
Journal of Arti�cial Intelligence Research 4 (1996) 445-475 Submitted 11/95; published 6/96A Formal Framework for Speedup Learningfrom Problems and SolutionsPrasad Tadepalli tadepalli@cs.orst.eduDepartment of Computer Science303 Dearborn Hall, Oregon State UniversityCorvallis, OR 97331Balas K. Natarajan natarajan@hpl.hp.comHewlett Packard Research Labs1501 Page Mill Road, Bldg 3UPalo Alto, CA 94304 AbstractSpeedup learning seeks to improve the computational e�ciency of problem solvingwith experience. In this paper, we develop a formal framework for learning e�cient problemsolving from random problems and their solutions. We apply this framework to two di�erentrepresentations of learned knowledge, namely control rules and macro-operators, and provetheorems that identify su�cient conditions for learning in each representation. Our proofsare constructive in that they are accompanied with learning algorithms. Our frameworkcaptures both empirical and explanation-based speedup learning in a uni�ed fashion. Weillustrate our framework with implementations in two domains: symbolic integration andEight Puzzle. This work integrates many strands of experimental and theoretical workin machine learning, including empirical learning of control rules, macro-operator learning,Explanation-Based Learning (EBL), and Probably ApproximatelyCorrect (PAC) Learning.1. IntroductionA lot of work in machine learning is in the context of concept learning. A prototypicalexample of this is learning to recognize hand-written characters from classi�ed examples.Concept learning is the subject of an intense theoretical study under the name of \ProbablyApproximately Correct (PAC) Learning" { so called because the learner is required onlyto learn an approximation to the target concept with a high probability (Valiant, 1984).This rich and growing body of knowledge studies the possibility of learning approximationsto concepts in di�erent representations under various learning protocols. (See Natarajan,1991, Anthony & Biggs, 1992, or Kearns & Vazirani, 1994 for a broad introduction.)In this paper, we are concerned with a di�erent kind of learning called \speedup learn-ing," which deals with improving the computational e�ciency of a problem solver withexperience. One of the main di�erences between the concept learning and the speeduplearning is that, in the latter, it is theoretically possible to solve the problems optimallyusing a brute-force problem solver. However, problem solving without learning is NP-hardin most of these domains, and hence is impractical in most cases. The role of learningcan be seen as improving the e�ciency of a brute-force problem solver by acquiring some\control knowledge" that is useful to guide problem solving in fruitful directions. In a con-cept learning task, before learning, there is not enough information to classify an examplec
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Tadepalli & Natarajaneven by brute-force. Even though the speedup learning program has access to a brute-forceproblem solver, it is still a challenge to reformulate its knowledge in a way that makes prob-lem solving e�cient. There have been many successful speedup learning systems describedin the experimental machine learning literature, PRODIGY (Minton, 1990) and SOAR(Laird, Rosenbloom, & Newell, 1986) being two of the most prominent ones.Consider the domain of symbolic integration. Given the de�nition of the domain and astandard table of integrals, anyone has complete information on how to solve any solvableproblem. Yet, while we humans are capable of solving problems of symbolic integration,we are by no means e�cient in our methods. It appears that we need to examine sampleinstances, study solutions to these instances, and based on these solutions build up a set ofheuristics that will enable us to quickly solve future problems. In this sense, the learningprocess has helped improve our computational e�ciency.We brie
y describe the intuition behind our framework here, deferring the formal detailsto later sections. In essence, we would like our learning program to behave in the followingmanner: consider a class M of domains, such that each domain in the class is known topossess an e�cient algorithm. We are interested in a learning algorithm for the classM, analgorithm that takes as input the speci�cation of a domain drawn from the class as well assample instances of the problems in that domain and their solutions, and produces as outputan e�cient algorithm for the domain. As we will see, the sample instances and their solutionsplay a crucial role in the process, as in their absence, constructing an e�cient problem solverfor the input domain can be computationally intractable. In this paper, we are interestedin examining the conditions under which such learning is made computationally e�cient byusing sample instances and solutions. We present a uni�ed formal framework that capturesboth supervised and unsupervised forms of speedup learning, where examples of successfulproblem solving are provided by a teacher and by a search program respectively. Ourframework is based on some of our previous work reported earlier (Natarajan & Tadepalli,1988; Tadepalli, 1991a). Our methods of analysis are similar to that of PAC learning, inthat we only require the learner to output an approximately correct problem solver with ahigh probability. Just as in PAC learning, we require the learner to be successful on anystationary problem distribution unknown to the learner.There have been some other attempts to formalize speedup learning (e.g., Cohen, 1992,Greiner & Likuski, 1989, Subramanian & Hunter, 1992). However, most of these formaliza-tions of speedup learning use a measure of problem-solving performance such as the numberof nodes expanded in solving a problem (Cohen, 1992) or the number of uni�cations donein answering a query (Greiner & Likuski, 1989). We believe that these measures are too�ne grained to be useful as a foundation for a robust theory of speedup learning comparableto the analysis of concept learning in the PAC-learning framework. Following the standardpractice in complexity theory, we use the worst-case asymptotic complexity as our measureof performance. We require a successful speedup learning program to result in a problemsolver whose worst-case asymptotic complexity is better than that of the nonlearning brute-force problem solver. Moreover, the learning itself must consume only a polynomial amountof time and a polynomial number of examples. Note that, according to our de�nition, thestandard forms of compiler optimizations such as loop unrolling, and improvements in thehardware on which the program is run do not qualify as learning processes because theydo not change the asymptotic complexity of problem solving. However, more sophisticated446



A Formal Framework for Speedup Learningforms of program transformation such as partial evaluation are considered as learning pro-vided they improve the asymptotic complexity of program execution. Thus, we believe thatimproving the worst-case asymptotic complexity of problem solving captures a cognitivelyinteresting form of speedup learning. Although any decrease in asymptotic complexity isuseful and interesting, in this paper we will be concerned with learning of polynomial-timeproblem solvers for domains which can only be solved in exponential time in the worst casewithout learning.In Section 2, we introduce the preliminaries of problem solving and PAC learning. InSection 3, we introduce our formal framework for speedup learning. Drawing on prior resultsin PAC-learning, we prove a general theorem identifying conditions su�cient to allow suchlearning. In Section 4, we apply our framework to learning control rules and describe animplementation and experimental results in the symbolic integration domain. In Section5, we apply our framework to learning macro-operators in the domain of Eight Puzzle. InSection 6, we discuss our work in relation to previous formalizations of speedup learning.In Section 7, we discuss some future extensions to our framework, including learning fromunsolved problems and exercises. Section 8 concludes the paper.2. PreliminariesWithout loss of generality, we assume � = f0; 1g to be the alphabet of the language of statedescriptions, and use �n for the set of binary strings of length n.A problem domain D is a tuple hS;G;Oi, where, S = �n is a set of states, G is procedureto recognize a subset of states in S as the goal states, and O is a set of operators fo1; : : : ; okg,where each oi is a procedure which takes a state in S as input and outputs another statealso in S. The combination of goals and operators is called the speci�cation of D. Ameta-domain M is a set of domains de�ned over the same set of states.We denote the result of applying an operator o to a state s by o(s). A problem is a states 2 S. A problem s is solvable if there is a sequence of operators � = (ox1 , : : :, oxd), and asequence of states (s0, : : :, sd), such that (a) s = s0, (b) for all i from 1 to d, si = oxi(si�1),and (c) sd satis�es the goal G. In this case, � is a solution sequence of s, and d is the lengthof the solution sequence �.The problem size is a syntactic measure of the complexity of a problem such as its lengthwhen encoded in binary. If s is an arbitrary problem in S = �n, then its size jsj is n.Notice that our domain speci�cation is not as explicit as the domain theory used intypical speedup learning programs like PRODIGY (Minton, 1990). The operators need notbe described in the STRIPS formalism, and goals need not be logical formulas. In fact, theyneed not be declaratively represented at all, but may be described by procedures whose runtime is reasonably bounded. Thus, our learning framework requires the learning techniquesto be more independent of the operator representation than the traditional methods. Thisallows choosing the operator representation which is best suited to the domain rather thanbeing constrained by the assumptions of the learning technique.In the speedup learning systems studied by the experimental community, the goals andoperators are usually parameterized. These systems also learn control rules and macro-operators with parameters. Learning parameterized rules and macro-operators makes itpossible to apply them to problems of arbitrary size. Another advantage of parameterization447



Tadepalli & Natarajanis the ability to apply the same rule recursively many times, where each application binds theparameters to di�erent arguments. Unfortunately, however, parameterization also increasesthe computational cost of instantiating the operators (or rules). When the number ofparameters can be arbitrarily high, the instantiation problem is NP-complete in general.One way to theoretically limit this cost is to upper-bound the number of parameters of theoperators, macro-operators, and control-rules to a constant. This ensures that both the timefor instantiation and the number of di�erent instantiations are polynomials in the lengthof the state description. It is possible to extend our results to such parameterized domainswith some suitable restrictions on the number of parameters or their interdependencies(Tambe, Newell, & Rosenbloom, 1990). In fact, our application of the formal frameworkto the symbolic integration domain does involve an implicit parameter that denotes thesubexpression of the current expression to which an operator is applied. However, forsimplicity of exposition, we currently restrict our theoretical framework to nonparameterizedoperators.A problem solver f for a domain D is a deterministic program that takes as input aproblem, s, and outputs its solution sequence if such exists, or the special symbol \?" if itdoes not exist.A hypothesis space F is a set of problem solvers. If F is a space of hypotheses, therestriction of F to problems of size � n is called a subspace of hypotheses and is denoted byFn. Formally, for every f 2 F , there is a corresponding problem solver fn 2 Fn such thatfn(x) = f(x) if jxj � n and unde�ned otherwise. The logarithmic dimension or l-dimensionof a hypothesis space F is de�ned to be log jFnj and is denoted by dim(Fn).3. Learning from solved problemsIn this section, we describe our learning framework. First, the domain speci�cation is givento the learner. The teacher then selects an arbitrary problem distribution and a problemsolver. We assume that there is at least one problem solver in the hypothesis space ofthe learner that is functionally equivalent to the teacher's problem solver, i.e., one whichoutputs the same solution as the teacher's problem solver on each problem. We call such aproblem solver in the learner's hypothesis space, a target problem solver.The learning algorithm has access to an oracle called SOLVED-PROBLEM. At eachcall, SOLVED-PROBLEM randomly chooses a problem in the current domain, solves itusing the teacher's problem solver, and returns the hproblem solutioni pair, which is calledan example. A training sample is a set of such training examples. We assume that if theproblem is not solvable by the teacher's problem solver, it outputs the pair hproblem;?i.Ideally, the goal of speedup learning is to �nd a target problem solver in the learner'shypothesis space. However, this is not always possible because our model of learning relieson randomly chosen training examples. Hence, we allow the learning algorithm to outputan approximately correct problem solver with a high probability after seeing a reasonablenumber of examples. The problem solver needs only to be approximately correct in thesense that it may fail to produce a correct solution for a problem with a small probabilityeven though the teacher succeeds in solving it. We are now ready to formally de�ne ourmodel of learning. 448



A Formal Framework for Speedup LearningDe�nition 1 An algorithm A is a speedup learning algorithm for a meta-domain M in ahypothesis space F , if for any domain D 2 M, any choice of a problem distribution P , andany target problem solver f 2 F ,1. A takes as input the speci�cation of a domain D 2 M, maximum problem size n, anerror parameter �, and a con�dence parameter �;2. A may call SOLVED-PROBLEM, which returns examples hx; f(x)i for D, where xis chosen with probability P (x) from the problem set �n; the number of oracle callsof A must be polynomial in the maximum problem size n, 1� , 1� , and the length ofits input; its running time must be polynomial in all the previous parameters and anupper bound t on the running times of programs in D on inputs of size n;3. for all D 2 M and all probability distributions P over �n, with probability at least(1� �), A outputs a program f 0 that approximates F in the sense that �x2�P (x) � �,where � = fxjf 0(x) 6= f(x) and f(x) 6= ?g; and4. there is a �xed polynomial R such that, for a maximum problem size n, maximumsolution length L, 1� , 1� , and the upper bound t on the programs in D, if A outputs f 0,the run time of f 0 is bounded by R(n; L; t; 1� ; 1� ).There are a few things that should be noted about this framework. Similar to theframework of Tadepalli (1991a), but unlike that of Natarajan and Tadepalli (1988), thelearning algorithm is a function of the hypothesis space. Note that the teacher is free togenerate solutions using any method. In particular, the teacher may be a human or a searchprogram. The only requirement is that a target problem solver that is functionally equivalentto the teacher's problem solver exists in the learner's hypothesis space. This assumption isneeded so that the learner can approximate the target problem solver arbitrarily closely bytaking in more and more training examples. It would be impossible to do this if the targetproblem solver itself does not exist in the learner's hypothesis space.Just as in the PAC-learning literature, learning must be successful independent of thechoice of training distribution P . The problem solver f 0 output by the learner is saidto approximate the target problem solver, if they both produce the same solution withprobability no less than 1 � �, when tested on the problems sampled using P . Since thetraining problems are randomly chosen, they sometimes may not be representative, and thelearner may fail to learn an approximately correct problem solver. Hence, we only requirethat such a problem solver is learned at least with a probability 1� �.Finally, there is the requirement that the learned problem solver must be e�cient. Wecapture this idea by insisting that it should run in time polynomial in various parameters,including the problem size, solution length, inverses of the error and reliability parameters �and �, and the upper bound t on the time needed for executing the domain operators. Thislast parameter t factors out the time for executing individual operators from the problem-solving time, since this time is something the learning algorithm cannot be expected toimprove, because the operators are assumed to be opaque. In other words, we require onlythat the number of operator executions is polynomial in various parameters, even thoughthe time for executing a single operator may be arbitrary but bounded.The speedup achieved by the learner's problem solver is with respect to a default brute-force problem solver, which is the only one available to the learner before the learningbegins, and not with respect to the problem solvers in the learner's hypothesis space. All449



Tadepalli & Natarajanthe problem solvers in the hypothesis space of the learner are supposed to be e�cient, sincewe are only measuring e�ciency by coarse scales such as running in polynomial time. As wesaid earlier, we are not concerned with more re�ned notions of e�ciency, such as improvingthe time complexity of problem solving from O(n3) to O(n2), in this paper.Although we treated a problem solver as simply a deterministic program that mapsproblems to solutions, typically it consists of two components: a declarative representationof some kind of control knowledge (a function) that speci�es which operator or operatorsequence to apply in a given state, and an interpreter that uses the control knowledge tosolve any problem in time polynomial in its size. Since the interpreter is usually �xed, thehypothesis space of problem solvers directly corresponds to a hypothesis space of possiblecontrol knowledge. Assuming that there is an e�cient target problem solver in the hypoth-esis space of problem solvers implies that there is a target function in the correspondinghypothesis space of control knowledge. Speedup learning of a hypothesis space of targetproblem solvers can be achieved by PAC-learning of the corresponding hypothesis spaceof control knowledge. However, we do have an additional problem of converting problem-solution pairs of the target problem solver to examples of the target control knowledge.We take advantage of the domain speci�cation (de�nition of goals and operators) in doingthis conversion. Hence speedup learning in our framework consists of two steps: First, theproblem-solution pairs of the target problem solver should be converted to examples of thetarget control knowledge using the domain speci�cation. Second, the examples of targetcontrol knowledge must be generalized using some function learning scheme, and the resultmust be plugged into the interpreter to create an approximate problem solver.For simplicity of exposition, this framework assumes that the maximum problem size nis given. For a given problem distribution, this can also be easily estimated from examplesby the standard procedure of starting with size 1 and iteratively doubling it and verifyingit with a su�ciently large set of randomly generated problems (Natarajan, 1989).De�nition 2 A problem solver f is consistent with a training sample if for every hproblem,solutioni pair in the training sample f(problem) = solution:Similar to many PAC-learning algorithms, the speedup learning algorithms we considerwork by e�ciently �ltering the hypothesis space for a problem solver which is consistentwith the training sample. Before we prove theorems about particular hypotheses spaces, we�rst state a general theorem which is a direct consequence of the results in PAC-learningof �nite hypothesis spaces (Blumer, Ehrenfeucht, Haussler, & Warmuth, 1989).Theorem 1 Let M be a meta-domain, and F be a hypothesis space of polynomial-timeproblem solvers for domains in M. Let dim(Fn) be polynomially bounded in n. Then analgorithm is a speedup learning algorithm for M in F , if it1. takes the speci�cation of D 2 M, n, �, and � as inputs;2. possibly calls the goals and operators in D;3. collects 1� (dim(Fn) ln 2 + ln 1� ) training examples;4. terminates in time polynomial in n, 1� , 1� , and in the sizes of the domain speci�cationand the training examples; and5. outputs a problem solver in F which is consistent with the training sample.450



A Formal Framework for Speedup LearningIn what follows, we re�ne this theorem to two particular hypothesis spaces: sets ofcontrol rules and macro-operators. We identify su�cient conditions to guarantee speeduplearning in each of these two hypothesis spaces.4. Learning control rulesOne way to build e�cient problem solvers is by learning control rules as in LEX (Mitchell,Utgo�, & Banerji, 1983) or in PRODIGY (Minton, 1990). Control rules reduce search byselecting, rejecting or ordering operators appropriately. In this section we consider learningof control rules that select appropriate operators to apply in a given state.4.1 A theory of control-rule learningA control rule is a pair hU(o); oi, where U(o) describes the set of problem states on whichthis rule selects the operator o. U(o) is called the select-set of o.We assume that the select-sets of operators of domains in M are described in somelanguage C. We consider a hypothesis space F of problem solvers, where every problemsolver consists of a set of select-sets in C, one for each operator in the domain. Let Cn bethe select-sets restricted to problems of size � n.The hypothesis space F uses a �xed total ordering over the operators of the domain.This ordering is used to resolve con
icts between applicable operators when more than oneselect-set contains the given problem. In what follows, without loss of generality, we assumethat the operators are numbered using this ordering. Given a problem and a set of controlrules, a problem solver in F picks the least numbered operator whose select-set containsthe problem, and applies it. This is repeated until the problem is solved or no select-setcontains the current problem, in which case, the problem solver fails (see Figure 1). If themembership in the select-sets can be checked in polynomial time, then this problem solverruns in time polynomial in various parameters.Now, we are ready to state and prove the main theorem of this section. The statementand proof of this theorem can be derived from previous results on learning sets with one-sided error (Natarajan, 1987). We prove it from the �rst principles for completeness.Let L denote a set of sentences, each of which represents a set of problems in thedomain. There is a natural partial ordering over the elements of L de�ned by the \morespeci�c than" relation. A sentence is more speci�c than another if the set represented bythe �rst sentence is a subset of that represented by the second sentence. We de�ne a mostspeci�c generalization (MSG) of a set S of problems in L to be a sentence in L whichrepresents the most speci�c superset of S.Theorem 2 A meta-domain M possesses a speedup learning algorithm in the hypothesisspace F of problem solvers based on select-sets from C, if1. every domain D 2 M has a problem solver in F that solves any solvable problem inpolynomial time;2. for any set of problems in S, there is a unique most speci�c generalization in Cn, andit can be computed in polynomial time;3. membership in the sets in Cn can be checked in time polynomial in n; and4. log jCnj is a polynomial in n. 451



Tadepalli & Natarajanprocedure Control-rule-problem-solverinput x;begin� := \" ;while :Solved(x) dobegin pick the least i s.t. x 2 U(oi);if no such i exists, halt with a failure;x := oi(x);� := Append(�; oi);end;output �;end Control-rule-problem-solverFigure 1: A problem solver that uses control rulesProof: The key idea in the proof is as follows: Given a problem domain D, the learningalgorithm will construct approximations to the select-sets of the operators of D by �ndingthe most speci�c generalizations of the example problems to which they are applied. If theconditions of the theorem are satis�ed, this can be carried out in polynomial time, which isexponentially faster than the default brute-force search. With these select-sets in place, thealgorithm Control-rule-problem-solver of Figure 1 behaves as an approximate problem solverfor the domain D.The rest of the proof deals with the details. Speci�cally, we will exhibit a speeduplearning algorithm forM. Let D be a domain in M.Let C be a language as in the statement of the theorem. By the conditions of thetheorem, C must possess an algorithm that �nds the most speci�c generalization of a set ofexamples in polynomial time. The learning algorithm Control-rule-learner in Figure 2 usesthis algorithm, called Generalize, to construct good approximations for the select-sets in C,and uses them to build a problem solver.In particular, the Control-rule-learner works as follows. It �rst collects the requirednumber of examples, and for each problem, obtains all its intermediate subproblems byapplying its solution sequence to it. For each operator oi in the domain, it collects the setof subproblems for which it is the �rst operator applied in their solutions. It then callsGeneralize on these sets S(oi), which outputs approximate select-sets U(oi).We now show that the procedure Control-rule-learner of Figure 2 is indeed a learningalgorithm forM in F , if every domain inM has a problem solver in F . First, we show thatControl-rule-learner outputs a problem solver which is consistent with the training sample.The proof is by induction on the length of the teacher's solutions of training problems.It is trivially true for any solutions of length 0. Assume that the above statement is truefor any training problems and their intermediate subproblems which are solved in less than452



A Formal Framework for Speedup Learningprocedure Control-rule-learnerinput �; �;D = (G;O); n; LbeginLet O = foiji = 1; : : : ; kg;initialize S(o1); : : : ; S(ok) to fg;/* Section 1: Generate examples for select-sets */repeat 1� (k log jCnj ln 2 + ln 1� ) timesbegincall SOLVED-PROBLEM to obtain (x; �);If � 6= ?then Let � = \ox1 ; ox2 ; : : : ; oxr"S(ox1) := S(ox1) [ fxgS(ox2) := S(ox2) [ fox1(x)g: : :S(oxr) := S(oxr) [ foxr�1(: : :(ox1(x)) : : :)g;end;/* Section 2: Construct approximations of select-sets */for i := 1 through k doU(oi) := Generalize(S(oi));output the problem solver of Figure 1 with the learned U(o)'send Control-rule-learnerFigure 2: An algorithm for control rule learningr operator applications by the teacher. Consider a (sub)problem x which is solved by thesequence � = \ox1 ; ox2; :::; oxr" by the teacher. The learning algorithm includes x in theset S(ox1). When the learning algorithm generalizes this set, the learned select-set of ox1includes x. Since all problem solvers in the hypothesis space including the target problemsolver always use the least numbered operator whose select-set contains the problem, itfollows that the target select-sets of operators o1; : : : ; ox1�1 do not contain x. Moreover,since the learner �nds the most speci�c generalization of the set of examples, the learnedselect-sets of operators o1; : : : ; ox1�1 must be subsets of the corresponding target select-sets, and hence do not contain x. Hence ox1 is the least numbered operator whose select-setcontains x and will be selected by the learned problem solver to solve x. Since ox1(x) issolved with a sequence of length less than r by the teacher, by inductive hypothesis, it willbe solved with the same sequence by the learned problem solver. Hence x will be solvedusing � by the learned problem solver. 453



Tadepalli & Natarajan1. R kf(x)dx = k R f(x)dx2. R f(x)� g(x)dx = R f(x)dx� R g(x)dx3. R f(x) + g(x)dx = R f(x)dx+ R g(x)dx4. R f(x) � g(x)dx = g(x) R f(x)dx� R f(Dg(x)x) R f(x)dxgdx5. R xndx = x(n+1)=(n+ 1)6. R sin xdx = (� cosx)7. R cosxdx = sin x Figure 3: A table of integration operatorsWe now show that the sample size in our algorithm is su�cient for learning an approx-imate problem solver. For problems of size n or less, each set U(o) can be chosen in jCnjways in Section 2 of the algorithm. Since there are k operators, the number of distinctselect-set tuples, and hence the number of distinct problem solvers that can be constructedin Section 2 is jCnjk. Hence dim(Fn) � k log jCnj. Hence by Theorem 1 the sample sizegiven in the algorithm is su�cient for learning.Since log jCnj is polynomial in n, if membership in the sets in Cn, and the most speci�cgeneralizations of the sets of examples can both be computed in polynomial time, thenControl-Rule-Learner runs in polynomial time as well. Hence, by Theorem 1, it is a speeduplearning algorithm forM in F . 2Note that the above theorem can also be stated using the on-line mistake-bound model,in which the learner incrementally updates a hypothesis whenever it cannot solve a newtraining problem in the same way as the teacher does, i.e., whenever the learner makes a\mistake" (Littlestone, 1988). This yields a slightly more general result than Theorem 2,because, under the same conditions of this theorem, the number of mistakes of the learnerin the worst-case is polynomially bounded for any arbitrary choice of training examples,i.e., not necessarily generated using a �xed probability distribution. The mistake-boundalgorithms can be converted to batch PAC-learning algorithms in a straightforward way(Littlestone, 1988).4.2 Application to symbolic integrationWe now consider an application of Theorem 2 to the domain of symbolic integration,as was done in the LEX program (Mitchell et al., 1983). We will show how this can bee�ciently implemented using a straightforward application of Theorem 2 for a subset ofLEX's domain.Consider the class of symbolic integrals that can be solved by the standard integrationoperators. Let M be the set of domains whose operators are described by rules such as inFigure 3, and whose problems can be described by an unambiguous context free grammar� such as shown in Figure 4.Let � be any sentential form, i.e., a string of terminals and variables, of the grammar� of Figure 4 derivable from the start symbol Prob. A sentential form � denotes the set ofproblems derivable from � using the productions of �. Consider a hypothesis space F of454



A Formal Framework for Speedup LearningProb! R Exp d V arjDExpV arExp! TermjTerm+ExpjTerm�ExpTerm! P-term j P-term �Termj P-term =TermP-term ! ConstjV arj(�Term)jTrigjPowerjProbj(Exp)Power ! (V ar " Term)Trig! (sinV ar)j(cosV ar)Const! IntjajkV ar! xInt! 0j1j2j3j4j5j6j7j8j9Figure 4: A grammar to generate the integration problemsproblem solvers whose select-sets are represented by the sentential forms of the grammar �.We plan to show that the Control-rule-learner, with an appropriate Generalize routine thatcomputes the MSG of a set of problems, is a learning algorithm for M in F .We �rst need a few de�nitions. A parse tree is an ordered tree where all nodes arelabeled by the variables or terminals of the grammar, and the root is labeled by the startsymbol. Moreover, if a node V has children V1; : : : ; Vk, then V ! V1; : : : ; Vk must be aproduction of the grammar. The string of symbols obtained by reading the leaves of theparse tree from left to right is called the yield of the tree (Hopcroft & Ullman, 1979). If thegrammar is unambiguous, then for every sentence which can be generated by the grammarthere is a unique parse tree which yields that sentence. This tree is called the parse of thatsentence.A cap of a tree T is any ordered subtree T 0 such that (a) all the nodes and edges of T 0are in T , (b) the root of T is in T 0, and (c) if a node is in T 0, then its parent and its siblingsin T are also in T 0.Intuitively, a cap is obtained by pruning the subtrees rooted under some selected internalnodes in the parse tree and by making those nodes its leaves. Since the grammar is un-ambiguous, all the generalizations (in C) of an example correspond to the yields of variouscaps of the parse of that example. If there are two caps c1 and c2 for a parse tree such thatc2 is also a cap of c1, then c1's yield is more speci�c than c2's, in that the set of sentencesderivable from the yield of the former is a subset of the corresponding set derivable fromthe yield of the latter. We say that c1 is more speci�c than c2 in this case. c1 is strictlymore speci�c than c2 if c1 is more speci�c than c2 and c1 6= c2.Given two or more parse trees for the same grammar, the most speci�c cap (MSC) isde�ned as a subtree which is a cap of all the parse trees such that no other common capfor these trees is strictly more speci�c. Since the caps of the parse tree of an examplecorrespond to all possible generalizations of that example in our hypothesis space C, theyield of the MSC of the parse trees of a set of problems corresponds to the MSG of that setof examples.We now describe the Generalize algorithm which computes the MSG of a set of examplesby computing the MSC of their parse trees. The algorithm is to march down these parse455



Tadepalli & Natarajan�������� Z Z Z Z Z Z Z Z �������� Z Z Z Z Z Z Z Z� � � �R sin x+ x2 dxR sin xdx + R x2dx R cos x+ sin xdx R sin xdxR cosxdx +�(cosx) x2+12+1 sin x �(cos x)Op3 Op3Op6 Op5 Op7 Op6Figure 5: Tree representations of the solutions of the two examplestrees simultaneously from the root, including a node and its siblings in the MSC if and onlyif they are all present in all the parse trees in exactly the same positions (and their parentis already included).Consider, for example, that the program is given the following two examples. Figure 5shows the solutions of the two problems in the form of trees.1. R sin x+ x2dx op3! R sin xdx+ R x2dx op6! (� cosx) + R x2dx op5! (� cos x) + x2+12+12. R cosx+ sin xdx op3! R cosxdx+ R sin xdx op7! sin x+ R sin xdx op6! sin x+ (� cosx)From these two examples, the procedure Control-rule-learner generates the problem setfR sin x+x2dx; R cosx+sin xdxg for operator 3, and the singleton sets fR x2dxg, fR sin x dxg,fR cosxdxg, for operators 5, 6, and 7 respectively. The MSGs of the singleton sets are theexamples themselves. The parse trees of the two problems R sin x+x2dx and R cosx+sin xdxfor operator 3 are shown in Figure 6. The MSC of the two parse trees are marked withtriangles. The yield of the MSC, R Trig+ P-term dx, corresponds to the unique MSG ofthe two examples.Generalize computes the MSG of more than 2 examples incrementally by repeatedly�nding the MSC of the parse trees of the current MSG (or the �rst problem) and the nextproblem. We are now ready to state and prove the following theorem.Theorem 3 Let C be the set of sentential forms derivable from the start symbol of anunambiguous context free grammar �. Let F be the hypothesis space of problem solversde�ned using the select-sets from C. If each domain in the meta-domain M has a problemsolver in F that correctly solves all solvable problems in that domain, then there is a speeduplearning algorithm for M in F .Proof: We show that Control-rule-learner is a learning algorithm for M in F by showingthat the conditions of Theorem 2 hold. We already assumed the �rst condition of Theorem2, namely the existence of complete problem solvers in F .456
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Tadepalli & Natarajan4.3 Experimental ResultsThe Control-rule-learner and the Control-rule-problem-solver are implemented in a programcalled SIMPLEX, and tested in the symbolic integration domain. The expressions tobe solved are generated using the grammar in Figure 4. The domain has 39 operatorsincluding those in Figure 3, and some di�erentiation and simpli�cation operators. Solvinga problem consists of removing the integral sign and simplifying the result as much aspossible. In this experiment, we assumed that the solutions to the problems are providedby an external teacher. To allow controlled experimentation with di�erent training sets, weimplemented the teacher using a set of select control rules. In fact, the teacher's controlrules themselves were learned from 102 human-generated examples using the Generalizeroutine that computes the most speci�c generalization of a set of problems. Each suchexample consisted of a problem and the best �rst operator to apply on that problem. Inthis domain, each operator might be applicable to many parts of an expression. Hencethe teacher-generated solution of a problem actually consists of a list of parameterizedoperators, where the parameter denotes the location (subexpression) at which it is applied.From these pairs, the program learns the select-sets as described in the previous section.The problem solvers in the hypothesis space are assumed to employ post-order traversalof the expression tree to transform subexpressions by applying the operators. Since thelearner's select-sets are obtained by most speci�c generalization of the training examples,and since both the learned problem solver and the target problem solver employ the samealgorithm to traverse the expression tree, by the argument in the proof of Theorem 3, thelearned problem solver is always consistent with the training examples. Hence the theoremis applicable to this parameterized domain as well.We trained the system on integration problems that consisted of sums of products ofpowers of x and some trigonometric functions of x. In particular, each problem was of thefollowing form, where each coe�cient was selected uniformly randomly from all its choicesand independently from all other choices.1R f0� 9gxf3�9g+ fsin x; cosx; 0� 9g �x2+ fsin x; cosx; 0� 9g �x+ fsinx; cosx; 0� 9gdxAfter each training example, the system was tested on a set of 100 test problems. Thetest problems were also selected using the same training distribution mentioned before. Atest problem was counted as correctly solved by the learner if its solution exactly matchesthat of the teacher. This is a more conservative way of measuring accuracy than countingthe problems which are reduced to equivalent expressions without the integral sign. It alsoforces the learner to simplify the results of integration in the same way that the teacherdoes.Figure 7 shows the percentage of the test problems correctly solved from the test setaveraged over 50 training trials plotted against the number of training examples. Theerror bars denote one standard deviation intervals on both sides of the mean. The learningconverges quickly reaching 99% accuracy within 30 training examples. This is because eachtraining example in fact gives raise to many small training experiences, each correspondingto one operator application.1. We picked this narrow subset of the problems instead of the entire domain because (a) many problemsin our domain do not have closed form solutions, and (b) since the teacher is to be �rst trained usinghand-selected examples, it is tedious to do this on a large domain. The learning performance of thesystem is not sensitive to this choice of the problem distribution.458
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Figure 7: Learning curve for SIMPLEX; the error bars are one standard deviation awayon either side of the mean.5. Learning macro-operatorsA macro-operator (or a macro) is any sequence of operators that achieves a subgoal. Macro-operators make the grain size of the search space coarser than the space of primitive oper-ators, thereby increasing the e�ciency of search. In this section, we consider the learningof macro-operators and formalize it using our speedup learning framework.5.1 A theory of macro-operator learningHere we make the assumption that states are representable as vectors of n discrete valuedfeatures, where the maximum number of values a feature can take is bounded by a polyno-mial in n. In Rubik's Cube, the features are cubie (each of the 26 subcubes) names, andtheir values are cubie positions. In Eight Puzzle, the features are tiles, and their values aretile positions. We use the notation hs1; :::; sni to represent a state s, where si is the valueof its ith feature.A domain D is totally decomposable if the e�ect of any operator in D on a feature valueis a function of the value of only that feature and is independent of all other feature values(Korf, 1985). Rubik's Cube is an example of a totally decomposable domain, because thee�ect of any turn on the position of a cubie is completely predictable from the originalposition of that cubie. Total decomposability is not obeyed by domains like Eight Puzzle.In Eight Puzzle, the e�ect of any operator like up, down, etc. on a tile depends not onlyon the position of that tile, but also on the position of the blank. Korf (1985) de�ned amore general notion of decomposability called \serial decomposability" which is applicableto such domains. 459



Tadepalli & NatarajanA domain is serially decomposable for a given total ordering on the set of features if thee�ect of any operator in the domain on a feature value is a function of the values of only thatfeature and all the features that precede it (Korf, 1985). If we treat the blank as a specialfeature in Eight Puzzle, then Eight Puzzle is serially decomposable for any feature orderingthat orders the blank �rst. Note that serial decomposability is a property of the domain aswell as its representation. If Eight Puzzle is represented with positions as features and tilesas their values, then it is not serially decomposable for any ordering of the features.We assume that the goal is satis�ed by a single goal state g described by hg1; : : : ; gni.This assumption allows the learner to recognize when the subgoals are achieved. A domainsatis�es operator closure, if the set of solvable states is closed under operators, i.e., everystate reachable from a solvable state by an operator is solvable.Consider a domain which is serially decomposable for some feature ordering 
. Withoutloss of generality, let 
 be the ordering 1; : : : ; n. A macro table is a table of macros toachieve a single goal state, where the columns represent the features in the above orderingand the rows represent their possible values. A macro Mj;i in the ith column of the jthrow satis�es the macro-table property if whenever it is used in a solvable state s where thefeatures 1; : : : ; i� 1 have their goal values, g1; : : : ; gi�1, and the feature i has the value j,the features 1 through i in the resulting state are guaranteed to have the goal values g1,: : :, gi. A macro Mj;i is nonredundant if it satis�es the macro-table property and no strictpre�x of Mj;i satis�es it.Korf showed that if a domain is serially decomposable and satis�es the operator closure,then it has a macro table (Korf, 1985). To see why, let �'s stand for some arbitrary(don't-care) feature values. For a domain which is serially decomposable with respect to 
,any operator sequence � that takes a state hg1; : : : ; gi�1; j; �; : : : ; �i to hg1; : : : ; gi; �; : : : ; �isatis�es the macro-table property, since the values of features 1 through i in the latter statedepend only on their values in the initial state, and not on the values of other features(represented with �'s). If the domain satis�es operator closure, there is bound to be somesuch operator sequence for any solvable state. Moreover, if � is redundant, Mj;i can bereplaced with its shortest pre�x that satis�es the macro-table property. Hence, any seriallydecomposable domain that satis�es the operator closure has a macro table that containsonly nonredundant macros. We call such a macro table nonredundant.If a full macro table with appropriately ordered features is given, then it can be usedto construct solutions from any initial state without any backtracking search as shown inFigure 8 (Korf, 1985). The features i from 1 to n are successively taken to their goal values,by applying macros Mj;i, where j is the value of feature i in the state before applyingthe macro. While the features 1 through i � 1 may not have their goal values during theapplication of the macro, they all will regain their goal values along with the feature i bythe end of the application of the macro. Thus, any solvable problem is solved in n macroapplications by such problem solver.De�nition 3 A problem solver f for a domain D 2 M
 is based on a macro-table M ifthere is a total ordering 
 over the features such that,1. D is serially decomposable with respect to 
; and2. f constructs its solutions by running Macro-problem-solver on the macro table M withthe feature ordering 
. 460



A Formal Framework for Speedup Learningprocedure Macro-problem-solverinput s /* problem */solution := \";for i := 1 through n dobeginj := si; /* = the value of the ith feature of s */solution := Append(solution;Mj;i)s := Apply(Mj;i; s);end;output (solution);end Macro-problem-solverFigure 8: Korf's Macro Problem SolverKorf's program �lls the macro table by a single backward search from the goal state(Korf, 1985). In our implementation, macro-operators are learned incrementally by IterativeDeepening A* (IDA*) search. Given a random problem, the teacher constructs a solutionas follows. It proceeds through the successive columns of the macro-table, starting with the�rst column. Before starting the search for a macro-operator in column i, the features 1through i � 1 are assumed to have the goal values already. If the value of the ith featureof the problem at hand is j, the teacher program seeks a macro-operator for the jth rowand the ith column of the macro table. If there is already a previously learned macro inthis location, the teacher simply applies it to the problem. Because the domain is seriallydecomposable with respect to the ordering 
, the features 1 through i reach their goalvalues after this application. If there is no such previously learned macro-operatorMj;i, theteacher uses IDA* to search for an operator sequence that brings the features 1 through ito their goal values. It applies this operator sequence to the current problem and proceedsto the next column. After going through all the columns of the macro-table in this manner,all the features would have reached their goal values. The entire operator sequence thattransformed the initial state to the �nal state is returned as the solution.It is important to note that the above implementation of the teacher is only one of manypossibilities. The teacher oracle might use any other form of search or might be replacedby a human problem solver. The main requirement of our theory is only that there existsa target problem solver in the hypothesis space of the learner which is consistent with theteacher's problem solver. This requirement is ful�lled by the above implementation of theteacher because it reuses the macro-operators which are already learned by the learnerwhenever possible. This ensures that there is a single macro-table that can generate allsolutions produced by the teacher. We describe a learning method called Serial Parsing,which works for any implementation of the teacher oracle as long as the above requirementis satis�ed. 461



Tadepalli & NatarajanThe Serial-parser (see Figure 9) uses teacher-given examples to incrementally build themacro table. To simplify the presentation, we assume that the program is given the numberof features n, and the number of distinct feature values v, which together determine theproblem size of our framework. Both of these can be estimated from examples at the costof a little additional complexity of the learning algorithm.procedure Serial-parser;input �; �;D = (G;O); n; v;beginLet O = foiji = 1; : : : ; lg;repeat m(�; �; n; v) timesbegincall SOLVED-PROBLEM to obtain (x0; �);if � = ? then continue with the next iteration ;Let � = \ox1 ; ox2; :::; oxr"/* Apply the operator sequence to the problem */for k := 1 through r doxk := oxk(xk�1);/* Recognize the terminating points for macro-operators */Operator index p := 0;for i := 1 through n dobeginj := xip; /* value of feature i of xp*/Let k � p be the smallest integer s.t. hx1k,: : :,xiki = hg1,: : :,giiif Mj;i is emptythen Mj;i := \oxp+1 ; oxp+2 ; :::; oxk";p := k;endendoutput macro table Mend Serial-parser Figure 9: Serial Parsing Algorithm.The idea behind the Serial-parser is simple. It collects a su�cient number of trainingproblems and their solutions using SOLVED-PROBLEM. To each training problem x0, itapplies its solution sequence obtaining the sequence of intermediate states x1 through xr.Since it is known that the solutions to problems are generated using the macro problemsolver with a known feature ordering, the solution sequence must be a composition of severalmacro-operators. It breaks this solution into its constituent macros Mj;i for each feature iby recognizing the earliest intermediate states in which the �rst i features obtain their goalvalues. The macros are stored in the appropriate cells of the macro-table unless the cellshave already been �lled by previously learned macro-operators.The result of this section can now be stated and proved.462



A Formal Framework for Speedup LearningTheorem 4 Serial-parser with m = 1� (nv ln 2 + ln 1� ) training examples is a learning algo-rithm for M
 in H
, if1. all domains in M
 are serially decomposable with respect to 
;2. H
 is the set of all problem solvers based on nonredundant macro-tables with thefeature ordering 
 for domains in M
; and3. the number of distinct feature values v is bounded by a polynomial function of maxi-mum problem size n.Proof: Without loss of generality, assume that 
 orders the features in the increasingorder.First, from Figure 8, we observe that the Macro-problem-solver runs in time O(ntl)assuming that the time to apply a single operator is bounded by t and the maximum lengthof a macro in the macro table is bounded by l. Hence H
 is a set of polynomial-timeproblem solvers.The Serial-parser stores the shortest operator subsequence that occurs between any statehg1,: : :, gi�1, j; �, : : : ; �i, and hg1,: : :,gi�1,gi; �; : : : ; �i as the macro Mj;i. Since the domainis serially decomposable for the feature ordering 1; : : : ; n, the e�ect of any operator ormacro-operator on features 1 through i is not dependent on the values of features greaterthan i. Hence, it satis�es the macro-table property. In fact, Mj;i must be identical to thecorresponding macro in the target problem solver's macro table. This is so because thetarget problem solver is based on a nonredundant macro table, and any subsequence of thesolution which has Mj;i as a strict pre�x would be redundant. Since all the macros presentin the solutions of the training problems are thus correctly extracted by the Serial-parser,the Macro-problem-solver will be able to reproduce the solutions of all these problems usingthe learned macro table. Hence the problem solver output by the learning algorithm isconsistent with the training sample.Since the macros extracted by the Serial-parser always match the corresponding macrosin the target macro table, the only way in which the learned macro table might fail toproduce a solution given by the teacher is when some necessary macro-operator in thetarget macro table has never been learned. Since there are n rows and v columns, there areat most nv macros, and any subset of these macros could be missing in a learned macrotable. Hence the number of di�erent macro tables or problem solvers that can be learnedfrom a given target macro table is upper-bounded by 2nv. This is the e�ective hypothesisspace of the learner. Hence, by Theorem 1, m = 1� (nv ln 2 + ln 1� ) examples is su�cient toensure learnability.It is easy to see from Figure 9 that the running time of Serial-parser is bounded byO(mrnt), where r is the length of longest solution in the training sample, and the otherparameters are as de�ned above. Since m = O(nv� ln 1� ), the run time of Serial-parser ispolynomial in all the required parameters. Hence it is a speedup learning algorithm forM
 in H
. 2The above theorem shows that the Serial-parser exploits serial decomposability, a problem-space structure which allows it to compress the potentially exponential number of solutionsinto a polynomial size macro table. Serial Parsing requires that the teacher's solutions(provided by the SOLVED-PROBLEM) can be derived using a single problem solver, i.e.,a single macro table. We satis�ed this requirement by letting the teacher search for a463



Tadepalli & Natarajanmacro-operator to solve a subgoal only when such macro-operator has not been previouslylearned. This ensures that there is always a macro table in the learner's search space whichis consistent with all the solutions generated thus far. This approach closely integrates the\learner" and the \teacher" and brings our system closer to the previous implementationsof unsupervised speedup learning such as SOAR (Laird et al., 1986).To see the importance of the above requirement, consider what happens if the teacheruses some form of admissible search algorithm to give an optimal solution to every EightPuzzle problem it is asked to solve. If the problems are chosen uniformly randomly, it ishighly unlikely that all these optimal solutions can be derived from any single macro-table.The di�culty of �nding optimal solutions for the N � N generalization of Eight Puzzleargues even more strongly against that possibility for bigger puzzles (Ratner & Warmuth,1986). This suggests that the teacher is not free to use any problem solving or search methodto solve problems, if the learning has to be successful. However, if the learner is allowedto ask queries, i.e., ask the teacher to solve carefully designed problems, the situation isdi�erent. Then the learner can ask the teacher to solve a problem designed speci�cally sothat its solution would �t a particular cell in the macro-table. In fact, in our experimentdescribed in the next section, the teacher uses search only to solve the subproblems thatcorrespond to individual cells in the macro-table. Instead of interpreting this as the teacherensuring that there is a single macro-table which is consistent with all its solutions, we canthink of the teacher to be just the search program which solves the subproblems. Given aproblem, the learner decomposes it into subproblems and tries to use the already learnedmacro-operators in its macro-table to solve them. Whenever a particular subproblem doesnot have a corresponding macro-operator in its table, it simply calls the \teacher" to solveit by search and stores the solution in its table. This is analogous to asking membershipqueries in one of Angluin's models of PAC learning (Angluin, 1988). With this membershipquery model, it is no longer required that there is a problem solver in the learner's hypothesisspace which is consistent with the teacher's solutions. There is also no guarantee that thelearner and the teacher produce the same solutions on random problems. In fact, this ismost likely not the case, because the learner uses the macro-table to produce its solutionsand the teacher may not. For example, if the teacher always �nds the shortest solution to aproblem by search, then its solutions to randomly chosen problems are likely to be shorterthan those produced by the learner.5.2 Experimental ResultsIn this section, we illustrate an application of the theory to the Eight Puzzle domain.In Eight Puzzle, let r, l, u, and d represent the primitive operators of moving a tile right,left, up, and down respectively. Macros are represented as strings made up of these letters.For example, the string \dr" represents down followed by right. For notational ease, features(tiles) are labeled from 0 to 8, 0 standing for the blank and i for tile i. From the argumentof the previous section, it is serially decomposable for the feature ordering 0 through 8. Amacro Mj;i represents the sequence of moves needed to get the ith tile to the goal positionfrom its current position j, while preserving the positions of all previous tiles including theblank. 464
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Tadepalli & Natarajanmacro-operator \rdlu" is appropriate in that it brings both the tile 1 and the blank to theirgoal positions. It applies this macro-operator, reaching the board position (b). It stores thismacro in its table as M2;1, since the position of tile 1 in board (b) is 2. It proceeds similarlythrough tiles 2 to 8, bringing them into their goal positions and learning new macros whenneeded. Note that since tiles 3 and 4 both have reached their goal positions along with tile2 in board (d), a null macro will be stored in the corresponding cells of the macro-table,M3;3 and M4;4 respectively. Thus, from this example alone, the program can potentiallylearn 7 macros including the null macros.The program was trained with 40 training examples using a �xed macro-table and testedafter each 2 training examples on a sample of 100 random test examples. The training andtest examples were selected using the uniform distribution over all solvable problems. Theresults in Figure 11 are averages over 50 di�erent training sets. The error bars denote onestandard deviation intervals on both sides of the mean. The learning converges quicklyreaching a 98.7% average accuracy within 40 training examples. As can be expected, this ismuch smaller than the worst-case theoretical bound of 585 examples with � = 0:1 and 90%accuracy (� = 0.1). Knowing that there are only 35 nontrivial macros in the Eight-Puzzledomain reduces the theoretical bound to 266, which is still much higher than the examplesneeded in practice.
0

20

40

60

80

100

0 5 10 15 20 25 30 35 40

Ac
cu

ra
cy

Number of Training ExamplesFigure 11: Learning curve for the macro-operator learning program; the error bars are onestandard deviation away on both sides of the mean.The sigmoid shape of the learning curve is worth noting. In the beginning, the learning isslow because solving a new test problem requires correct macro-operators for all the subgoalsin its solution. With only a limited experience, it is likely that one or more of these aremissing, which means that the problem cannot be solved. But with training, the e�ectof multiple learning experiences that correspond to the di�erent subgoals in each trainingexample enhances the learning speed, leading to a steep increase in the performance.466



A Formal Framework for Speedup Learning6. Discussion and Related WorkRecently, there have been a few formal frameworks proposed to capture speedup learning.For example, Cohen (1992) analyzes a \Solution Path Caching" mechanism and shows thatorganizing the solutions of the training problems in a tree and restricting the search of theproblem solver to this tree improves the performance of the problem solver in the sense ofreducing the number of nodes searched with a high probability. However, Cohen's results donot guarantee an eventual convergence to an e�cient problem solver, but only to an optimalproblem solver achievable by restricting the search to the tree of solutions of the trainingproblems. By de�ning learning as producing a polynomial-time problem solver as opposedto simply running faster than the original problem solver, we have more stringent conditionson successful learning in our framework. For example, in domains like the Eight Puzzle,Solution Path Caching will produce an exponentially large tree of solutions, since eachsolution generated by the macro-table is stored as a path in the tree. Learning such largetrees will need exponentially large number of examples and exponentially long running time.In retrospect, this is not surprising because solution path caching is a weak learning methodthat does not assume or exploit any structure in the problem space. Either a domain hassome structure and hence signi�cant speedup is achievable by exploiting it in some learningalgorithm, or it does not have any structure, in which case learning can only have limitedbene�t. We believe that the role of a theory of speedup learning is to distinguish betweenthese two cases, and provide learning algorithms for cases in which signi�cant speedups areachievable. The validity of this general methodology is already borne out by the rich bodyof results in computational learning theory literature in the context of concept learning.Our aim is to transfer this methodology to speedup learning, identify problem domains forwhich e�ective speedup is possible, and build speedup learning algorithms for them.Our work was originally aimed at formalizing a form of Explanation-Based Learning(EBL) (Tadepalli, 1991a). EBL constructs a proof of how a problem is solved in the trainingexample using an explicit form of domain theory, and then generalizes and transformsthat proof to a control rule or a macro-operator, which is justi�ed by the original domaintheory (Mitchell, Keller, & Kedar-Cabelli, 1986; DeJong & Mooney, 1986; Minton, 1990;Shavlik, 1990). Like Solution Path Caching, EBL is a weak learning method, and in general,cannot be expected to improve the performance. Indeed, the results in the speedup learningliterature suggest that EBL could lead to problem solvers which are much more ine�cientthan the original problem solvers (Minton, 1990; Etzioni, 1993). However, depending onthe structure of the problem space used, and the way in which EBL's domain theory iscoded and used, it is possible for EBL to learn successfully in some situations. For example,Etzioni showed that in the PRODIGY system, EBL's success hinges on its ability to �ndconstant-size nonrecursive proofs that show that choosing some operators in certain statesis always bad (or always good) (Etzioni, 1993). Such constant-size proofs result in constant-size control rules, which are inexpensive to match. If there is a �nite set of such controlrules that can reduce the number of states expanded in problem solving from an exponentialfunction of the state size to a polynomial function, the problem solving can be guaranteedto take only polynomial time (Etzioni, 1993, Proposition 2.1., pg. 102). Etzioni's originalsystem STATIC exploited this structural feature of the problem space to learn e�cientproblem solvers without using any examples (Etzioni, 1993). A subsequent system called467



Tadepalli & NatarajanDYNAMIC used examples to identify the problems to be explained (Perez & Etzioni, 1992).The examples play two roles in our theory: �rst, they provide distribution information thatdetermines which macro-operators or control rules are worth learning, and second, theyhelp the learner avoid expensive search for solutions. Perez and Etzioni (1992) separatethese two roles, and use examples only to learn the distribution information.While the conclusions of Etzioni (1993) may be read as too pessimistic for rules derivedfrom recursive explanations, our results with macro-tables show that Explanation-BasedLearning can be used to learn e�cient polynomial-time problem solvers for arbitrary prob-lem distributions, if the domain exhibits some structure such as serial decomposability. Theapplication of our theory to learning macro-operators can be used to explain the successof SOAR in domains like Eight Puzzle (Laird et al., 1986). (The version of EBL usedin SOAR is called Chunking.) Recall that Serial Parsing is given the order in which thesubgoals are achieved. In systems like SOAR that successfully learn macros using EBL,the goal ordering is implicitly given by de�ning the subgoals such that they are successivelyinclusive (Laird et al., 1986). For example, in Eight Puzzle, the goals are \getting the blankin correct position," \getting the blank and tile 1 in correct positions," \getting the blankand tiles 1 and 2 in correct positions," and so on. This representational trick combinedwith the serial decomposability of the domain is mainly responsible for SOAR's success inlearning macro-operators in Eight Puzzle.The di�erences between Serial Parsing and EBL/chunking algorithms are worth consid-ering. Unlike the operators used in EBL, the operators of Serial Parsing are opaque, andare not inspectable by the learning mechanism. To some extent, SOAR's operators arealso opaque to its learning method in that the learning mechanism has only knowledge ofwhich objects are \touched" by the operators, but does not have access to the operatorsthemselves (Laird et al., 1986).3 This suggests that, unlike in EBL (Mitchell et al., 1986),it is not necessary to have access to declaratively represented operators to achieve speedupusing macro-operators. Knowing the feature ordering which makes the domain seriallydecomposable is su�cient to infer the appropriate conditions to apply a macro-operator,which is the main goal of chunking or the EBL process. If such a feature ordering is notknown, neither EBL nor chunking might converge with a small number of macro-operatorswithout some kind of utility analysis (Minton, 1990).Tadepalli (1991b) describes a method called Batch Parsing, which learns the correctfeature ordering along with the macro table. The basic idea here is to learn the macro tablecolumn by column, using multiple examples to disambiguate the feature that correspondsto a given column. While this method works without backtracking for Eight Puzzle, itis possible to construct domains for which it gets misled into wrong feature choice, andneeds to backtrack.4 It is not known whether there is a provably correct speedup learningalgorithm that learns a correct feature ordering and the macro-table, from examples ofsolutions constructed from that macro-table. Bylander (1992) shows that detecting serialdecomposability without examples is NP-hard in general. The existence of macro-tables isonly guaranteed if there is a unique goal state and the operator closure is satis�ed. Checkingthese properties is, in general, PSPACE-hard (Bylander, 1992). However, it may be easier3. SOAR also makes the macro-table method applicable to any goal using another representational trick,i.e., by parameterizing the tiles rather than labeling them with �xed numbers.4. We thank Prasad Chalasani for illustrating this.468



A Formal Framework for Speedup Learningto check these properties under some conditions. For example, Chalasani et al. (1991)describe an algorithm that detects serial and total decomposability for permutation groups(Chalasani, Etzioni, & Mount, 1991). If the operators are de�ned in STRIPS notation,it may sometimes be possible to check su�cient conditions for serial decomposability byconstructing a graph of dependencies among the domain features and checking that it hasno cycles. Similarly a su�cient condition for operator closure is that every operator has aninverse, which may be possible to check if we have access to explicit de�nitions of operators.There is a lot of interesting theoretical work in the area of speeding up logic programs.Greiner and Likuski (1989) introduced a model of speedup learning where redundant macro-rules are added to a base-level domain theory of Horn-rules (Greiner & Likuski, 1989;Greiner, 1991). Subramanian and Hunter (1992) extended this work by developing �ne-grained cost models for theorem proving in recursive Horn-theories and using them toderive \utility theorems" that describe the conditions under which such redundant macro-rule learning is bene�cial. Greiner and Jurisica (1992) describe a method called PALOthat is based on hill climbing over a set of optimization transformations on the problemsolver. Each transformation is only made if it signi�cantly improves the problem solver'sperformance on a randomly chosen set of training problems. The program is guaranteedto converge to an approximate locally optimal problem solver with a high probability. Thework of Gratch and DeJong (1992) in the COMPOSER system follows a similar strategyof applying a series of transformations which are proved useful on a training sample untilthe performance no longer improves.One di�erence between our approach and all these methods is that our cost model ismuch more coarse than the others. In particular, we only require that the output problemsolver must run in polynomial time, while the previous works have more �ne-grained costmodels. An advantage of the �ne-grained models is that they could make more precisepredictions. However, one also needs to know a lot more information such as problemdistributions to make these predictions. In contrast, our goal is to identify structure inthe problem space that guarantees qualitatively signi�cant speedup with a reasonably smallamount of training. In other words, we are seeking robust results which may not be as�ne grained, but exploit interesting problem-space structure, and are amenable to coarsetheoretical analysis.There is a lot of scope for combining these two kinds of models, however. A coarsemodel may be used to make a quick and dirty analysis of the domain and identify possibleoptimizations and resulting speedups, and a detailed model may then be used to �ne-tunethe optimizations. For example, one of the interesting theorems proved by Subramanianand Hunter (1992) is that even adding a single redundant macro-rule which can be proved ordisproved in a constant time can increase the overall cost of theorem proving exponentially!The reason for this is that macro-rules increase the number of di�erent ways a goal maybe proved, and increase the branching factor of search. Even a small increase in branchingfactor from 1 to 2 could exponentially increase the theorem proving cost for some problemdistributions. The authors identify a condition called \separability," which, if preserved bythe macro-rule learner, will have no negative impact and might have exponential bene�t.Simply stated, separability exists when exactly one choice of rule is explored at every nodein every computation, and hence corresponds to backtrack-free search. Not surprisingly, ourproblem solvers which are based on control rules and macro-operators also rely on backtrack-469



Tadepalli & Natarajanfree search for e�ciency. In fact, Subramanian and Hunter (1992) present an example whereadding a single redundant macro-rule creates separability of the sort present in our macro-tables, thereby exponentially speeding up problem solving. It would be interesting to exploreways of transforming domain theories in a way that separability is preserved or created.Our framework captures both empirical and explanation-based speedup learning meth-ods in a uniform manner. Our SIMPLEX system is designed after LEX(1), which isdescribed as an \empirical learning system" (Mitchell et al., 1983), and our macro-tablelearner is similar to SOAR, which is described as an \explanation-based learner" (Lairdet al., 1986). We view the speedup learning problem as one of �nding a close approximationof the target problem solver from examples of that problem solver and the domain speci�-cation by e�ciently searching the hypothesis space of problem solvers. Generally there aretwo kinds of constraints obeyed by the problem solvers in the hypothesis space. One kindare the semantic constraints which are obeyed by all domains in the meta-domain. For ex-ample, serial decomposability is such a constraint. The other kind are syntactic constraintson the structure of the target problem solver. For example, the constraints that the targetproblem solver is organized as a macro-table or as a set of control-rules with left hand sideswhich are sentential forms of a grammar are examples of syntactic constraints. The syn-tactic and semantic constraints on the target problem solver help bias the learner, in thatthey improve its ability to generalize from a small number of training examples. Generallyspeaking, the semantic constraint is stronger in EBL systems and the syntactic constraintis stronger in empirical learning systems. Depending on the structure of these two kinds ofconstraints, the learner may adopt a variety of search strategies to �nd an approximation tothe target problem solver in the hypothesis space. In general, all speedup learning systemsassume that their representational structures | macros, control rules, or whatever else |are adequate to succinctly represent the control knowledge needed to e�ciently solve theproblems in their domain. In addition to syntactic and semantic biases which restrict thehypothesis space of problem solvers, a learning system might also incorporate preferencebiases, for example, prefer shorter rules, or rules derived from shorter explanations. Biasspeci�es the conditions under which learning succeeds and also provides the justi�cation forthe learning algorithm.Speedup learning systems sometimes su�er from what has been called the \utility prob-lem," which is the ine�ciency of the learned problem solver caused by the proliferationof learned control knowledge which is too expensive to use (Minton, 1990). Our approachsuggests that the utility problem can be solved in some cases by constraining the targetproblem solver so that it only learns e�cient forms of control knowledge (properly indexedmacro-operators or control rules) and uses them in a controlled fashion. Since the utilityproblem is unsolvable in general (Minton, 1990), our approach suggests a way to identifythe cases in which it can be solved and precisely characterize them.Khardon (1996) extends our work to the reinforcement learning problem where the goalis to learn an e�cient action strategy, i.e., a mapping from sensory inputs to actions, ina stochastic domain. Unlike the typical reinforcement learning algorithms where actionstrategies are learned indirectly by learning value functions over states or state-action pairs(Kaelbling, Littman, & Moore, 1996), here the approach is to learn them directly by em-pirical generalization of action sequences observed from a knowledgeable teacher. Khardonshows that action strategies represented as systems of parameterized production rules with470



A Formal Framework for Speedup Learningsmall preconditions are e�ciently learnable in this framework using a greedy algorithm sim-ilar to that of Rivest (1987). Also, unlike in reinforcement learning, the goal is to closelyapproximate the teacher's action strategy rather than to learn the optimal strategy. Oneinteresting fact about this approach is that, unlike in the current reinforcement learningmethods (Russell & Parr, 1995; Littman, Cassandra, & Kaelbling, 1995), it has no partic-ular di�culty with problems where the state is only partially observable.7. Future WorkTo apply our work to AI planning domains such as the blocks world, we need to extendour results to richer hypothesis spaces that include �rst order relational predicates. Thereare many challenges in such domains. Concept learning from examples in such structuraldomains is known to be intractable (Haussler, 1989). This means that we have to extendour model to allow other kinds of information. For example, the learner might be allowedto pose its own problems to the teacher, a natural extension to the paradigm of membershipqueries (Angluin, 1988). Reddy et al. (1996) report a speedup learning method that learnsrecursive decomposition rules for planning from examples and membership queries (Reddy,Tadepalli, & Roncagliolo, 1996). A decomposition rule recursively decomposes a goal intoa number of subgoals and primitive actions. As in the SIMPLEX program, the learningalgorithm here needs to �nd a generalization of a set of positive examples. However, withoutthe membership queries, �nding a most speci�c generalization of a set of examples is knownto be NP-hard (Haussler, 1989). The queries make it possible to �nd a generalizationincrementally, by verifying whether each literal in the condition is relevant to the rule.We plan to extend this work to real-time domains where actions are nondeterministic andplanning and execution are interleaved.We showed that our work is applicable to the supervised setting, in which a humanteacher provides solutions to problems (DeJong & Mooney, 1986; Shavlik, 1990), as well asto the unsupervised setting, where the solutions are generated by a search program (Lairdet al., 1986; Minton, 1990; Tadepalli, 1992). Natarajan (1989) takes a middle course betweenthese two extremes. The teacher is assumed to supply to the learner a set of randomly chosen\exercises" { useful subproblems that help solve the problems that naturally occur in thedomain. This is very much similar to the exercises one might �nd at the end of a text bookdealing with, say, symbolic integration or di�erential equations. The learner is required toconverge in polynomial time and with polynomial number of exercises. Natarajan (1989)proves that the conditions su�cient for learning from solved problems as in this paper aresu�cient for learning from exercises as well.One of the challenges of unsupervised speedup learning is the \multiple image problem."In supervised speedup learning, we usually assume that the teacher's solutions are all con-sistent with a single problem solver in the hypothesis space. The reason that this is crucialis that every problem in the domain may have multiple solutions (images). For example,there are usually many routes to go to one's o�ce from home, and there may be many waysof �xing a bicycle. In the absence of a teacher who ensures that all the solutions of theexamples are consistent with a single problem solver, the learner has to decide if there isa target problem solver consistent with a given set of solutions or not. In other words, ithas to select solutions of problems in such a way that at least one target problem solver471



Tadepalli & Natarajanis always retained in its current e�ective hypothesis space. We solved this problem in thecase of Eight Puzzle by exploiting the fact that domains like Eight Puzzle have a specialstructure, namely serial decomposability, which allows them to have macro tables. Thisallowed the learner to �ll any cell of the macro-table with any macro-operator that solvesthe corresponding subgoal, while not losing the property that the remaining macro-tablecan be correctly �lled by other macro-operators. However, this kind of property may nothold in general in a new domain. The computational constraint that the �nal problemsolver output by the learner must be e�cient makes this particularly di�cult.Thus far we have not considered the solution quality in our analysis. In many domainslike the blocks world, scheduling, and N �N generalizations of 8-puzzle, it is not di�cultto �nd some solution to a problem, while �nding optimal solutions is NP-hard (Guptha &Nau, 1992; Garey & Johnson, 1979; Ratner & Warmuth, 1986). Hence, to �nd reasonablygood solutions in reasonable time, the learning system must make some tradeo�s. Whilethis is achievable somewhat easily in the supervised speedup learning framework by havinga helpful teacher who provides solutions that make reasonable tradeo�s, it considerablycomplicates the multiple image problem in unsupervised speedup learning. For example,a learner that always selects optimal solutions to the training problems, and constructsa consistent problem solver from them, may have to sacri�ce e�ciency of the resultingproblem solver. Similarly a learner that always generalizes from easily found solutions mayhave to sacri�ce solution quality. It is a challenging problem to design learning systemsthat make this tradeo� in an optimal fashion.8. ConclusionsWe presented a unifying formal framework to study speedup learning. Our work draws uponthe extensive body of work on Probably Approximately Correct (PAC) learning. Unlike inthe standard uses of PAC-learning to concept learning situations, here the learner has accessto a domain-speci�cation in terms of goals and operators, which is used to constrain thehypothesis space of problem solvers. The examples play two roles in our theory: �rst, theyprovide distribution information that determines which macro-operators or control rules areworth learning, and second, they help the learner avoid expensive search for solutions.Our work closely integrates a number of areas which have been hitherto thought of asdi�erent { explanation-based learning, PAC learning, and empirical learning, in particular.We showed how the same framework can be used to describe learning algorithms thatlearn di�erent forms of control knowledge, such as control rules and macro-operators. Byintroducing a single framework for speedup learning that captures seemingly dissimilarsystems, we hope to have shown the underlying similarity of all these methods. In thefuture, we plan to extend this work to AI planning domains with richer representations andto real-time problem solving. Learning from exercises and learning to improve the qualityof solutions are also worth pursuing.AcknowledgmentsThe �rst author is supported by the National Science Foundation under grant numberIRI-9520243 and the O�ce of Naval Research under grant number N00014-95-1-0557. We472
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