondition �� condition
bestFunction �� linearFunction

end for

add bestCondition to the if�part of the rule

Examples �� Examples that match bestCondition

until minError � �

add the bestFunction to the then�part of the rule�

Table �� The Greedy Regression Algorithm

	 q�clear�X��clear�X��V��� clear�X�� V is ��

� q�clear�X��clear�Z��V��� on�Z�X��

q�clear�Z�� �V��� V is V� � ��
� q�on�X�Y��clear�X��V��� clear�Y��

q�clear�X�� �V��� V is V� � ��
� q�on�X�Y��clear�X��V��� below �Y�X��

q�clear�Y�� �V��� V is V� � ��
� q�on�X�Y��clear�X��V��� q�clear�X�� �V���

q�clear�Y�� �V��� V is V� 	 V� � ��
� q�on�X�Y��clear�Y��V��� below�X�Y��

q�clear�X�� �V��� V is V� � ��
� q�on�X�Y��clear�Y��V��� clear�X��

q�clear�Y�� �V��� V is V� � ��
� q�on�X�Y��on�X�Y��V��� on�X�Y�� V is ��

Table �� The Rules Learned by Greedy Regression

the next literal to be added� If the regression error is
less than a preset parameter �� the algorithm termi�
nates the condition part of the rule and adds the best
linear function found to the then�part of the rule�

�� Results and Future Work

So far we only have done preliminary experiments in
the blocks world domain� We generated all possible
examples from 	� �� and � states� The total number of
examples ranged from �� in the 	�state case to about
	�� in the case of � states� We then ran our function
approximation algorithm on it to learn a set of rules�
Our system was able to learn the rules shown in Table
� for the goals of �clear� and �on� in the blocks world�

Note that some of the rules� e�g�� rule � and � use the
high�level predicate �below�� All predicates are given
to the system as prior knowledge� Rule � says that if
Y is below X� then putting X on Y takes only one more
step after clearing Y� Rule � covers the default case of
having to clear both blocks and then put one on the
other�

There is much that remains to be done� We need to do
a bigger experimental study in the blocks world and
other domains and evaluate the algorithm more thor�
oughly� It appears that the condition selection can be
made more e�cient by adding heuristics� Rather than
having to specify the �rst subtask explicitly� we would
like to learn it from the examples� This seems possi�
ble by the strategies we have previously explored to
learn goal decomposition rules from user�given exam�
ples �Reddy et al�� 	���
 Reddy Tadepalli� 	�����
We assume that predicates like �below� are already
known to the system� Introducing such useful new
predicates automatically is an important open prob�
lem� Finally� we need to incorporate this algorithm
into a full reinforcement learner that generates its own
examples rather than being supplied with solved ex�
amples� Generalizing the algorithms to stochastic do�
mains is another important direction�

References

Dietterich� T� ������� Hierarchical reinforcement
learning with the maxq value function decomposi�
tion� Journal of Arti�cial Intelligence Research� ���
��������

D�zeroski� S�� De Raedt� L�� Driessens� K� ����	�� Re�
lational reinforcement learning� Machine Learning�
��� �����

Fern� A�� Yoon� S�� Givan� R� ������� Approximate
policy iteration with a policy language bias� Ad�

vances in Neural Information Processing Systems�
���

Kaelbling� L� �	����� Hierarchical learning in stochas�
tic domains� Preliminary results� Proceedings of the
Tenth International Conference on Machine Learn�

ing �pp� 	���	����

Karalic� A�� Bratko� I� �	����� First order regression�
Machine Learning� ��� 	���	���

Parr� R�� Russell� S� �	����� Reinforcement learning
with hierarchies of machines� Advances in Neural

Information Processing Systems� ���

Quinlan� J� �	����� Learning logical de�nitions of from
relations� Machine Learning� �� ��������

Reddy� C�� Tadepalli� P� �	����� Learning Horn de��
nitions� Theory and an application to planning� New
Generation Computing� �	� ������

Reddy� C�� Tadepalli� P�� Roncagliolo� S� �	�����
Theory�guided empirical speedup learning of goal�
decomposition rules� Proceedings of the ��th Inter�

national Conference on Machine Learning �pp� ����
�	��� Bari� Italy� Morgan Kaufmann�

Seri� S�� Tadepalli� P� ������� Model�based hierarchi�
cal average�reward reinforcement learning� Proceed�
ings of International Machine Learning Conference�
Sydney� Australia� Morgan Kaufmann�

Sutton� R� S�� Precup� D�� Singh� S� �	����� Between
mdps and semi�mdps� A framework for temporal
abstraction in reinforcement learning� Arti�cial In�
telligence� ���� 	�	��		�

