A Game-theoretic Approach to Data Interaction

BEN MCCAMISH, Oregon State University, USA
VAHID GHADAKCHI, Oregon State University, USA
ARASH TERMEHCHY, Oregon State University, USA
BEHROUZ TOURI, University of California San Diego, USA
EDUARDO COTILLA-SANCHEZ, Oregon State University, USA
LIANG HUANG, Oregon State University, USA
SORAVIT CHANGPINYO, University of Southern California, USA

As most users do not precisely know the structure and/or the content of databases, their queries do not exactly reflect their information needs. The database management system (DBMS) may interact with users and use their feedback on the returned results to learn the information needs behind their queries. Current query interfaces assume that users do not learn and modify the way they express their information needs in the form of queries during their interaction with the DBMS. Using a real-world interaction workload, we show that users learn and modify how to express their information needs during their interactions with the DBMS and their learning is accurately modeled by a well-known reinforcement learning mechanism. As current data interaction systems assume that users do not modify their strategies, they cannot discover the information needs behind users’ queries effectively. We model the interaction between the user and the DBMS as a game with identical interest between two rational agents whose goal is to establish a common language for representing information needs in the form of queries. We propose a reinforcement learning method that learns and answers the information needs behind queries and adapts to the changes in users’ strategies and prove that it improves the effectiveness of answering queries stochastically speaking. We propose two efficient implementation of this method over large relational databases. Our extensive empirical studies over real-world query workloads indicate that our algorithms are efficient and effective.

CCS Concepts:
• Human-centered computing → Collaborative interaction; HCI design and evaluation methods
• Theory of computation → Convergence and learning in games; Database theory

Additional Key Words and Phrases: user and database interaction, database querying, collaborative interaction, game theory, reinforcement learning

ACM Reference Format:

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.
0362-5915/2019/1-ART1 $15.00
https://doi.org/10.1145/3351450
1 INTRODUCTION

Most users do not know the structure and content of databases and concepts such as schema or formal query languages sufficiently well to express their information needs precisely in the form of queries [15, 35, 36]. They may convey their intents in easy-to-use but inherently ambiguous forms, such as keyword queries, which are open to numerous interpretations. Thus, it is very challenging for a database management system (DBMS) to understand and satisfy the intents behind these queries. The fundamental challenge in the interaction of these users and DBMS is that the users and DBMS represent intents in different forms.

Many such users may explore a database to find answers for various intents over a rather long period of time. For these users, database querying is an inherently interactive and continuing process. As both the user and DBMS have the same goal of the user receiving her desired information, the user and DBMS would like to gradually improve their understandings of each other and reach a common language of representing intents over the course of various queries and interactions. The user may learn more about the structure and content of the database and how to express intents as she submits queries and observes the returned results. Also, the DBMS may learn more about how the user expresses her intents by leveraging user feedback on the returned results. The user feedback may include clicking on the relevant answers [72], the amount of time the user spends on reading the results [28], user’s eye movements [34], or the signals sent in touch-based devices [43]. Ideally, the user and DBMS should establish as quickly as possible this common representation of intents in which the DBMS accurately understands all or most user’s queries.

Researchers have developed systems that leverage user feedback to help the DBMS understand the intent behind ill-specified and vague queries more precisely [10, 11]. These systems, however, generally assume that a user does not modify her method of expressing intents throughout her interaction with the DBMS. For example, they maintain that the user picks queries to express an intent according to a fixed probability distribution. It is known that the learning methods that are useful in a static setting do not deliver desired outcomes in a setting where all agents may modify their strategies [20, 29]. Hence, one may not be able to use current techniques to help the DBMS understand the users’ information need in a rather long-term interaction.

To the best of our knowledge, the impact of user learning on database interaction has been generally ignored. In this paper, we propose a novel framework that formalizes the interaction between the user and the DBMS as a game with identical interest between two active and potentially rational agents: the user and DBMS. The common goal of the user and DBMS is to reach a mutual understanding on expressing information needs in the form of keyword queries. In each interaction, the user and DBMS receive certain payoff according to how much the returned results are relevant to the intent behind the submitted query. The user receives her payoff by consuming the relevant information and the DBMS becomes aware of its payoff by observing the user’s feedback on the returned results. We believe that such a game-theoretic framework naturally models the long-term interaction between the user and DBMS. We explore the user learning mechanisms and propose algorithms for DBMS to improve its understanding of intents behind the user queries effectively and efficiently over large databases. In particular, we make the following contributions:

- We model the long term interaction between the user and DBMS using keyword queries as a particular type of game called a signaling game [16] in Section 2.
- Using extensive empirical studies over a real-world interaction log, we show that users modify the way they express their information need over their course of interactions in Section 3. We also show that this adaptation is often modeled by a well-known reinforcement learning algorithm [56] in experimental game-theory.

Current systems generally assume that a user does not learn and/or modify her method of expressing intents throughout her interaction with the DBMS. However, it is known that the learning methods that are useful in static settings do not deliver desired outcomes in the dynamic ones [4]. We propose a method of answering user queries in a natural and interactive setting in Section 4 and prove that it improves the effectiveness of answering queries stochastically speaking, and converges almost surely. We show that our results hold for both the cases where the user adapts her strategy using an appropriate learning algorithm and the case where she follows a fixed strategy.

In Section 5, we define and analyze the eventual stable states of the game in the long-term interaction of the user and DBMS. We also show that the game has both stable states in which the user and DBMS establish an accurate common understanding and the ones where they do not achieve an accurate common understanding.

We describe our data interaction system that provides an efficient implementation of our reinforcement learning method on large relational databases in Section 6. In particular, we first propose an algorithm that implements our learning method called Reservoir. Then, using certain mild assumptions and the ideas of sampling over relational operators, we propose another algorithm called Poisson-Olken that implements our reinforcement learning scheme and considerably improves the efficiency of Reservoir.

We report the results of our extensive empirical studies on measuring the effectiveness of our reinforcement learning method and the efficiency of our algorithms using real-world and large interaction workloads, queries, and databases in Section 7. Our results indicate that our proposed reinforcement learning method is more effective than the start-of-the-art algorithm for long-term interactions. They also show that Poisson-Olken can process queries over large databases faster than the Reservoir algorithm.

2 A GAME-THEORETIC FRAMEWORK

Users and DBMSs typically achieve a common understanding gradually and using a querying/feedback paradigm. After submitting each query, the user may revise her strategy of expressing intents based on the returned result. If the returned answers satisfy her intent to a large extent, she may keep using the same query to articulate her intent. Otherwise, she may revise her strategy and choose another query to express her intent in the hope that the new query will provide her with more relevant answers. We will describe this behavior of users in Section 3 in more details. The user may also inform the database system about the degree by which the returned answers satisfy the intent behind the query using explicit or implicit feedback, e.g., click-through information [28]. The DBMS may update its interpretation of the query according to the user’s feedback.

Intuitively, one may model this interaction as a game between two agents with identical interests in which the agents communicate via sharing queries, results, and feedback on the results. In each interaction, both agents will receive some reward according to the degree by which the returned result for a query matches its intent. The user receives her rewards in the form of answers relevant to her intent and the DBMS receives its reward through getting positive feedback on the returned results. The final goal of both agents is to maximize the amount of reward they receive during the course of their interaction. Next, we describe the components and structure of this interaction game for relational databases. Figure 1 depicts a high level diagram of how an interaction loop takes place.

Basic Definitions: We fix two disjoint arbitrarily large but finite sets of attributes and relation symbols. Every relation symbol R is associated with a set of attribute symbols denoted as $\text{sort}(R)$. Let dom be an arbitrarily large but finite set of constants, e.g., strings. An instance I_R of relation
symbol R with $n = |\text{sort}(R)|$ is a (finite) subset of dom^n. A schema S is a set of relation symbols. A database (instance) of S is a mapping over S that associates with each relation symbol R in S an instance of I_R. In this paper, we assume that dom is a set of strings.

2.1 Intent

An intent represents an information need sought after by the user. Current keyword query interfaces over relational databases generally assume that each intent is a query in a sufficiently expressive query language in the domain of interest, e.g., Select-Project-Join subset of SQL [15, 36]. Our framework and results are orthogonal to the language that precisely describes the users’ intents. Table 1 illustrates a database with schema $\text{Univ}(\text{Name}, \text{Abbreviation}, \text{State}, \text{Type}, \text{Ranking})$ that contains information about university rankings. A user may want to find the ranking of university MSU in Michigan, which is precisely represented by the intent e_2 in Table 2(a), which using the Datalog syntax [1] is: $\text{ans}(z) \leftarrow \text{Univ}(x, \text{‘MSU’}, \text{‘MI’}, y, z)$.

2.2 Query

Users’ articulations of their intents are queries. Many users do not know the formal query language, e.g., SQL, that precisely describes their intents. Thus, they may prefer to articulate their intents in languages that are easy-to-use, relatively less complex, and ambiguous such as keyword query language [15, 36]. In the proposed game-theoretic frameworks for database interaction, we assume that the user expresses her intents as keyword queries. More formally, we fix an arbitrarily large but finite set of terms, i.e., keywords, T. A keyword query (query for short) is a nonempty (finite) set of terms in T. Consider the database instance in Table 1. Table 2 depicts a set of intents and queries over this database. Suppose the user wants to find the ranking of Michigan State University in Michigan, i.e. the intent e_2. Because the user does not know any formal database query language and may not be sufficiently familiar with the content of the data, she may express intent e_2 using $q_2 : \text{‘MSU’}$.

Some users may know a formal database query language that is sufficiently expressive to represent their intents. Nevertheless, because they may not know precisely the content and schema of the
database, their submitted queries may not always be the same as their intents [11, 38]. For example, a user may know how to write a SQL query. But, since she may not know the state abbreviation MI, she may articulate intent \(e_2 \) as \(\text{ans}(t) \leftarrow \text{Univ}(x, 'MSU', y, z, t) \), which is different from \(e_2 \). We plan to extend our framework for these scenarios in future work. But, in this paper, we assume that users articulate their intents as keyword queries.

2.3 User Strategy

The user strategy indicates the likelihood by which the user submits query \(q \) given that her intent is \(e \). In practice, a user has finitely many intents and submits finitely many queries in a finite period of time. Hence, we assume that the sets of the user’s intents and queries are finite. However, we do not know how this is exactly modeled and stored in the user’s mind. This is outside the scope of this paper. One can view this as instead a stochastic mapping between intents and queries. We index each user’s intent and query by \(1 \leq i \leq m \) and \(1 \leq j \leq n \), respectively. A user strategy, denoted as \(U \), is a \(m \times n \) row-stochastic matrix from her intents to her queries. We discuss the details of this stochastic mapping in Section 4. The matrix on the top of Table 3(a) depicts a user strategy using intents and queries in Table 2. According to this strategy, the user submits query \(q_2 \) to express intents \(e_1, e_2, \) and \(e_3 \).

Table 1. A database instance of relation Univ

<table>
<thead>
<tr>
<th>Name</th>
<th>Abbreviation</th>
<th>State</th>
<th>Type</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Missouri State University</td>
<td>MSU</td>
<td>MO</td>
<td>public</td>
<td>20</td>
</tr>
<tr>
<td>Mississippi State University</td>
<td>MSU</td>
<td>MS</td>
<td>public</td>
<td>22</td>
</tr>
<tr>
<td>Murray State University</td>
<td>MSU</td>
<td>KY</td>
<td>public</td>
<td>14</td>
</tr>
<tr>
<td>Michigan State University</td>
<td>MSU</td>
<td>MI</td>
<td>public</td>
<td>18</td>
</tr>
</tbody>
</table>

Table 2. Intents and Queries

2(a) Intents

<table>
<thead>
<tr>
<th>Intent#</th>
<th>Intent</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e_1)</td>
<td>(\text{ans}(z) \leftarrow \text{Univ}(x, 'MSU', 'MS', y, z))</td>
</tr>
<tr>
<td>(e_2)</td>
<td>(\text{ans}(z) \leftarrow \text{Univ}(x, 'MSU', 'MI', y, z))</td>
</tr>
<tr>
<td>(e_3)</td>
<td>(\text{ans}(z) \leftarrow \text{Univ}(x, 'MSU', 'MO', y, z))</td>
</tr>
</tbody>
</table>

2(b) Queries

<table>
<thead>
<tr>
<th>Query#</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_1)</td>
<td>'MSU MI'</td>
</tr>
<tr>
<td>(q_2)</td>
<td>'MSU'</td>
</tr>
</tbody>
</table>

2.4 DBMS Strategy

The DBMS interprets queries to find the intents behind them. It usually interprets queries by mapping them to a set of SQL with a limit on the number of joins [15, 32, 45]. Since the final goal of users is to see the result of applying the interpretation(s) on the underlying database, the DBMS runs its interpretation(s) over the database and returns its results. Moreover, since the user may not know SQL, suggesting possible SQL queries may not be useful. A DBMS may not exactly know the language that can express all users’ intents. Current usable query interfaces,
including keyword query systems, select a query language for the interpreted intents that is sufficiently complex to express many users’ intents and is simple enough so that the interpretation and running its outcome(s) are done efficiently [15]. As an example consider current keyword query interfaces over relational databases [15]. Given constant v in database I and keyword w in keyword query q, let $\text{match}(v, w)$ be a function that is true if w appears in v and false otherwise. A majority of keyword query interfaces interpret keyword queries as Select-Project-Join queries. Thus, its learning remains largely biased toward the initial set of highly ranked interpretations. For example, it may never learn that the intent behind a query is satisfied by an interpretation with a relatively low score according to the current scoring function.

To better leverage users feedback during the interaction, the DBMS must show the results of and get feedback on a sufficiently diverse set of interpretations [3, 31, 65]. Of course, the DBMS should ensure that this set of interpretations are relatively relevant to the query, otherwise the user may become discouraged and give up querying. This dilemma is called the exploitation versus exploration trade-off. A DBMS that only exploits returns top-ranked interpretations according to its scoring function. Hence, the DBMS may adopt a stochastic strategy to both exploit and explore: it randomly selects and shows the results of interpretations such that the ones with higher scores are chosen with larger probabilities [3, 31, 65]. The main dilemma here is to balance exploiting the information known so far to deliver accurate results in the short run and exploring new actions that have not been tried before to gain more knowledge and eventually learn a more accurate model in the long run. If an online learning method focuses on the former, it might not improve its model significantly over time. In this approach, users are mostly shown results of interpretations that are relevant to their intents according to the current knowledge of the DBMS and provide feedback on a relatively diverse set of interpretations. More formally, given Q is a set of all keyword queries, the DBMS strategy D is a stochastic mapping from Q to L. To the best of our knowledge, to search L efficiently, current keyword query interfaces limit their search per query to a finite subset of L [15, 32, 45].

Table 3. Two strategy profiles over the intents and queries in Table 2. User and DBMS strategies at the top and bottom, respectively.

<table>
<thead>
<tr>
<th>q_1</th>
<th>q_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>1</td>
</tr>
<tr>
<td>e_2</td>
<td>0</td>
</tr>
<tr>
<td>e_3</td>
<td>0</td>
</tr>
</tbody>
</table>

3(a) A strategy profile

<table>
<thead>
<tr>
<th>q_1</th>
<th>q_2</th>
<th>e_1</th>
<th>e_2</th>
<th>e_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>q_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

3(b) Another strategy profile

<table>
<thead>
<tr>
<th>q_1</th>
<th>q_2</th>
<th>e_1</th>
<th>e_2</th>
<th>e_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>q_2</td>
<td>0.5</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
</tr>
</tbody>
</table>

of \(L \). The matrix on the bottom of Table 3(a) depicts a DBMS strategy for the intents and queries in Table 2. Based on this strategy, the DBMS uses a exploitative strategy and always interprets query \(q_2 \) as \(e_2 \). The matrix on the bottom of Table 3(b) depicts another DBMS strategy for the same set of intents and queries. In this example, DBMS uses a randomized strategy and does both exploitation and exploration. For instance, it explores \(e_1 \) and \(e_2 \) to answer \(q_2 \) with equal probabilities, but it always returns \(e_2 \) in the response to \(q_1 \).

2.5 Interaction & Adaptation

The data interaction game is a repeated game with identical interest between two players, the user and the DBMS. At each round of the game, i.e., a single interaction, the user selects an intent according to the prior probability distribution \(\pi \). She then picks the query \(q \) according to her strategy and submits it to the DBMS. The DBMS observes \(q \) and interprets \(q \) based on its strategy, and returns the results of the interpretation(s) on the underlying database to the user. The user provides some feedback on the returned tuples and informs the DBMS how relevant the tuples are to her intent. In this paper, we assume that the user informs the DBMS if some tuples satisfy the intent via some signal, e.g., selecting the tuple, in some interactions. The feedback signals may be noisy, e.g., a user may click on a tuple by mistake. Researchers have proposed models to accurately detect the informative signals [31]. Dealing with the issue of noisy signals is out of the scope of this paper.

The goal of both the user and the DBMS is to have as many satisfying tuples as possible in the returned tuples. Hence, both the user and the DBMS receive some payoff, i.e., reward, according to the degree by which the returned tuples match the intent. This payoff is measured based on the user feedback and using standard effectiveness metrics [47]. One example of such metrics is precision at \(k \), \(p@k \), which is the fraction of relevant tuples in the top-\(k \) returned tuples. At the end of each round, both the user and the DBMS receive a payoff equal to the value of the selected effectiveness metric for the returned result. We denote the payoff received by the players at each round of the game, i.e., a single interaction, for returning interpretation \(e_\ell \) for intent \(e_i \) as \(r(e_i, e_\ell) \). This payoff is computed using the user’s feedback on the result of interpretation \(e_\ell \) over the underlying database.

Next, we compute the expected payoff of the players. Since DBMS strategy \(D \) maps each query to a finite set of interpretations, and the set of submitted queries by a user, or a population of users, is finite, the set of interpretations for all queries submitted by a user, denoted as \(L^s \), is finite. Hence, we show the DBMS strategy for a user as an \(n \times o \) row-stochastic matrix from the set of the user’s queries to the set of interpretations \(L^s \). We index each interpretation in \(L^s \) by \(1 \leq \ell \leq o \). Each pair of the user and the DBMS strategy, \((U, D)\), is a strategy profile. The expected payoff for both players with strategy profile \((U, D)\) is as follows.

\[
u_r(U, D) = \sum_{i=1}^{m} \pi_i \sum_{j=1}^{n} U_{ij} \sum_{\ell=1}^{o} D_{j\ell} r(e_i, e_\ell), \tag{1}\]

The expected payoff reflects the degree by which the user and DBMS have reached a common language for communication. This value is high for the case in which the user knows which queries to pick to articulate her intents and the DBMS returns the results that satisfy the intents behind the user’s queries. Hence, this function reflects the success of the communication and interaction. For example, given that all intents have equal prior probabilities, intuitively, the strategy profile in Table 3(b) shows a larger degree of mutual understanding between the players than the one in Table 3(a). This is reflected in their values of expected payoff as the expected payoffs of the former and latter are \(\frac{2}{3} \) and \(\frac{1}{3} \), respectively. We note that the DBMS may not know the set of users’ queries beforehand and does not compute the expected payoff directly. Instead, it uses query answering...
Table 4. Summary of the notations used in the model.

<table>
<thead>
<tr>
<th>Notation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_i</td>
<td>A user’s intent</td>
</tr>
<tr>
<td>q_j</td>
<td>A query submitted by the user</td>
</tr>
<tr>
<td>π_i</td>
<td>The prior probability that the user queries for e_i</td>
</tr>
<tr>
<td>$r(e_i, e_\ell)$</td>
<td>The reward when the user looks for e_i and the DBMS returns e_ℓ</td>
</tr>
<tr>
<td>U</td>
<td>The user strategy</td>
</tr>
<tr>
<td>U_{ij}</td>
<td>The probability that user submits q_j for intent e_i</td>
</tr>
<tr>
<td>D</td>
<td>The DBMS strategy</td>
</tr>
<tr>
<td>$D_{j\ell}$</td>
<td>The probability that DBMS intent e_ℓ for query q_j</td>
</tr>
<tr>
<td>(U, D)</td>
<td>A strategy profile</td>
</tr>
<tr>
<td>$u_r(U, D)$</td>
<td>The expected payoff of the strategy profile (U, D) computed using reward metric r based to Equation 1</td>
</tr>
</tbody>
</table>

None of the players know the other player’s strategy during the interaction. Given the information available to each player, it may modify its strategy at the end of each round (interaction). For example, the DBMS may reduce the probability of returning certain interpretations that has not received any positive feedback from the user in the previous rounds of the game. Let the user and DBMS strategy at round $t \in \mathbb{N}$ of the game be $U(t)$ and $D(t)$, respectively. In round $t \in \mathbb{N}$ of the game, the user and DBMS have access to the information about their past interactions. The user has access to her sequence of intents, queries, and results, the DBMS knows the sequence of queries and results, and both players have access to the sequence of payoffs (not expected payoffs) up to round $t - 1$. It depends on the degree of rationality and abilities of the user and the DBMS how to leverage these pieces of information to improve the expected payoff of the game. For example, it may not be reasonable to assume that the user adopts a mechanism that requires instant access to the detailed information about her past interactions as it is not clear whether users can memorize this information for a long-term interaction.

Definition 2.1. Let $(e^u(t - 1)), (q(t - 1)), (e^d(t - 1)), (r(t - 1)))$ be the sequences of intents, queries, interpretations, and payoffs up time t, respectively. The data interaction game is the tuple

$$(U(t), D(t), \pi, (e^u(t - 1)), (q(t - 1)), (e^d(t - 1)), (r(t - 1)))$$

(2)

Table 4 contains the notation and concept definitions introduced in this section for future reference.

3 USER LEARNING MECHANISM

Several models have been proposed to model agent and human learning in strategic games [30, 70, 71]. These models differ mainly on the assumptions they make on the level of rationality of the agent. For example, in belief learning, the agent first predicts the next action of the other agents using a predictive model over their previous actions. It then acts based on the predicted set of actions. As another example, roughly speaking, in no-regret learning the agent uses the full history algorithms that leverage user feedback, such that the expected payoff improves over the course of several interactions as we will show in Section 4.
of the game to compute the action that if it had been performed in the past, it would have delivered
the best payoff. The agent will then choose this action in the next round of the game.

Among these methods, reinforcement learning assumes a more reasonable degree of rationality
from normal users as generally speaking the agent chooses its action based on its accumulated
success in the game [70, 71]. Also, it is well established that humans show reinforcement behavior
in learning [51, 59]. Many lab studies with human subjects conclude that one can model human
learning using reinforcement learning models [51, 59]. The exact reinforcement learning method
used by a person, however, may vary based on her capabilities and the task at hand. More specifically,
these methods differ mainly based on how the actual reward is used to compute the accumulated
past success, the expectation of the agent from the payoff of a successful action, the portion of
the history in the game the agent uses to compute the accumulated reward, and whether the
agent shows some forgetting behavior [70]. An empirical evaluation of all proposed methods to
find which ones model user learning in formulating queries takes more space than a single paper.
Thus, we have selected six well-known reinforcement learning algorithms that have been used
to model human learning in games and each represents a design decision in the aforementioned
aspects [9, 56]. We have performed an empirical study of a real-world interaction log to find the
reinforcement learning method(s) that best explain the mechanism by which users adapt their
strategies during interaction with a DBMS.

3.1 Reinforcement Learning Methods

To provide a comprehensive comparison, we evaluate six reinforcement learning methods used
to model human learning in experimental game theory and/or Human Computer Interaction
(HCI) [9, 56]. Win-Keep/Lose-Randomize keeps a query with non-zero reward in past interactions
for an intent. If such a query does not exist, it picks a query randomly. Latest-Reward reinforces the
probability of using a query to express an intent based on the most recent reward of the query to
convey the intent. Bush and Mosteller’s and Cross’s models increases (decreases) the probability of
using a query based its past successes (failures) of expressing an intent. A query is successful if it
delivers a reward more than a given threshold, e.g., zero. Roth and Erev’s model uses the aggregated
reward from past interactions to compute the probability by which a query is used. Roth and Erev’s
modified model is similar to Roth and Erev’s model, with an additional parameter that determines to
what extent the user forgets the reward received for a query in past interactions. For the following
definitions, reward is measured based on the user feedback and using standard effectiveness metrics
[47]. The details of algorithms are as follows.

3.1.1 Win-Keep/Lose-Randomize. This method uses only the most recent interaction for an intent
to determine the queries used to express the intent in the future [6]. Thus, it uses a very small
portion of the interaction history to choose the next action. Assume that the user conveys an
intent \(e \) by a query \(q \). If the reward of using \(q \) is above a specified threshold \(r \), the user will use \(q \) to
express \(e \) in the future. Otherwise, the user randomly picks another query uniformly at random to
express \(e \). The threshold \(r \) is the least amount of the received reward for an action which the agent
expects to have in order to consider the action successful.

3.1.2 Bush and Mosteller’s Model: Bush and Mosteller’s model assumes that if the agent considers
an action successful, the agent will reinforce that action by a fixed value. This reinforcement value
is independent of the amount of received reward for the action [8]. If a user receives reward \(r \) for
using \(q(t) \) at time \(t \) to express intent \(e_t \), the model updates the probabilities of using queries in the
user strategy as follows.
\[
U_{ij}(t+1) = \begin{cases}
U_{ij}(t) + \alpha^{BM} \cdot (1 - U_{ij}(t)) & q_j = q(t) \land r \geq 0 \\
U_{ij}(t) - \beta^{BM} \cdot U_{ij}(t) & q_j = q(t) \land r < 0
\end{cases}
\]
(3)

\[
U_{ij}(t+1) = \begin{cases}
U_{ij}(t) - \alpha^{BM} \cdot U_{ij}(t) & q_j \neq q(t) \land r \geq 0 \\
U_{ij}(t) + \beta^{BM} \cdot (1 - U_{ij}(t)) & q_j \neq q(t) \land r < 0
\end{cases}
\]
(4)

\[\alpha^{BM} \in [0, 1] \quad \text{and} \quad \beta^{BM} \in [0, 1]\]

\[\alpha^{BM}\] and \[\beta^{BM}\] are parameters of the model. Since effectiveness metrics in interaction are always greater than zero, \[\beta^{BM}\] is never used in our experiments. Using only the formulas containing \[\alpha^{BM}\], the probability of using a strategy increases when the correct result is returned to the user. However, when an incorrect result is returned, the probability of employing that strategy is explicitly decreased. This increase and decrease of probability is directly proportional to the strategies’ current probability and the parameter \[\alpha^{BM}\].

3.1.3 Cross’s Model

Cross’s model modifies the user’s strategy similar to Bush and Mosteller’s model [18], but uses the amount of the received reward to update the user strategy. The computed probability of using a query for an intent is a linear function of its past reward for the intent. Given a user receives reward \(r\) for using \(q(t)\) at time \(t\) to express intent \(e_i\), we have:

\[
U_{ij}(t+1) = \begin{cases}
U_{ij}(t) + R(r) \cdot (1 - U_{ij}(t)) & q_j = q(t) \\
U_{ij}(t) - R(r) \cdot U_{ij}(t) & q_j \neq q(t)
\end{cases}
\]
(5)

\[R(r) = \alpha^C \cdot r + \beta^C\]
(6)

Parameters \(\alpha^C \in [0, 1] \) and \(\beta^C \in [0, 1] \) are used to compute the adjusted reward \(R(r)\) based on the value of actual reward \(r\).

3.1.4 Roth and Erev’s Model

Roth and Erev’s model computes the probabilities of using a query to express an intent based on the total accumulated reward of the query to express that intent over all previous interactions [56]. Hence, it uses the full history of the game and the value of reward to pick the future actions. It reinforces the probabilities directly from the reward value \(r\) that is received when the user uses query \(q(t)\). \(S_{ij}(t)\) in matrix \(S(t)\) maintains the accumulated reward of using query \(q_j\) to express intent \(e_i\) over the course of interaction up to round (time) \(t\).

\[
S_{ij}(t+1) = \begin{cases}
S_{ij}(t) + r & q_j = q(t) \\
S_{ij}(t) & q_j \neq q(t)
\end{cases}
\]
(7)

\[
U_{ij}(t+1) = \frac{S_{ij}(t+1)}{\sum_{j'} S_{ij'}(t+1)}
\]
(8)

Each query not used in a successful interaction will be implicitly penalized as when the probability of a query increases, all others will decrease to keep \(U\) row-stochastic.

3.1.5 Roth and Erev’s Modified Model

Roth and Erev’s modified model is similar to the original Roth and Erev’s model, but it has an additional parameter that determines to what extent the user takes in to account the outcomes of her past interactions with the system [25]. It is reasonable to assume that the user may forget the results of her much earlier interactions with the system. This is accounted for by the \(\text{forget}\) parameter \(\sigma \in [0, 1]\). Matrix \(S(t)\) has the same role it has for the Roth and Erev’s model.

\[
S_{ij}(t+1) = (1 - \sigma) \cdot S_{ij}(t) + E(j, R(r))
\]
(9)
A Game-theoretic Approach to Data Interaction 1:11

\[
E(j, R(r)) = \begin{cases}
R(r) \cdot (1 - \epsilon) & q_j = q(t) \\
R(r) \cdot (\epsilon) & q_j \neq q(t)
\end{cases}
\] (10)

\[
R(r) = r - r_{min}
\] (11)

\[
U_{ij}(t + 1) = \frac{S_{ij}(t + 1)}{\sum_j S_{ij}(t + 1)}
\] (12)

In the aforementioned formulas, \(\epsilon \in [0, 1]\) is a parameter that weights the reward that the user receives, \(n\) is the maximum number of possible queries for a given intent \(e_i\), and \(r_{min}\) is the minimum expected reward that the user wants to receive. The intuition behind this parameter is that the user often assumes some minimum amount of reward is guaranteed when she queries the database. The model uses this minimum amount to discount the received reward. We set \(r_{min}\) to 0 in our analysis, representing that there is no expected reward in an interaction.

3.1.6 Latest-Reward: The Latest-Reward method extends win-keep/lose-randomize by using the rewards of the performed actions in computing the probabilities of using them in future. That is, it reinforces a query for an intent based on the latest reward the user has observed from using the query when querying for the intent. All other queries have an equal probability to be chosen for a given intent. Let a user receive reward \(r \in [0, 1]\) by entering query \(q_j\) to express intent \(e_i\). The Latest-Reward method sets the probability of using \(q_j\) to convey \(e_i\) in the user strategy, \(U_{ij}\), to \(r\) and distribute the remaining probability mass \(1 - r\) evenly between other entries related to intent \(e_i\), in \(U_{ik}\), where \(k \neq j\).

3.2 Empirical Analysis

3.2.1 Interaction Logs. We use an anonymized Yahoo! interaction log for our empirical study, which consists of queries submitted to a Yahoo! search engine in July 2010 [67]. Each record in the log consists of a time stamp, user cookie id, submitted query, the top 10 results displayed to the user, and the positions of the user clicks on the returned answers. Generally speaking, typical users of Yahoo! are normal users who may not know advanced concepts, such as formal query language and schema, and use keyword queries to find their desired information. Yahoo! may generally use a combination of structured and unstructured datasets to satisfy users’ intents. Nevertheless, as normal users are not aware of the existence of schema and mainly rely on the content of the returned answers to (re)formulate their queries, we expect that the users’ learning mechanisms over this dataset closely resemble their learning mechanisms over structured data. We have used three different contiguous subsamples of this log whose information is shown in Table 5. The duration of each subsample is the time between the time-stamp of the first and last interaction records. Because we would like to specifically look at the users that exhibit some learning throughout their interaction, we have collected only the interactions in which a user submits at least two different queries to express the same intent. The records of the 8H-interaction sample appear at the beginning of the the 43H-interaction sample, which themselves appear at the beginning of the 101H-interaction sample.

3.2.2 Intent & Reward. Accompanying the interaction log is a set of relevance judgment scores for each query and result pair. Each relevance judgment score is a value between 0 and 4 and shows the degree of relevance of the result to the query, with 0 meaning not relevant at all and 4 meaning the most relevant result. We define the intent behind each query as the set of results with non-zero

relevance scores. We use the standard ranking quality metric NDCG for the returned results of a query as the reward in each interaction as it models different levels of relevance [47]. The value of NDCG is between 0 and 1 and it is 1 for the most effective list.

Table 5. Subsamples of Yahoo! interaction log

<table>
<thead>
<tr>
<th>Duration</th>
<th>#Interactions</th>
<th>#Users</th>
<th>#Queries</th>
<th>#Intents</th>
</tr>
</thead>
<tbody>
<tr>
<td>~8H</td>
<td>622</td>
<td>272</td>
<td>111</td>
<td>62</td>
</tr>
<tr>
<td>~43H</td>
<td>12323</td>
<td>4056</td>
<td>341</td>
<td>151</td>
</tr>
<tr>
<td>~101H</td>
<td>195468</td>
<td>79516</td>
<td>13976</td>
<td>4829</td>
</tr>
</tbody>
</table>

3.2.3 Parameter Estimation. Some models, e.g., Cross’s model, have some parameters that need to be trained. We have used a set of 5,000 records that appear in the interaction log immediately before the first subsample of Table 5 and found the optimal values for those parameters using grid search and the sum of squared errors.

3.2.4 Training & Testing. We train and test a single user strategy over each subsample and model, which represents the strategy of the user population in each subsample. The user strategy in each model is initialized with a uniform distribution, so that all queries are equally likely to be used for an intent. After estimating parameters, we train the user strategy using each model over 90% of the total number of records in each selected subsample in the order by which the records appear in the interaction log. We use the value of NDCG as reward for the models that use rewards to update the user strategy after each interaction. We then test the accuracy of the prediction of using a query to express an intent for each model over the remaining 10% of each subsample using the user strategy computed at the end of the training phase. Each intent is conveyed using only a single query in the testing portions of our subsamples. Hence, no learning is done in the testing phase and we do not update the user strategies. We report the mean squared errors over all intents in the testing phase for each subsample and model in Table 6. A lower mean squared error implies that the model more accurately represents the users’ learning method. We have excluded the Latest Reward results from the figure as they are an order of magnitude worse than the others.

Table 6. Accuracies of learning over the subsamples of Table 5

<table>
<thead>
<tr>
<th>Methods</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>101H</td>
</tr>
<tr>
<td>Bush and Mosteller’s</td>
<td>0.0672</td>
</tr>
<tr>
<td>Cross’s</td>
<td>0.0686</td>
</tr>
<tr>
<td>Roth and Erev’s</td>
<td>0.0666</td>
</tr>
<tr>
<td>Roth and Erev’s Modified</td>
<td>0.0666</td>
</tr>
<tr>
<td>Win-Keep/Lose-Randomize</td>
<td>0.0713</td>
</tr>
</tbody>
</table>

3.2.5 Results. Win-Keep/Lose-Randomize performs surprisingly more accurate than other methods for the 8H-interaction subsample. It indicates that in short-term and/or beginning of their interactions, users may not have enough interactions to leverage a more complex learning scheme and use a rather simple mechanism to update their strategies. Both Roth and Erev’s methods use the accumulated reward values to adjust the user strategy gradually. Hence, they cannot precisely model user learning over a rather short interaction and are less accurate than relatively more
aggressive learning models such as Bush and Mosteller’s and Cross’s over this subsample. Both
Roth and Erevs deliver the same result and outperform other methods in the 43-H and 101-H
subsamples. Win-Keep/Lose-Randomize is the least accurate method over these subsamples. Since
larger subsamples provide more training data, the prediction accuracy of all models improves
as the interaction subsamples becomes larger. The learned value for the forget parameter in the
Roth and Erev’s modified model is very small and close to zero in our experiments, therefore, it
generally acts like the Roth and Erev’s model.

These results indicate that when we observe users as a collective group, they tend to exhibit
reinforcement learning behavior and remember their past interactions. Presumably there is a way
for users to communicate to some degree how they have learned individually to the entire group.
Commonly this is done through search suggestions. A keyword search engine, such as Yahoo!, will
suggest possible searches for the user based on its previous interactions with other users searching
for similar results. Thus, using features such as this the users are able to learn collectively using
some reinforcement learning model. The following subsection analyzes how the user learns at the
individual level.

Long-term communications between users and DBMS may include multiple sessions. Since
Yahoo! query workload contains the time stamps and user ids of each interaction, we have been
able to extract the starting and ending times of each session. Our results indicate that as long as
the user and DBMS communicate over sufficiently many of interactions, e.g., about 10k for Yahoo!
query workload, the users follow Roth and Erev’s model of learning. Given that the communication
of the user and DBMS involve sufficiently many interactions, we have not observed any difference
in the mechanism by which users learn based on the numbers of sessions in the user and DBMS
communication.

3.3 Analyzing Individual Users

Data management and information retrieval systems usually consider a population of users as a
single user when building a model for users’ behavior. We have followed the same approach in
this section so far and our analyses indicate that a population of users learn during their medium
and long term interactions with the data system in a way that accurately measured by the Roth
and Erev’s model. However, it is not completely clear how a population of users will learn from
its experience as distinct users do not normally share their experiences of trying and exploring
possible queries for an intent. One way for the users to share their experiences could be via the
query suggestion or auto-completion mechanisms provided in the Yahoo! search interface. As
Yahoo! learns more about the right query that satisfy users who seeks a certain intent, it will
suggest this query to other users who look for the same or similar intents. Thus, users may benefit
from the exploration done by other users in their past interactions and submit an accurate query.
The more users successfully use the suggested queries, the more these queries are reinforces in
the query suggestion tool, which in turn causes more users to submit them. Thus, individual users
share and reinforce the result of their past experiences indirectly.

Another hypothesis to explain the learning mechanism of a group of users is that most individual
users actually learn according to the Roth and Erev’s learning algorithm. To test this hypothesis,
we have empirically evaluated the learning mechanism of individual users study. We have taken
users that entered at least 200 queries while entering at least two queries for a single intent over
the entire query log. The users need to use at least two queries for an intent to exhibit some kind of
learning behavior. Each user’s log includes and entire month of interactions. These logs were then
used to train and test our models using the same methods used to evaluate the learning behavior of
a population. We train over 90% and test on 10% of the query log of each user.
We compare Roth and Erev’s, Cross’s, Bush and Mosteller’s, Win-Keep/Lose-Randomize, and Reward Based models. We notice that Roth and Erev is the strategy that has the least squared error for the majority of the users as seen in Table 7. This indicates that the users, on an individual level, are best modeled by Roth and Erev over a relatively long term period of one month. These results align with our previous results indicating that users as a group exhibit intelligent behavior and consider previous rewards over a long period of time.

<table>
<thead>
<tr>
<th># Users Roth and Erev’s</th>
<th># Users Cross’s</th>
<th>#Users Bush and Mosteller’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>#Users Win-Keep</td>
<td>#Users Reward Based</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

We compare the average Mean Squared Error for of each of the scores across all users in Table 8. We notice that Roth and Erev has the lowest average, which is to be expected since it represented the majority of the users. However, Cross’s model has a lower average than Bush and Mosteller’s model even though Bush and Mosteller’s model best fits more users then Cross’s. This happens when Cross’s actually has a lower score compared to Bush and Mosteller’s model alone, but is still higher when compared to Roth and Erev’s model. We also note that Reward Based and Win-Keep/Lose-Randomize perform quite poorly and have large averages compared to the other models. This is because they are quite inaccurate for representing a user’s strategy over a long period of time, of which all these strategies are over an entire month.

<table>
<thead>
<tr>
<th>Roth and Erev</th>
<th>Cross</th>
<th>Bush and Mosteller</th>
<th>Win-Keep</th>
<th>Reward Based</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.034496</td>
<td>0.03531</td>
<td>0.036374</td>
<td>0.043065</td>
<td>0.16031</td>
</tr>
</tbody>
</table>

3.4 Conclusion

Our analysis indicates that users show a substantially intelligent behavior when adopting and modifying their strategies over relatively medium and long-term interactions. They leverage their past interactions and their outcomes, i.e., have an effective long-term memory. While this behavior is captured to some degree by all of the reinforcement learning models, it is most accurately modeled using Roth and Erev’s model. Roth and Erev’s model is also more intuitive and easier to analyze than other models. It has also been widely used to model user learning when in games [14, 17, 19, 33, 46, 58, 69]. Hence, in the rest of the paper, we set the user learning method to this model.

4 LEARNING ALGORITHM FOR DBMS

Current systems generally assume that a user does not learn and/or modify her method of expressing intents throughout her interaction with the DBMS. However, it is known that the learning methods that are useful in static settings do not deliver desired outcomes in the dynamic ones [4]. Moreover, it has been shown that if the players do not use the right learning algorithms in games with identical interests, the game and its payoff may not converge to any desired states [57]. Thus, choosing the correct learning mechanism for the DBMS is crucial to improve the payoff and converge to a desired state. The following algorithmic questions are of interest:

i. How can a DBMS learn or adapt to a user’s strategy?
ii. Mathematically, is a given learning algorithm effective?

iii. What would be the asymptotic behavior of a given learning algorithm?

Here, we address the first and the second questions above. Dealing with the third question is far beyond the scope and space of this paper. A summary of the notations introduced in Section 2 and used in this section can be found in Table 4. In this section, we provide a learning algorithm for the DBMS that can learn when the user has static or dynamic behavior. We also prove that the payoff over time converges stochastically speaking when the DBMS uses our algorithm.

4.1 DBMS Reinforcement Learning

We adopt Roth and Erev’s learning method for adaptation of the DBMS strategy, with a slight modification. The original Roth and Erev method considers only a single action space. In our work, this would translate to having only a single query. Instead we extend this such that each query has its own action space or set of possible intents. The adaptation happens over discrete time instances where t denotes the th interaction of the user and the DBMS. We refer to t simply as the iteration of the learning rule. For simplicity of notation, we refer to intent e_i and result s_j as intent i and ℓ, respectively, in the rest of the paper. Hence, we may rewrite the expected payoff for both user and DBMS as:

$$u_i(U, D) = \sum_{i=1}^{m} \pi_i \sum_{j=1}^{n} U_{ij} \sum_{\ell=1}^{o} D_{j\ell} r_{i\ell},$$

where $r : [m] \times [o] \rightarrow \mathbb{R}^+$ is the effectiveness measure between the intent i and the result, i.e., decoded intent ℓ. With this, the reinforcement learning mechanism for the DBMS adaptation is as follows.

a. Let $R(0) > 0$ be an $n \times o$ initial reward matrix whose entries are strictly positive.

b. Let $D(0)$ be the initial DBMS strategy with $D_{j\ell}(0) = \frac{R_{j\ell}(0)}{\sum_{m} R_{j\ell}(0)} > 0$ for all $j \in [n]$ and $\ell \in [o]$.

c. For iterations $t = 1, 2, \ldots$, do

i. If the user’s query at time t is $q(t)$, DBMS returns a result $E(t) \in E$ with probability:

$$P(E(t) = i' \mid q(t)) = D_{q(t)i'}(t).$$

ii. User gives a reward $r_{i'i'}$ given that i is the intent of the user at time t. Note that the reward depends both on the intent i at time t and the result i'. Then, set

$$R_{j\ell}(t + 1) = \begin{cases} R_{j\ell}(t) + r_{j\ell} & \text{if } j = q(t) \text{ and } \ell = i' \\ R_{j\ell}(t) & \text{otherwise} \end{cases}.$$ \hspace{1cm} (13)

iii. Update the DBMS strategy by

$$D_{ji}(t + 1) = \frac{R_{ji}(t + 1)}{\sum_{\ell=1}^{o} R_{ji}(t + 1)},$$ \hspace{1cm} (14)

for all $j \in [n]$ and $i \in [o]$.

In the above algorithm $R(t)$ is simply the reward matrix at time t. One may use an available offline scoring function, e.g., [11, 32], to compute the initial reward $R(0)$ which possibly leads to an intuitive and relatively effective initial point for the learning process [65].

4.2 Analysis of the Learning Rule

We show in Section 3 that users modify their strategies in data interactions. Nevertheless, ideally, one would like to use a learning mechanism for the DBMS that accurately discovers the intents behind users’ queries whether or not the users modify their strategies, as it is not certain that all
users will always modify their strategies. Also, in some relevant applications, the user’s learning is happening in a much slower time-scale compared to the learning of the DBMS. So, one can assume that the user’s strategy is fixed compared to the time-scale of the DBMS adaptation. Therefore, first, we consider the case that the user is not adapting her strategy, i.e., she has a fixed strategy during the interaction. Then, we consider the case that the user’s strategy is adapting to the DBMS’s strategy but perhaps on a slower time-scale in Section 4.3. Introductory material for some of the concepts utilized in the following subsections may be found at [40, 66]. We provide an analysis of the reinforcement mechanism provided above and will show that, statistically speaking, the adaptation rule leads to improvement of the interaction effectiveness.

4.2.1 Basic Interaction Mode. We first investigate the simple case where the DBMS returns only one result in each interaction. In other words, we assume that the cardinality of the list \(k \) is 1. For the analysis of the learning mechanism in Section 4.2 and for simplification, we denote

\[u(t) := u_r(U, D(t)), \]

(15)

for an effectiveness measure \(r \) as \(u_r \) is defined in (1). In this section, we assume that the user provides a binary feedback of relevance and non-relevance on the returned result to simplify our model. We eliminate this assumption in Section 4.2.2.

We recall that a random process \(\{X(t)\} \) is a submartingale [23] if it is absolutely integrable (i.e. \(E(|X(t)|) < \infty \) for all \(t \)) and

\[E(X(t + 1) \mid \mathcal{F}_t) \geq X(t), \]

where \(\mathcal{F}_t \) is the history or \(\sigma \)-algebra generated by \(X_1, \ldots, X_t \). In other words, a process \(\{X(t)\} \) is a sub-martingale if the expected value of \(X(t + 1) \) given the history \(X(t), X(t - 1), \ldots, X(0) \), is not strictly less than the value of \(X(t) \). Note that submartingales are nothing but the stochastic counterparts of monotonically increasing sequences. As in the case of bounded (from above) monotonically increasing sequences, submartingales pose the same property, i.e. any submartingale \(\{X(t)\} \) with \(E(|X(t)|) < B \) for some \(B \in \mathbb{R}^+ \) and all \(t \geq 0 \) is convergent almost surely, i.e. \(\lim_{t \to \infty} X(t) \) exists almost surely.

The main result in this section is that the sequence of the utilities \(\{u(t)\} \) (which is indeed a stochastic process as \(\{D(t)\} \) is a stochastic process) defined by (15) is a submartingale when the reinforcement learning rule in Section 4.1 is utilized. As a result the proposed reinforcement learning rule stochastically improves the efficiency of communication between the DBMS and the user. To show this, we discuss an intermediate result. For simplicity of notation, we fix the time \(t \) and we use superscript + to denote variables at time \((t + 1) \) and drop the dependencies at time \(t \) for variables depending on time \(t \).

Lemma 4.1. For any \(\ell \in [m] \) and \(j \in [n] \) (and any time \(t \geq 0 \)), we have

\[E(D_{j+1}^+ \mid \mathcal{F}_t) - D_{j+1} = \frac{D_{j+1}}{\sum_{\ell'=1}^{m} R_{\ell' j} + 1} \left(\pi_{\ell'} U_{\ell'} - u^l(U, D) \right), \]

where

\[u^l(U, D) = \sum_{\ell'=1}^{m} \pi_{\ell'} U_{\ell'} D_{\ell'}, \]

is the average efficiency of signal \(j \) on conveying messages.

1In this case, simply we have \(E(X(t + 1) \mid \mathcal{F}_t) = E(X(t + 1) \mid X(t), \ldots, X(1)) \).
Fix $\ell \in [m]$ and $j \in [n]$. Let A be the event that at the t'th iteration, we reinforce a pair (j, ℓ') for some $\ell' \in [m]$. Then on the complement A^c of A, $D_{j\ell}'(\omega) = D_{j\ell}(\omega)$. Let $A_1 \subseteq A$ be the subset of A such that the pair (j, ℓ) is reinforced and $A_2 = A \setminus A_1$ be the event that some other pair (j, ℓ') is reinforced for $\ell' \neq \ell$. We note that

$$D_{j\ell}^+ = \frac{R_{j\ell} + 1}{\sum_{\ell' \neq j} R_{j\ell'} + 1} 1_{A_1} + \frac{R_{j\ell}}{\sum_{\ell' \neq j} R_{j\ell'} + 1} 1_{A_2} + D_{j\ell} 1_{A^c}. $$

Therefore, we have

$$E(D_{j\ell}^+ \mid \mathcal{F}_t) = \frac{R_{j\ell} + 1}{\sum_{\ell' \neq j} R_{j\ell'} + 1} \left(\pi_t U_{\ell j} D_{j\ell} + \sum_{\ell' \neq j} \pi_t U_{\ell' j} D_{j\ell} \right) - \frac{R_{j\ell}}{\sum_{\ell' \neq j} R_{j\ell'} + 1} \left(\sum_{\ell' \neq j} \pi_t U_{\ell' j} D_{j\ell} \right) + (1 - p)Q_{j\ell},$$

where $p = P(A_2 \mid \mathcal{F})$. Note that $D_{\ell j} = \frac{R_{j\ell}}{\sum_{\ell' \neq j} R_{j\ell'}}$ and hence,

$$E(D_{j\ell}^+ \mid \mathcal{F}_t) - D_{j\ell} = \frac{1}{\sum_{\ell' \neq j} R_{j\ell'} + 1} \left(\pi_t U_{\ell j} D_{j\ell} \sum_{\ell' \neq j} Q_{j\ell'} - \sum_{\ell' \neq j} \pi_t U_{\ell' j} D_{j\ell} D_{j\ell'} \right).$$

Replacing $\sum_{\ell' \neq j} D_{j\ell'} = 1 - D_{j\ell}$ and adding/subtracting $\pi_t U_{\ell j} D_{j\ell} D_{j\ell'}$ in the term inside the parenthesis in the above equality, we get

$$E(D_{j\ell}^+ \mid \mathcal{F}) - D_{j\ell} = \frac{D_{j\ell}}{\sum_{\ell' \neq j} R_{j\ell'} + 1} \left(\pi_t P_{\ell j} - u'(U, D) \right).$$

Using Lemma 4.1, we show that the process $\{u(t)\}$ is a sub-martingale.

Theorem 4.2. Let $\{u(t)\}$ be the sequence given by (15). Then, $\{u(t)\}$ is a submartingale sequence.

Proof. Let $u^+ := u(t + 1)$, $u := u(t)$, $u^l := u'(U(t), D(t))$ and also define $\tilde{R}^l := \sum_{\ell' = 1}^m R_{j\ell'} + 1$. Then, using the linearity of conditional expectation and Lemma 4.4, we have:

$$E(u^+ \mid \mathcal{F}_t) - u = \sum_{i=1}^m \sum_{j=1}^n \pi_i U_{ij} \left(E(D_{ji}^+ \mid \mathcal{F}_t) - D_{ji} \right)$$

$$= \sum_{i=1}^m \sum_{j=1}^n \pi_i U_{ij} \frac{D_{ji}}{\sum_{l' = 1}^m R_{j\ell'} + 1} \left(\pi_i U_{ij} - u^l \right)$$

$$= \sum_{j=1}^n \frac{1}{\tilde{R}^j} \left(\sum_{i=1}^m D_{ji} (\pi_i U_{ij})^2 - (u^l)^2 \right).$$

Note that D is a row-stochastic matrix and hence, $\sum_{i=1}^m D_{ji} = 1$. Therefore, by the Jensen’s inequality [23], we have:

$$\sum_{i=1}^m D_{ji} (\pi_i U_{ij})^2 \geq \sum_{i=1}^m (D_{ji} \pi_i U_{ij})^2 = (u^l)^2.$$

Replacing this in the right-hand-side of (16), we conclude that $E(u^+ \mid \mathcal{F}_t) - u \geq 0$ and hence, the sequence $\{u(t)\}$ is a submartingale.

The above result implies that the effectiveness of the DBMS learning algorithm, stochastically speaking, increases as time progresses when the learning rule in Section 4 is utilized. This is indeed a desirable property for any learning scheme for DBMS adaptation. An immediate consequence of Theorem 4.2 is that the efficiency sequence $\{u(t)\}$ is convergent almost surely.
The sequence \(\{u(t)\} \) given by (15) converges almost surely.

Proof. Note that \(0 \leq u(t) \leq mn \) (indeed, a simple application of Hölder’s inequality give the bound \(u(t) \leq 1 \)) and hence, \(\{u(t)\} \) is a bounded submartingale. Therefore, by the Martingale Convergence Theorem [23], it follows that \(\lim_{t \to \infty} u(t) \) exists almost surely. \(\square \)

4.2.2 Arbitrary Effectiveness Metric. Generally, relevance of an answer to an input query is a matter of degree and different relevant answers may satisfy the intent behind the query to different levels. We extend the results of Section 4.2.1 for the case where the relevance of an answer to the input query is not binary, i.e., relevant and non-relevant. More importantly, this holds for an arbitrary reward/effectiveness measure \(r \). This is rather a very strong result as the algorithm is robust to the choice of the reward mechanism. We first show an intermediate result.

Lemma 4.4. For any \(\ell \in [m] \) and \(j \in [n] \), we have

\[
E(D_{j\ell}^* | \mathcal{F}_t) - D_{j\ell} = D_{j\ell} \cdot \sum_{i=1}^{m} \pi_i U_{ij} \left(\frac{r_{i\ell}}{R_j + r_{i\ell}} - \sum_{\ell' = 1}^{o} D_{j\ell'} \frac{r_{i\ell'}}{R_j + r_{i\ell'}} \right),
\]

where \(\bar{R}_j = \sum_{\ell'=1}^{o} R_{j\ell'} \).

Proof. Fix \(\ell \in [m] \) and \(j \in [n] \). Let \(A \) be the event that at the \(t \)th iteration, we reinforce a pair \((j, \ell')\) for some \(\ell' \in [m] \). Then on the complement \(A^c \) of \(A \), \(D_{j\ell}(\omega) = D_{j\ell}(\omega) \). Let \(A_{i,\ell'} \subseteq A \) be the subset of \(A \) such that the intent of the user is \(i \) and the pair \((j, \ell')\) is reinforced. Note that the collection of sets \(\{A_{i,\ell'}\} \) for \(i, \ell' \in [m] \), are pairwise mutually exclusive and their union constitute the set \(A \).

We note that

\[
D_{j\ell}^+ = \sum_{i=1}^{m} \left(\frac{R_{j\ell} + r_{i\ell}}{R_j + r_{i\ell}} 1_{A_{i,\ell'}} + \sum_{\ell' = 1}^{o} \frac{R_{j\ell}}{R_j + r_{i\ell}} 1_{A_{i,\ell'}} \right) + D_{j\ell} 1_{A^c}.
\]

Therefore, we have

\[
E(D_{j\ell}^* | \mathcal{F}_t) - D_{j\ell} = \sum_{i=1}^{m} \pi_i U_{ij} D_{j\ell} \frac{R_{j\ell} + r_{i\ell}}{R_j + r_{i\ell}} + \sum_{i=1}^{m} \pi_i U_{ij} \sum_{\ell' = 1}^{o} D_{j\ell'} \frac{R_{j\ell}}{R_j + r_{i\ell'}} - (1-p)D_{j\ell},
\]

where \(p = \mathbb{P}(A | \mathcal{F}) \). Note that \(D_{j\ell} = \frac{R_{j\ell}}{R_j} \) and hence,

\[
E(D_{j\ell}^* | \mathcal{F}_t) - D_{j\ell} = \sum_{i=1}^{m} \pi_i U_{ij} D_{j\ell} \frac{r_{i\ell}}{R_j(R_j + r_{i\ell})} - \sum_{i=1}^{m} \pi_i U_{ij} \sum_{\ell' = 1}^{o} D_{j\ell'} \frac{R_{j\ell} r_{i\ell'}}{R_j(R_j + r_{i\ell'})}.
\]

Replacing \(\frac{R_{j\ell}}{R_j} \) with \(D_{j\ell} \) and rearranging the terms in the above expression, we get the result. \(\square \)

To show the main result, we use the following result in martingale theory.

Theorem 4.5. [55] A random process \(\{X(t)\} \) converges almost surely if \(X(t) \) is bounded, i.e., \(E(|X(t)|) < B \) for some \(B \in \mathbb{R}^+ \) and all \(t \geq 0 \) and

\[
E(X(t + 1) | \mathcal{F}_t) \geq X(t) - \beta(t)
\]

where \(\beta(t) \geq 0 \) is a summable sequence almost surely, i.e., \(\sum_t \beta(t) < \infty \) with probability 1.

Using Lemma 4.4 and the above result, we show that up to a summable disturbance, the proposed learning mechanism is stochastically improving.

Theorem 4.6. Let \{u(t)\} be the sequence given by (15). Then,

\[E(u(t + 1) \mid \mathcal{F}_t) \geq E(u(t) \mid \mathcal{F}_t) - \beta(t), \]

for some non-negative random process \{\beta(t)\} that is summable (i.e. \(\sum_{t=0}^\infty \beta(t) < \infty\) almost surely). Hence, \{u(t)\} converges almost surely.

Proof. Let \(u^+ := u(t + 1)\), \(u := u(t)\),

\[u^j := u^j(U(t), D(t)) = \sum_{i=1}^{m} \sum_{\ell=1}^{o} \pi_i U_{ij} D_{\ell j} r_{\ell t} (t), \]

and also define \(\bar{R}_j := \sum_{\ell=1}^{m} R_{j\ell}\). Note that \(u^j\) is the efficiency of the \(j\)th signal/query.

Using the linearity of conditional expectation and Lemma 4.4, we have:

\[E(u^+ \mid \mathcal{F}_t) - u = \sum_{i=1}^{m} \sum_{j=1}^{n} \pi_i U_{ij} \sum_{\ell=1}^{o} r_{\ell t} \left(E(D_{\ell j}^+ \mid \mathcal{F}_t) - D_{\ell j} \right) \]

(18)

\[= \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{\ell=1}^{o} \pi_i U_{ij} D_{\ell j} r_{\ell t} \left(\sum_{i=1}^{m} \pi_i U_{ij} \left(\frac{r_{\ell t}}{\bar{R}_j + r_{\ell t}} - \sum_{\ell'=1}^{o} D_{\ell' j} \frac{r_{\ell' t}}{\bar{R}_j + r_{\ell' t}} \right) \right). \]

(19)

Now, let \(y_{\ell j} = \sum_{i=1}^{m} \pi_i U_{ij} r_{\ell t}\) and \(z_{\ell j} = \sum_{i=1}^{m} \pi_i U_{ij} \frac{r_{\ell t}}{\bar{R}_j + r_{\ell t}}\). Then, we get from the above expression that

\[E(u^+ \mid \mathcal{F}_t) - u = \sum_{j=1}^{n} \left(\sum_{\ell=1}^{o} D_{\ell j} y_{\ell j} \bar{z}_{\ell j} - \sum_{\ell=1}^{o} D_{\ell j} y_{\ell j} \sum_{\ell'=1}^{o} D_{\ell' j} z_{\ell'}. \right) . \]

(20)

Now, we express the above expression as

\[E(u^+ \mid \mathcal{F}_t) - u = V_t + \hat{V}_t \]

(21)

where

\[V_t = \sum_{j=1}^{n} \frac{1}{\bar{R}_j} \left(\sum_{\ell=1}^{o} D_{\ell j} y_{\ell j}^2 - \left(\sum_{i=1}^{o} D_{\ell j} y_{\ell j} \right)^2 \right), \]

and

\[\hat{V}_t = \sum_{j=1}^{n} \left(\sum_{\ell=1}^{o} D_{\ell j} y_{\ell j} \sum_{\ell'=1}^{o} D_{\ell' j} \tilde{z}_{\ell' j} - \sum_{\ell'=1}^{o} D_{\ell' j} y_{\ell' j} \tilde{z}_{\ell' j} \right). \]

(22)

Further, \(\tilde{z}_{\ell j} = \sum_{i=1}^{m} \pi_i U_{ij} \frac{r_{\ell j}}{\bar{R}_j (\bar{R}_j + r_{\ell t})}\).

We claim that \(V_t \geq 0\) for each \(t\) and \{\(\hat{V}_t\)\} is a summable sequence almost surely. Then, from (21) and Theorem 4.5, we get that \{\(u_t\)\} converges almost surely and it completes the proof. Next, we validate our claims.

We first show that \(V_t \geq 0, \forall t\). Note that \(D\) is a row-stochastic matrix and hence, \(\sum_{\ell=1}^{o} D_{\ell j} = 1\). Therefore, by the Jensen’s inequality [23], we have:

\[\sum_{\ell=1}^{o} D_{\ell j} (y_{\ell j})^2 \geq \sum_{\ell=1}^{o} (D_{\ell j} y_{\ell j})^2. \]

Hence, \(V \geq 0.\)
We next claim that \(\{ \tilde{V}_t \} \) is a summable sequence with probability one. It can be observed from (22) that
\[
V_t \leq \sum_{j=1}^{\infty} \frac{\sigma^2 n}{R_j^2}.
\]
(23)

since \(y_{jt} \leq 1, \tilde{z}_{jt} \leq \tilde{R}_j^{-2} \) for each \(j \in [n], \ell \in [m] \) and \(D \) is a row-stochastic matrix. To prove the claim, it suffices to show that for each \(j \in [m] \), the sequence \(\{ \frac{1}{R_j(t)} \} \) is summable. Note that for each \(j \in [m] \) and for each \(t \), we have \(\tilde{R}_j(t+1) = \tilde{R}_j(t) + \epsilon_t \) where \(\epsilon_t \geq \epsilon > 0 \) with probability \(p_t \geq p > 0 \). Therefore, using the Borel-Cantelli Lemma for adapted processes [23] we have \(\{ \frac{1}{R_j(t)} \} \) is summable
which concludes the proof.

Therefore, using the Borel-Cantelli Lemma for adapted processes [23] we have
\[
\sum_{t=1}^{\infty} \frac{1}{R_j(t)} < \infty
\]
Therefore, which concludes the proof.

The above result implies that the effectiveness of the DBMS, stochastically speaking, increases
as time progresses when the learning rule in Section 4 is utilized. Not only that, but this property
is true for cases where the feedback is not simply a 0/1 value, e.g., the selected answer may be
partially relevant to the desired intent. This is indeed a desirable property for any DBMS learning
scheme.

4.2.3 k-List Learning. We now investigate the variation where the DBMS returns \(k \) candidate
answers to the user for each query. As in the previous case, the DBMS strategy \(D(t) \) is going to
evolve as a function of time/query \(t \). As in the previous cases, at time \(t \), user will have an intent \(e_t \)
with probability \(\pi_t \) independent of the prior intents of the user. Then, the user will use a query
\(q_j \) with probability \(U_{ij} \) to convey her intent. The database shows a list \(L(t) \) of \(k \) tuples \(i_1, i_2, \ldots, i_k \)
with probability
\[
D_{j_1}(t)D_{j_2}(t)\cdots D_{j_k}(t).
\]

This corresponds to showing \(k \) independent samples of the tuples with the distribution \((D_{j_1}(t), \ldots, D_{j_m}(t)) \).
We refer to such a list as a \(k \)-list generated by \(D(t) \). Once the \(k \)-list is generated, if the original intent
belongs to the list, i.e. \(i \in L(t) \), the database reinforces \((j, i)\)th entry of \(D(t) \) by letting
\[
D_{ji}(t) = \frac{R_{ji}(t) + 1}{\sum_{r} R_{ji}(t) + 1},
\]
where \(R(t) \) is the reward matrix up-to time \(t \). We refer to this adaptation rule as \(k \)-list learning rule.
In this section, we show the effectiveness of this reinforcement learning rule for an arbitrary \(k \geq 1 \).

To investigate the efficiency of this algorithm, let us define the new efficiency metric:
\[
v(U, D) = \sum_{i=1}^{m} \sum_{j=1}^{n} \pi_i U_{ij} (1 - (1 - D_{ji})^k),
\]
where \(U, D \) are the strategies of the user and the database, respectively. For the remainder of this
section, we simplify the notation of \(Z \) to be a single variable of \(Z \). Before continuing our discussion,
let us elaborate more on this efficiency metric. Note that \((1 - D_{ji})^k \) is the probability that the intent
\(i \) is not present in a \(k \)-list \(L \) generated by \(U \) when query \(j \) is received by the database. Therefore, \(Z \)
is the probability if \(i \in L \) given query \(j \), and hence, \(\pi_i U_{ij} Z \) is the probability that a user with intent \(i \),
uses query \(j \), and the database, successfully decode the message and shows \(i \) in the \(k \)-list generated
by \(D \). Therefore, \(v(U, D) \) is nothing but the efficiency of the pair \(U, D \) when utilizing \(k \)-lists.

Similar to \(u(U, D) \), let
\[
v_j(U, D) = \sum_{i=1}^{m} \pi_i U_{ij} Z,
\]
to be the efficiency of query j for communication. Also, to reduce notational complexity, let $R_j(t) := \sum_{i=1}^{m} R_{ji}(t)$.

Using these definitions, we have the following result.

Lemma 4.7. Let \{\{D(t)\}\} be a sequence generated using the k-list learning rule. Then, for any $t \geq 1$, we have:

$$E(D_{ji}^+ | \mathcal{F}_t) - D_{ji} = \frac{1}{R_j + 1}(\pi U_{ij}Z - \nu_j(U, D)D_{ji})$$

Proof. Let us have a close look on the update of $D_{ji}(t)$. Consider the event $E \in \mathcal{F}_t$ that some entry in the jth row of $D(t)$ get reinforced and let $A \subseteq E$ be the event that jth entry get reinforced and let $p = U(E \mid \mathcal{F}_t)$. Note that,

$$p = \sum_{i=1}^{m} \pi U_{ij}Z = \nu_j(U, D).$$

Note that on E^c, we have $D_{ji}(t + 1) = D_{ji}(t)$. On A, $D_{ji}(t + 1) = \frac{R_{ji}(t) + 1}{R_{ji}(t) + 1}$ and on $B = E \setminus A$, we have $D_{ji}(t + 1) = \frac{R_{ji}(t + 1)}{R_{ji}(t) + 1}$. Also,

$$U(A \mid \mathcal{F}_t) = \pi U_{ij}Z,$$

and

$$U(B \mid \mathcal{F}_t) = \sum_{i' \neq i} \pi U_{ij'}(1 - (1 - D_{ji'})^k).$$

Using these, we have:

$$E(D_{ji}^+ | \mathcal{F}_t) - D_{ji} = \sum_{i' \neq i} \pi U_{ij'}(1 - (1 - D_{ji'})^k) \frac{R_{ji}}{R_j + 1} + \pi U_{ij}Z \frac{R_{ji} + 1}{R_j + 1} + (1 - p)D_{ji} - D_{ji}$$

$$= \sum_{i'=1}^{m} \pi U_{ij'}(1 - (1 - D_{ji'})^k) \frac{R_{ji}}{R_j + 1} + \pi U_{ij}Z \frac{1}{R_j + 1} - \nu_j(U, D)D_{ji}.$$

Therefore,

$$E(D_{ji}^+ | \mathcal{F}_t) - D_{ji} = \nu_j(U, D)(\frac{R_{ji}}{R_j + 1} - D_{ji}) + \pi U_{ij}Z \frac{1}{R_j + 1} .$$

(24)

Note that

$$\frac{R_{ji}}{R_j + 1} - D_{ji} = \frac{R_{ji}}{R_j + 1} - \frac{R_{ji}}{R_j} = \frac{R_{ji}}{R_j(R_j + 1)} = - \frac{D_{ji}}{R_j + 1}.$$

Replacing the above equation in (24), we get:

$$E(D_{ji}^+ | \mathcal{F}_t) - D_{ji} = \frac{1}{R_j + 1} (\pi U_{ij}Z - \nu_j(U, D)D_{ji}) .$$

\[\square \]

Using Lemma 4.7, we can prove the efficiency of the k-list learning rule.

Theorem 4.8. Let \{\{D(t)\}\} be the sequence generated using the k-list learning rule. Then, the sequence \{u(U, D(t))\} is a sub-martingale, i.e. the efficiency of the k-learning rule (stochastically) improves as a function of time t. In particular,

$$\lim_{t \to \infty} u(U, D(t))$$

exists almost surely.
Proof. We have:

\[E(u^+ - u \mid \mathcal{F}_k) \]

\[= \sum_{i=1}^{m} \sum_{j=1}^{n} \pi_i U_{ij} E(D_{ji}^+ - D_{ji} \mid \mathcal{F}_k) \]

\[= \sum_{i=1}^{m} \sum_{j=1}^{n} \pi_i U_{ij} \frac{1}{R_j + 1} (\pi_i U_{ij} Z \]

\[- \nu_j(U, D) D_{ji}) \]

\[= \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{1}{R_j + 1} ((\pi_i U_{ij})^2 Z \]

\[- \pi_i U_{ij} D_{ji} \nu_j(U, D)) \]

Hence, using the Jensen’s inequality, we get that

\[E(u^+ (U, D) - u \mid \mathcal{F}_k) \geq \sum_{j=1}^{n} \frac{1}{R_j + 1} \times \sum_{i=1}^{m} (\pi_i U_{ij} D_{ji} \nu_j(U, D) - \pi_i U_{ij} D_{ji} \nu_j(U, D)) = 0. \]

□

This result shows that, stochastically speaking, the efficiency of the k-list learning rule improves as function of iteration.

4.3 User and DBMS Adaptations

We also consider the case that the user also adapts to the DBMS’s strategy. At the first glance, it may seem that if the DBMS adapts using a reasonable learning mechanism, the user’s adaptation can only result in a more effective interaction as both players have identical interests. Nevertheless, it is known from the research in algorithmic game theory that in certain two-player games with identical interest in which both players adapt their strategies to improve their payoff, well-known learning methods do not converge to any (desired) stable state and cycle among several unstable states [20, 57]. Here, we focus on the identity similarity measure, i.e. we assume that $m = o$ and the user gives a boolean feedback:

\[r_{i\ell} = \begin{cases}
 1 & \text{if } i = \ell, \\
 0 & \text{otherwise}
\end{cases} \]

In this case, we assume that the user adapts to the DBMS strategy at time steps $0 < t_1 < \cdots < t_k < \cdots$ and in those time-steps the DBMS is not adapting as there is no reason to assume the synchronicity between the user and the DBMS. The reinforcement learning mechanism for the user is as follows:

a. Let $S(0) > 0$ be an $m \times n$ reward matrix whose entries are strictly positive.

b. Let $U(0)$ be the initial user’s strategy with

\[U_{ij}(0) = \frac{S_{ij}(0)}{\sum_{j'=1}^{n} S_{ij'}(0)} \]

for all $i \in [m]$ and $j \in [n]$ and let $U(t_k) = U(t_k - 1) = \cdots = U(t_{k-1} + 1)$ for all k.

c. For all $k \geq 1$, do the following:
i. The user picks a random intent \(t \in [m] \) with probability \(\pi_i \) (independent of the earlier choices of intent) and subsequently selects a query \(j \in [n] \) with probability
\[
P(q(t_k) = j \mid i(t_k) = i) = U_{ij}(t_k).
\]
ii. The DBMS uses the current strategy \(D(t_k) \) and interpret the query by the intent \(i'(t) = i' \) with probability
\[
P(i'(t_k) = i' \mid q(t_k) = j) = D_{ij'}(t_k).
\]
iii. User gives a reward 1 if \(i = i' \) and otherwise, gives no rewards, i.e.
\[
S'_{ij} = \begin{cases}
S_{ij}(t_k) + 1 & \text{if } j = q(t_k) \text{ and } i(t_k) = i'(t_k) \\
S_{ij}(t_k) & \text{otherwise}
\end{cases}
\]
where \(S'_{ij} = S_{ij}(t_k + 1) \).
iv. Update the user’s strategy by
\[
U_{ij}(t_k + 1) = \frac{S_{ij}(t_k + 1)}{\sum_{j'=1}^n S_{ij'}(t_k + 1)},
\]
for all \(i \in [m] \) and \(j \in [n] \).

In the above scheme \(S(t) \) is the reward matrix at time \(t \) for the user.

Next, we provide an analysis of the reinforcement mechanism provided above and will show that, statistically speaking, our proposed adaptation rule for DBMS, even when the user adapts, leads to improvement of the effectiveness of the interaction. With a slight abuse of notation, let
\[
u(t) := u_r(U, D(t)) = u_r(U(t), D(t)),
\]
for an effectiveness measure \(r \) as \(u_r \) is defined in (1).

Lemma 4.9. Let \(t = t_k \) for some \(k \in \mathbb{N} \). Then, for any \(i \in [m] \) and \(j \in [n] \), we have
\[
E(U'_{ij} \mid \mathcal{F}_i) - U_{ij} = \frac{\pi_i U_{ij}}{\sum_{\ell=1}^n S_{i\ell} + 1} (D_{ij} - u^t(t))
\]
where
\[
u^t(t) = \sum_{j=1}^n U_{ij}(t)D_{ij}(t).
\]

Proof. Fix \(i \in [m], j \in [n] \) and \(k \in \mathbb{N} \). Let \(B \) be the event that at the \(t_k \)’th iteration, user reinforces a pair \((i, \ell)\) for some \(\ell \in [n] \). Then, on the complement \(B^c \) of \(B \), \(P_{ij}(\omega) = P_{ij}(\omega) \). Let \(B_1 \subseteq B \) be the subset of \(B \) such that the pair \((i, j)\) is reinforced and \(B_2 = B \setminus B_1 \) be the event that some other pair \((i, \ell)\) is reinforced for \(\ell \neq i \).

We note that
\[
U'_{ij} = \frac{S_{ij} + 1}{\sum_{\ell=1}^n S_{i\ell} + 1} 1_{B_1} + \frac{S_{ij}}{\sum_{\ell=1}^n S_{i\ell} + 1} 1_{B_2} + U_{ij}1_{B^c}.
\]

Therefore, we have
\[
E(U'_{ij} \mid \mathcal{F}_i) = \pi_i U_{ij}D_{ij} \frac{S_{ij} + 1}{\sum_{\ell=1}^n S_{i\ell} + 1}
\]
\[
+ \sum_{\ell \neq j} \pi_i U_{i\ell}D_{i\ell} \frac{S_{ij}}{\sum_{\ell=1}^n S_{i\ell} + 1} + (1-p)U_{ij},
\]
where \(p = U(B) = \sum_{i} \pi_i U_{ij} D_{ji} \). Note that \(U_{ij} = \frac{S_{ij}}{\sum_{\ell=1}^{n} S_{i\ell}} \) and hence,
\[
E(U_{ij}^{+} | F_t) - U_{ij} = \frac{1}{\sum_{\ell=1}^{n} S_{i\ell} + 1} \left(\pi_i U_{ij} D_{ji} - \pi_i U_{ij} \sum_{\ell} U_{i\ell} D_{\ell i} \right).
\]
which can be rewritten as in (27). □

Using Lemma 4.9, we show that the process \(\{u(t)\} \) is a sub-martingale.

Theorem 4.10. Let \(t = t_k \) for some \(k \in \mathbb{N} \). Then, we have
\[
E(u(t + 1) | F_t) - u(t) \geq 0
\]
where \(u(t) \) is given by (26).

Proof. Fix \(t = t_k \) for some \(k \in \mathbb{N} \). Let \(u^+ := u(t + 1) \), \(u := u(t) \), \(u^i := u^i(U(t), D(t)) \) and also define \(\tilde{S}^i := \sum_{\ell=1}^{m} S_{i\ell} + 1 \). Then, using the linearity of conditional expectation and Lemma 4.4, we have:
\[
E(u^+ | F_t) - u = \sum_{i=1}^{m} \sum_{j=1}^{n} \pi_i D_{ji} \left(E(U_{ij}^+ | F_t) - U_{ij} \right)
\]
\[
= \sum_{i=1}^{m} \sum_{j=1}^{n} \pi_i U_{ij} \left(\frac{1}{\sum_{\ell=1}^{n} S_{i\ell}} \right) (D_{ji} - u^i)
\]
\[
= \sum_{i=1}^{m} \frac{\pi_i^2}{\tilde{S}^i} \left(\sum_{j=1}^{n} U_{ij}(D_{ji})^2 - (u^i)^2 \right). \tag{29}
\]
Note that \(U \) is a row-stochastic matrix and hence, \(\sum_{i=1}^{m} U_{ij} = 1 \). Therefore, by the Jensen’s inequality [23], we have:
\[
\sum_{j=1}^{n} U_{ij}(D_{ji})^2 \geq \left(\sum_{j=1}^{n} D_{ji} U_{ij} \right)^2 = (u^i)^2.
\]
Replacing this in the right-hand-side of (29), we conclude that \(E(u^+ | F_t) - u \geq 0 \) and hence, the sequence \(\{u(t)\} \) is a submartingale. □

Corollary 4.11. The sequence \(\{u(t)\} \) given by (15) converges almost surely.

Proof. Note from Theorem 4.6 and 4.10 that the sequence \(\{u(t)\} \) satisfies all the conditions of Theorem 4.5. Hence, proven. □

The authors in [33] have also analyzed the effectiveness of a 2-player signaling game in which both players use Roth and Erev’s model for learning. However, they assume that both players learn at the same time-scale. Our result in this section holds for the case where users and DBMS learn at different time-scales, which may arguably be the dominant case in our setting as generally users may learn in a much slower time-scale compared to the DBMS.

In this section we proposed a reinforcement learning algorithm that is an adaptation of the Roth and Erev model. We showed that the payoff function of our model converges almost surely when the DBMS uses our modified Roth and Erev algorithm. This holds when the user learns using a Roth and Erev model and when the user does not learn. The authors in [33] have also analyzed the effectiveness of a 2-player signaling game in which both players use Roth and Erev’s model for learning. However, they assume that both players learn at the same time-scale. Our results in this
section holds for the case where users and DBMS learn at different time-scales, which may arguably be the dominant case in our setting as generally users may learn in a much slower time-scale compared to the DBMS.

5 EQUILIBRIA OF THE GAME

An important question in analyzing a game is whether it has any eventual stable state, i.e., equilibrium, in which none of the agents have any reason and motivation to update their strategies. Intuitively, one stable state in our game could be the one in which the user and DBMS establish a perfect common understanding, e.g., users get perfectly accurate answers for all their queries. Nevertheless, it is not clear whether such a state is the only equilibrium of the game. In this section, we formally define the stable states of the game and investigate their degrees of stability and desirability. An interesting research direction is to connect the dynamic analyses of the learning rule in the previous section and the static analysis of the game in this section to understand to which equilibria the game converges if both agents use our proposed learning rule. Due to the hardness of this problem and the limited space in this submission, we leave this subject as an interesting future work.

5.1 Fixed User Strategy

In some settings, the strategy of a user may change in a much slower time scale than that of the DBMS. In these cases, it is reasonable to assume that the user’s strategy is fixed. Hence, the game will reach a desirable state where the DBMS adapts a strategy that maximizes the expected payoff. Let a strategy profile be a pair of user and DBMS strategies.

Definition 5.1. Given a strategy profile \((U, D)\), \(D\) is a best response to \(U\) w.r.t. effectiveness measure \(r\) if we have \(u_r(U, D) \geq u_r(U, D')\) for all the database strategies \(D'\).

A DBMS strategy \(D\) is a strict best response to \(U\) if the inequality in Definition 5.1 becomes strict for all \(D'\neq D\).

Example 5.2. Consider the database instance about universities that is shown in Table 1 and the intents, queries, and the strategy profiles in Tables 2(a), 2(b), 3(a), and 3(b), respectively. Given a uniform prior over the intents, the DBMS strategy is a best response to the user strategy w.r.t precision and \(p@k\) in both strategy profiles 3(a) and 3(b).

Definition 5.3. Given a strategy profile \((U, D)\), an intent \(e_i\), and a query \(q_j\), the payoff of \(e_i\) using \(q_j\) is

\[u_r(e_i, q_j) = \sum_{\ell=1}^{o} r(e_i, s_{\ell}). \]

Definition 5.4. The pool of intents for query \(q_j\) in user strategy \(U\) is the set of intents \(e_i\) such that \(U_{i,j} > 0\).

We denote the pool of intents of \(q_j\) as \(PL(q_j)\). Our definition of pool of intent resembles the notion of pool of state in signaling games [16, 22]. Each result \(s_{\ell}\) such that \(D_{j,\ell} > 0\) may be returned in response to query \(q_j\). We call the set of these results the reply to query \(q_j\).

Definition 5.5. A best reply to query \(q_j\) w.r.t. effectiveness measure \(r\) is a reply that maximizes \(\sum_{e_i \in PL(q_j)} \pi_i U_{i,j} u_r(e_i, q_j)\).

The following characterizes the best response to a strategy.

Lemma 5.6. Given a strategy profile \((U, D)\), \(D\) is a best response to \(U\) w.r.t. effectiveness measure \(r\) if and only if \(D\) maps every query to one of its best replies.
Proof. If each query is assigned to its best reply in D, no improvement in the expected payoff is possible, thus D is a best response for U. Let D be a best response for U such that some query q is not mapped to its best reply in D. Let r_{max} be a best reply for q. We create a DBMS strategy $D' \neq D$ such that all queries $q' \neq q$ in D' have the same reply as they have in D and the reply of q is r_{max}. Clearly, D' has higher payoff than D for U. Thus, D is not a best response.

The following corollary directly results from Lemma 5.6.

Corollary 5.7. Given a strategy profile (U, D), D is a strict best response to U w.r.t. effectiveness measure r if and only if every query has one and only one best reply and D maps each query to its best reply.

Given an intent e over database instance I, some effectiveness measures, such as precision, take their maximum for other results in addition to $e(I)$. For example, given intent e, the precision of every non-empty result $s \subset e(I)$ is equal to the precision of $e(I)$ for e. Hence, there are more than one best reply for an intent w.r.t. precision. Thus, according to Corollary 5.7, there is not any strict best response w.r.t. precision.

5.2 Nash Equilibrium

In this section and Section 5.3, we analyze the equilibria of the game where both user and DBMS may modify their strategies. A Nash equilibrium for a game is a strategy profile where the DBMS and user will not do better by unilaterally deviating from their strategies.

Definition 5.8. A strategy profile (U, D) is a Nash equilibrium w.r.t. a satisfaction function r if $u_r(U, D) \geq u_r(U', D)$ for all user strategy U' and $u_r(U, D) \geq u_r(U, D')$ for all database strategy D'.

Example 5.9. Consider again the database about universities that is shown in Table 1 and the intents, queries, and the strategy profiles in Tables 2(a), 2(b), 3(a), and 3(b), respectively. Both strategy profiles 3(a) and 3(b) are Nash equilibria w.r.t. precision and $p@k$. User and DBMS cannot unilaterally change their strategies and receive a better payoff. If one modifies the strategy of the database in strategy profile 3(b) and replaces the probability of executing and returning e_1 and e_3 given query q_2 to ε and $1 - \varepsilon$, $0 \leq \varepsilon \leq 1$, the resulting strategy profiles are all Nash equilibria.

Intuitively, the concept of Nash equilibrium captures the fact that users may explore different ways of articulating and interpreting intents, but they may not be able to look ahead beyond the payoff of a single interaction when adapting their strategies. Some users may be willing to lose some payoff in the short-term to gain more payoff in the long run, therefore, an interesting direction is to define and analyze less myopic equilibria for the game [27].

If the interaction between user and DBMS reaches a Nash equilibrium, the user does not have a strong incentive to change her strategy. As a result the strategy of the DBMS and the expected payoff of the game will likely remain unchanged. Hence, in a Nash equilibrium the strategies of user and DBMS are likely to be stable. Also, the payoff at a Nash equilibrium reflects a potential eventual payoff for the user and DBMS in their interaction. Query q_j is a best query for intent e_i if $q_j \in \arg\max_{q_k} u_r(e_i, q_k)$.

The following lemma characterizes the Nash equilibrium of the game.

Lemma 5.10. A strategy profile (U, D) is a Nash equilibrium w.r.t. effectiveness measure r if and only if

- for every query q, q is a best query for every intent $e \in PL(q)$, and
- D is a best response to U.
Proof. Assume that \((U, D)\) is a Nash equilibrium. Also, assume \(q_j\) is not a best query for \(e_i\). We first consider the case where \(u_r(e_i, q_j) > 0\). We build strategy \(U'\) where \(U'_{k, \ell} = U_{k, \ell}\) for all entries \((k, \ell) \neq (i, j)\) and \((k, \ell) \neq (i, j'), U'_{i, j} = 0\), and \(U'_{i, j'} = U_{i, j}\). We have \(U' \neq U\) and \(u_r(U, D) < u_r(U', D)\). Hence, \((U, D)\) is not a Nash equilibrium. Thus, we have \(U_{i, j} = 0\) and the first condition of the theorem holds. Now, consider the case where \(u_r(e_i, q_j) = 0\). In this case, we will also have \(u_r(e_i, q_j') = 0\), which makes \(q_j\) a best query for \(e_i\). We prove the necessity of the second condition of the theorem similarly. This concludes the proof for the necessity part of the theorem. Now, assume that both conditions of the theorem hold for strategies \(U\) and \(D\). We can prove that it is not possible to have strategies \(U''\) and \(D''\) such that \(u_r(U, D) < u_r(U'', D)\) or \(u_r(U, D) < u_r(U, D'')\) using a similar method.

5.3 Strict Nash Equilibrium

A strict Nash equilibrium is a strategy profile in which the DBMS and user will do worse by unilaterally changing their equilibrium strategy.

Definition 5.11. A strategy profile \((U, D)\) is a strict Nash equilibrium w.r.t. effectiveness measure \(r\) if we have \(u_r(U, D) > u_r(U, D')\) for all DBMS strategies \(D' \neq D\) and \(u_r(U, D) > u_r(U', D)\) for all user strategies \(U' \neq U\).

<table>
<thead>
<tr>
<th>Intent#</th>
<th>Intent</th>
</tr>
</thead>
<tbody>
<tr>
<td>9(a) Intents</td>
<td></td>
</tr>
<tr>
<td>(e_3)</td>
<td>(ans(z) \leftarrow Univ(x, 'MSU', 'MO', y, z))</td>
</tr>
<tr>
<td>(e_4)</td>
<td>(ans(z) \leftarrow Univ(x, 'MSU', y, 'public', z))</td>
</tr>
<tr>
<td>(e_5)</td>
<td>(ans(z) \leftarrow Univ(x, 'MSU', 'KY', y, z))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Query#</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>9(b) Queries</td>
<td></td>
</tr>
<tr>
<td>(q_2)</td>
<td>'MSU'</td>
</tr>
<tr>
<td>(q_3)</td>
<td>'KY'</td>
</tr>
</tbody>
</table>

Table 10. Strict best strategy profile

\[
\begin{array}{ccc|ccc|ccc}
\hline
q_2 & q_3 & e_3 & q_2 & e_4 & e_5 \\
\hline
1 & 0 & e_3 & 1 & 0 & 0 \\
1 & 0 & e_4 & 1 & 0 & 0 \\
0 & 1 & e_5 & 0 & 0 & 1 \\
\hline
\end{array}
\]

Example 5.12. Consider the intents, queries, strategy profile, and database instance in Tables 9(a), 9(b), 10, and 1. The strategy profile is a strict Nash equilibrium w.r.t precision. However, the strategy profile in Example 5.9 is not a strict Nash equilibrium as one may modify the value of \(e\) without changing the payoff of the players.
Next, we investigate the characteristics of strategies in a strict Nash equilibria profile. Recall that a strategy is pure iff it has only 1 or 0 values. A user strategy is onto if there is not any query q_j such that $U_{i,j} = 0$ for all intend i. A DBMS strategy is one-to-one if it does not map two queries to the same result. In other words, there is not any result s_{ij} such that $D_{i,j} > 0$ and $D_{j,i} > 0$ where $j \neq j'$.

Theorem 5.13. If (U, D) is a strict Nash equilibrium w.r.t. satisfaction function r, we have

- U is pure and onto.
- D is pure and one-to-one.

Proof. Let us assume that there is an intent e_i and a query q_j such that $0 < U_{i,j} < 1$. Since U is row stochastic, there is a query $q_{j'}$ where $0 < U_{i,j'} < 1$. Let $u_r(U_{i,j}, D) = \sum_{\ell=1}^{o} D_{j,\ell} r(e_i, s_{\ell}).$ If $u_r(U_{i,j}, D) = u_r(U_{i,j'}, D),$ we can create a new user strategy U' where $U'_{i,j} = 1$ and $U'_{i,j'} = 0$ and the values of other entries in U' is the same as U. Note that the payoff of (U, D) and (U', D) are equal and hence, (U, D) is not a strict Nash equilibrium.

If $u_r(U_{i,j}, D) \neq u_r(U_{i,j'}, D),$ without loss of generality one can assume that $u_r(U_{i,j}, D) > u_r(U_{i,j'}, D).$ We construct a new user strategy U'' whose values for all entries except (i, j) and (i, j') are equal to U and $U''_{i,j} = 1, U''_{i,j'} = 0$. Because $u_r(U, D) < u_r(U'', D),$ (U, D) is not a strict Nash equilibrium. Hence, U must be a pure strategy. Similarly, it can be shown that D should be a pure strategy.

If U is not onto, there is a query q_j that is not mapped to any intent in U. Hence, one may change the value in row j of D without changing the payoff of (U, D).

Assume that D is not one-to-one. Hence, there are queries q_i and q_j and a result s_{ij} such that $D_{i,j} = D_{j,i} = 1$. Because (U, D) is a strict Nash, U is pure and we have either $U_{i,j} = 1$ or $U_{j,i} = 1$. Assume that $U_{i,j} = 1$. We can construct strategy U' that have the same values as U for all entries except for (i,j) and (j,i) and $U'_{j,i} = 0, U'_{i,j} = 1$. Since the payoffs of (U, D) and (U', D) are equal, (U, D) is not a strict Nash equilibrium. \hfill \square

Theorem 5.13 extends the Theorem 1 in [22] for our model. In some settings, the user may know and use fewer queries than intents, i.e., $m > n$. Because the DBMS strategy in a strict Nash equilibrium is one-to-one, the DBMS strategy does not map some of the results to any query. Hence, the DBMS will never return some results in a strict Nash equilibrium no matter what query is submitted. Interestingly, as Example 5.2 suggests some of these results may be the results that perfectly satisfy some user’s intents. That is, given intent e_i over database instance I, the DBMS may never return $e_i(I)$ in a strict Nash equilibrium. Using a proof similar to the one of Lemma 5.10, we have the following properties of strict Nash equilibria of a game. A strategy profile (U, D) is a strict Nash equilibrium w.r.t. effectiveness measure r if and only if:

- Every intent e has a unique best query and the user strategy maps e to its best query, i.e., $e \in PL(q_i)$.
- D is the strict best response to U.

5.4 Number of Equilibria

A natural question is how many (strict) Nash equilibria exist in a game. Theorem 5.13 guarantees that both user and DBMS strategies in a strict Nash equilibrium are pure. Thus, given that the sets of intents and queries are finite, there are finitely many strict Nash equilibria in the game. We note that each set of results is always finite. However, we will show that if the sets of intents and queries in a game are finite, the game has infinite Nash equilibria.

Lemma 5.14. If a game has a non-strict Nash equilibrium. Then there is an infinitely many Nash equilibria.
PROOF. The result follows from the fact that the payoff function (1) is a bilinear form of U and D, i.e. it is a linear of D when U is fixed and a linear function of U, when D is fixed. If for $D \neq D'$, (U, D) and (U, D') are Nash-equilibria, then $u_r(U, D) = u_r(U, D')$. Therefore $u_r(U, aD + (1 - \alpha)D') = u_r(U, D)$ for any $\alpha \in \mathbb{R}$. In particular, for $\alpha \in [0, 1]$, if D, D' are stochastic matrices, $aD + (1 - \alpha)D'$ will be a stochastic matrix and hence, $(U, aD + (1 - \alpha)D')$ is a Nash equilibrium as well. Similarly, if (U', D) and (U, D) are Nash equilibria for $U \neq U'$, then $u_r(aU + (1 - \alpha)U', D) = u_r(U, D)$ and $(aU + (1 - \alpha)U', D)$ is a Nash-equilibrium for any $\alpha \in [0, 1]$. □

Theorem 5.15. Given a game with finitely many intents and queries, if the game has a non-strict Nash equilibrium, it has an infinite number of Nash equilibria.

PROOF. Every finite game has always a mixed Nash equilibrium [62]. According to Theorem 5.13, a mixed Nash is not a strict Nash equilibrium. Therefore, using Lemma 5.14, the game will have infinitely many Nash equilibria. □

5.5 Efficiency

In this section we discuss the efficiency of different equilibria. We refer to the value of the utility (payoff) in Formula (1) at a strategy profile to the efficiency of the strategy. Therefore, the most efficient strategy profile is naturally the one that maximizes (1). We refer to an equilibrium with maximum efficiency as an efficient equilibrium.

Thus far we have discussed two types of equilibria, Nash and strict Nash, that once reached it is unlikely that either player will deviate from its current strategy. In some cases it may be possible to enter a state of equilibrium where neither player has any incentive to deviate, but that equilibrium may not be an efficient equilibrium.

The strategy profile in Table 3(b) provides the highest payoff for the user and DBMS given the intents and queries in Tables 2(a) and 2(b) over the database in Table 1. However, some Nash equilibria may not provide high payoffs. For instance, Table 3(a) depicts another strategy profile for the set of intents and queries in Tables 2(a) and 2(b) over the database in Table 1. In this strategy profile, the user has little knowledge about the database content and expresses all of her intents using a single query q_2, which asks for the ranking of universities whose abbreviations are MSU. Given query q_2, the DBMS always returns the ranking of Michigan State University. Obviously, the DBMS always returns the non-relevant answers for the intents of finding the rankings of Mississippi State University and Missouri State University. If all intents have equal prior probabilities, this strategy profile is a Nash equilibrium. For example, the user will not get a higher payoff by increasing their knowledge about the database and using query q_1 to express intent e_2. Clearly, the payoff of this strategy profile is less than the strategy profile in Table 3(b). Nevertheless, the user and the DBMS do not have any incentive to leave this undesirable stable state once reached and will likely stay in this state.

Definition 5.16. A strategy profile (U, D) is optimal w.r.t. an effectiveness measure r if we have $u_r(U, D) \geq u_r(U', D')$ for all DBMS strategies D' and U'.

Since, the games discussed in this paper are games of identical interest, i.e. the payoff of the user and the DBMS are the same. If a strategy profile (U, D) is optimal, then none of the two players (i.e. the user and the DBMS) has a unilateral incentive to deviate. Thus, the strategy profile is an equilibrium and an efficient one. Moreover, since the game is cooperative, the players have mutual interests and a shared payoff. Thus, an efficient equilibrium must be an optimal strategy profile otherwise both players can collaborate and increase their shared payoff. Hence, we have the following result.

Proposition 5.17. A strategy profile (U, D) is optimal if and only if it is an efficient equilibrium.
Similar to the analysis on efficiency of a Nash equilibria, there are strict Nash equilibria that are less efficient than others. Strict Nash equilibria strategy profiles are unlikely to deviate from the current strategy profile, since any unilateral deviation will result in a lower payoff. From this we can say that strict Nash equilibria are also more stable than Nash equilibria since unilateral deviation will always have a lower payoff.

Table 11. Strategy Profile 1

<table>
<thead>
<tr>
<th></th>
<th>11(a) User strategy</th>
<th>11(b) Database strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(e_2)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(e_3)</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 12. Strategy Profile 2

<table>
<thead>
<tr>
<th></th>
<th>12(a) User Strategy</th>
<th>12(b) Database Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(e_2)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(e_3)</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

As an example of a strict Nash equilibrium that is not efficient, consider both strategy profiles illustrated in Tables 11 and 12. Note that the intents, queries, and results in this example are different from the ones in the previous examples. For this illustration, we set the rewards to \(r(e_1, s_1) = 1\), \(r(e_2, s_2) = 2\), \(r(e_2, s_3) = 0.1\), and \(r(e_3, s_3) = 3\) where all other rewards are 0. Using our payoff function in Equation 1 we can calculate the total payoff for the strategy profile in Table 11 as \(u(U, D) = 4.1\). This strategy profile is a strict Nash since any unilateral deviation by either player will result in a strictly worse payoff. Consider the strategy profile in Table 12 with payoff \(u(U, D) = 5\). This payoff is higher than the payoff the strategy profile in Table 11 receives. It is also not likely for the strategy profile with less payoff to change either strategy to the ones in the strategy profile with higher payoff as both are strict Nash.

5.6 Conclusion

When analyzing the current state of the game, we can determine whether the user and the DBMS are currently in a Nash or strict Nash equilibria. However, in practice this is impossible. As external observers we might be able to view the state of the database’s strategy, but we cannot know for sure the state of the user strategy. Nonetheless, this analysis provides some interesting insights into the model.

If one could determine whether the user and DBMS were in a Nash equilibria, then one would know that the next adaptation to the strategy by the reinforcement learning algorithm would lead to no additional reward. However, continued adaptation and reinforcement despite not receiving additional reward might lead to more reward in the future. This insight is key to understanding that even though the database and user may not immediately be improving their current state, some actions might improve their future state. When considering the strict Nash equilibria, this insight is even more relevant, as any deviation from the current strategy actually leads to a decrease...
in overall reward, further negating any incentive to deviate. Thus, there is possible work to be done in ensuring that the deviations leading to a lower reward aren’t completely ignored. However, determining whether continuing this deviation will lead to a better overall reward is quite difficult. If this were possible, then their would be no need to learn and the agents could simply immediately adopt the strategies that have the higher reward. Instead, perhaps one approach could be that when a Nash equilibrium state is detected, future deviations leading to equal or less reward might not be discounted as much.

Another interesting observation from this analysis is that not all Nash equilibria are equal. There may be varying degrees of reward for different strategy profiles in a Nash equilibrium. The same is true for strict Nash equilibria. Consider again that one was able to determine whether the user and the DBMS were in a Nash equilibrium. This might trigger some kind of response that deviations leading to the same or less reward should not be ignored so that the interaction does not stagnate and they could converge to a possibly better reward in the future. However, the user and the DBMS may be in the best Nash and those deviations should be ignore or discounted.

6 EFFICIENT QUERY ANSWERING OVER RELATIONAL DATABASES

An efficient implementation of the algorithm proposed in Section 4 over large relational databases poses two challenges. First, since the set of possible interpretations and their results for a given query is enormous, one has to find efficient ways of maintaining users’ reinforcements and updating DBMS strategy. Second, keyword and other usable query interfaces over databases normally return the top-k tuples according to some scoring functions [15, 32]. Due to a series of seminal works by database researchers [26], there are efficient algorithms to find such a list of answers. Nevertheless, our reinforcement learning algorithm uses a randomized semantic for answering algorithms in which candidate tuples are associated a probability for each query that reflects the likelihood by which it satisfies the intent behind the query. The tuples must be returned randomly according to their associated probabilities. Using (weighted) sampling to answer SQL queries with aggregation functions approximately and efficiently is an active research area [12, 35]. However, there has not been any attempt on using a randomized strategy to answer so-called point queries over relational data and achieve a balanced exploitation-exploration trade-off efficiently.

6.1 Maintaining DBMS Strategy

6.1.1 Keyword Query Interface. We use the current architecture of keyword query interfaces over relational databases that directly use schema information to interpret the input keyword query [15]. A notable example of such systems is IR-Style [32]. As it is mentioned in Section 2.4, given a keyword query, these systems translate the input query to a Select-Project-Join query whose where clause contains function match. The results of these interpretations are computed, scored according to some ranking function, and are returned to the user. We provide an overview of the basic concepts of such a system. We refer the reader to [15, 32] for more explanation.

6.1.2 Tuple-set: Given keyword query q, a tuple-set is a set of tuples in a base relation that contain some terms in q. After receiving q, the query interface uses an inverted index to compute a set of tuple-sets. For instance, consider a database of products with relations $Product(pid, name)$, $Customer(cid, name)$, and $ProductCustomer(pid, cid)$ where pid and cid are numeric strings. Given query $iMac John$, the query interface returns a tuple-set from $Product$ and a tuple-set from $Customer$ that match at least one term in the query. The query interface may also use a scoring function, e.g., traditional TF-IDF text matching score, to measure how exactly each tuple in a tuple-set matches some terms in q.
6.1.3 Candidate Network: A candidate network is a join expression that connects the tuple-sets via primary key-foreign key relationships. A candidate network joins the tuples in different tuple-sets and produces joint tuples that contain the terms in the input keyword query. One may consider the candidate network as a join tree expression whose leafs are tuple-sets. For instance, one candidate network for the aforementioned database of products is $Product \leftrightarrow ProductCustomer \leftrightarrow Customer$. To connect tuple-sets via primary key-foreign key links, a candidate network may include base relations whose tuples may not contain any term in the query, e.g., $ProductCustomer$ in the preceding example. Given a set of tuple-sets, the query interface uses the schema of the database and progressively generates candidate networks that can join the tuple-sets. For efficiency considerations, keyword query interfaces limit the number of relations in a candidate network to be lower than a given threshold. For each candidate network, the query interface runs a SQL query and return its results to the users. There are algorithms to reduce the running time of this stage, e.g., run only the SQL queries guaranteed to produce top-k tuples [32]. Keyword query interfaces normally compute the score of joint tuples by summing up the scores of their constructing tuples multiplied by the inverse of the number of relations in the candidate network to penalize long joins. We use the same scoring scheme. We also consider each (joint) tuple to be candidate answer to the query if it contains at least one term in the query.

6.1.4 Managing Reinforcements. The aforementioned keyword query interface implements a basic DBMS strategy of mapping queries to results but it does not leverage users’ feedback and adopts a deterministic strategy without any exploration. A naive way to record users’ reinforcement is to maintain a mapping from queries to tuples and directly record the reinforcements applied to each pair of query and tuple. In this method, the DBMS has to maintain the list of all submitted queries and returned tuples. Because many returned tuples are the joint tuples produced by candidate networks, it will take an enormous amount of space and is inefficient to update. Hence, instead of recording reinforcements directly for each pair of query and tuple, we construct some features for queries and tuples and maintain the reinforcement in the constructed feature space. More precisely, we construct and maintain a set of n-gram features for each attribute value in the base relations and each input query. N-grams are contiguous sequences of terms in a text and are widely used in text analytics and retrieval [47]. In our implementation, we use up to 3-gram features to model the challenges in managing a large set of features. Each feature in every attribute value in the database has its associated attribute and relation names to reflect the structure of the data. We maintain a reinforcement mapping from query features to tuple features. After a tuple gets reinforced by the user for an input query, our system increases the reinforcement value for the Cartesian product of the features in the query and the ones in the reinforced tuple. According to our experiments in Section 7, this reinforcement mapping can be efficiently maintained in the main memory by only a modest space overhead.

Given an input query q, our system computes the score of each tuple t in every tuple-set using the reinforcement mapping: it finds the n-gram features in t and q and sums up their reinforcement values recorded in the reinforcement mapping. Our system may use a weighted combination of this reinforcement score and traditional text matching score, e.g., TF-IDF score, to compute the final score. One may also weight each tuple feature proportional to its inverse frequency in the database similar to some traditional relevance feedback models [47]. Due to the space limit, we mainly focus on developing an efficient implementation of query answering based on reinforcement learning over relational databases and leave using more advanced scoring methods for future work. The scores of joint tuples are computed as it is explained in Section 6.1.1. We will explain in Section 6.2, how we convert these scores to probabilities and return tuples. Using features to compute and record user feedback has also the advantage of using the reinforcement of a pair of query and tuple.
to compute the relevance score of other tuples for other queries that share some features. Hence, reinforcement for one query can be used to return more relevant answers to other queries.

6.2 Efficient Exploitation & Exploration

We propose the following two algorithms to generate a weighted random sample of size k over all candidate tuples for a query.

6.2.1 Reservoir

To provide a random sample, one may calculate the total scores of all candidate answers to compute their sampling probabilities. Because this value is not known beforehand, one may use weighted reservoir sampling [13] to deliver a random sample without knowing the total score of candidate answers in a single scan of the data as follows.

Algorithm 1 Reservoir

```plaintext
W ← 0
Initialize reservoir array $A[k]$ to $k$ dummy tuples.

\[
\text{for all } CN \text{ candidate network do}
\]

\[
\text{for all } t ∈ CN \text{ do}
\]

\[
\text{if } A \text{ has dummy values then}
\]

\[
\text{insert } k \text{ copies of } t \text{ into } A
\]

\[
\text{else}
\]

\[
W ← W + Sc(t)
\]

\[
\text{for all } i = 1 ∈ k \text{ do}
\]

\[
\text{insert } t \text{ into } A[i] \text{ with probability } \frac{Sc(t)}{W}
\]

Reservoir generates the list of answers only after computing the results of all candidate networks, therefore, users have to wait for a long time to see any result. It also computes the results of all candidate networks by performing their joins fully, which may be inefficient. We propose the following optimizations to improve its efficiency and reduce the users’ waiting time.

#### 6.2.2 Poisson-Olken

**Poisson-Olken** algorithm uses Poisson sampling to output progressively the selected tuples as it processes each candidate network. It selects the tuple $t$ with probability $\frac{Sc(t)}{M}$, where $M$ is an upper bound to the total scores of all candidate answers. To compute $M$, we use the following heuristic. Given candidate network $CN$, we get the upper bound for the total score of all tuples generated from

\[
CN : M_{CN} = \frac{1}{n} \left( \sum_{TS ∈ CN} Sc_{max}(TS) \right) \frac{1}{2} \Pi_{TS ∈ CN} |TS|
\]

in which $Sc_{max}(TS)$ is the maximum query score of tuples in the tuple-set $TS$ and $|TS|$ is the size of each tuple-set. The term $\frac{1}{n} \left( \sum_{TS ∈ CN} Sc_{max}(TS) \right)$ is an upper bound to the scores of tuples generated by $CN$. Since each tuple generated by $CN$ must contain one tuple from each tuple-set in $CN$, the maximum number of tuples in $CN$ is $\Pi_{TS ∈ CN} |TS|$. It is very unlikely that all tuples of every tuple-set join with all tuples in every other tuple-set in a candidate network. Hence, we divide this value by 2 to get a more realistic estimation. We do not consider candidate networks with cyclic joins, thus, each tuple-set appears at most once in a candidate network. The value of $M$ is the sum of the aforementioned values for all candidate networks with size greater than one and the total scores of tuples in each tuple-set. Since the scores of tuples in each tuple-set is kept in the main memory, the maximum and total scores and the size of each tuple-set is computed efficiently before computing the results of any candidate network.
Both Reservoir and the aforementioned Poisson sampling compute the full joins of each candidate network and then sample the output. This may take a long time particularly for candidate networks with some base relations. There are several join sampling methods that compute a sample of a join by joining only samples the input tables and avoid computing the full join [13, 37, 53]. To sample the results of join $R_1 \bowtie R_2$, most of these methods must know some statistics, such as the number of tuples in $R_2$ that join with each tuple in $R_1$, before performing the join. They precompute these statistics in a preprocessing step for each base relation. But, since $R_1$ and/or $R_2$ in our candidate networks may be tuples sets, one cannot know the aforementioned statistics unless one performs the full join.

However, the join sampling algorithm proposed by Olken [53] finds a random sample of the join without the need to precompute these statistics. Given join $R_1 \bowtie R_2$, let $t \times R_2$ denote the set of tuples in $R_2$ that join with $t \in R_1$, i.e., the right semi-join of $t$ and $R_2$. Also, let $|t \times R_2|_{\max}$ be the maximum number of tuples in $R_2$ that join with a single tuple $t \in R_1$. The Olken algorithm first randomly picks a tuple $t_1$ from $R_1$. It then randomly selects the tuple $t_2$ from $t_1 \times R_2$. It accepts the joint tuple $t_1 \bowtie t_2$ with probability $\frac{|t_1 \times R_2|}{|t \times R_2|_{\max}}$ and rejects it with the remaining probability. To avoid scanning $R_2$ multiple times, Olken algorithm needs an index over $R_2$. Since the joins in our candidate networks are over only primary and foreign keys, we do not need too many indexes to implement this approach.

We extend the Olken algorithm to sample the results of a candidate network without doing its joins fully as follows. Given candidate network $R_1 \bowtie R_2$, our algorithm randomly samples tuple $t_1 \in R_1$ with probability $\frac{\text{Sc}(t_1)}{\sum_{t \in R_1} \text{Sc}(t_1)}$, where $\text{Sc}(t)$ is the score of tuple $t$, if $R_1$ is a tuple-set. Otherwise, if $R_1$ is a base relation, it picks the tuple with probability $\frac{1}{|R_1|}$. The value of $\sum_{t \in R} \text{Sc}(t)$ for each tuple set $R$ is computed at the beginning of the query processing and the value of $|R|$ for each base relation is calculated in a preprocessing step. The algorithm then samples tuple $t_2$ from $t_1 \times R_2$ with probability $\frac{\text{Sc}(t_2)}{\sum_{t \in t_1 \times R_2} \text{Sc}(t_2)}$ if $R_2$ is a tuple-set and $\frac{1}{|t_1 \times R_2|}$ if $R_2$ is a base relation. It accepts the joint tuple with probability $\frac{\max(\sum_{t \in t_1 \times R_2, s \in R_1} \text{Sc}(t))}{\sum_{t \in t_1 \times R_2} \text{Sc}(t)}$ and rejects it with the remaining probability.

To compute the exact value of $\max(\sum_{t \in t_1 \times R_2, s \in R_1} \text{Sc}(t))$, one has to perform the full join of $R_1$ and $R_2$. Hence, we use an upper bound on $\max(\sum_{t \in t_1 \times R_2, s \in R_1} \text{Sc}(t))$ in Olken algorithm. Using an upper bound for this value, Olken algorithm produces a correct random sample but it may reject a larger number of tuples and generate a smaller number of samples. To compute an upper bound on the value of $\max(\sum_{t \in t_1 \times R_2, s \in R_1} \text{Sc}(t))$, we precompute the value of $|t \bowtie B_1|_{\max}$ before the query time for all base relations $B_1$ and $B_j$ with primary and foreign keys of the same domain of values. Assume that $B_1$ and $B_2$ are the base relations of tuple-sets $R_1$ and $R_2$, respectively. We have $|t \bowtie R_1|_{\max} \leq |t \bowtie B_1|_{\max}$. Because $\max(\sum_{t \in t_1 \times R_2, s \in R_1} \text{Sc}(t)) \leq \max_{t \in R_2} (\text{Sc}(t))|t \bowtie R_1|_{\max}$, we have $\max(\sum_{t \in t_1 \times R_2, s \in R_1} \text{Sc}(t)) \leq \max_{t \in R_2} (\text{Sc}(t))|t \bowtie B_1|_{\max}$. Hence, we use $\frac{\max_{t \in R_2} (\text{Sc}(t))|t \bowtie B_1|_{\max}}{\sum_{t \in t_1 \times R_2} \text{Sc}(t)}$ for the probability of acceptance. We iteratively apply the aforementioned algorithm to candidate networks with multiple joins by treating the join of each two relations as the first relation for the subsequent join in the network.

The following algorithm adopts a Poisson sampling method to return a sample of size $k$ over all candidate networks using the aforementioned join sampling algorithm. We show binomial distribution with parameters $n$ and $p$ as $B(n, p)$. We denote the aforementioned join algorithm as Extended-Olken. Also, ApproxTotalScore denotes the approximated value of total score computed as explained at the beginning of this section.

The expected value of produced tuples in the Poisson-Olken algorithm is close to $k$. However, as opposed to reservoir sampling, there is a non-zero probability that Poisson-Olken may deliver fewer
Algorithm 2 Poisson-Olken

\[
\begin{align*}
    &x \leftarrow k \\
    &W \leftarrow \frac{\text{ApproxTotalScore}}{k} \\
    \text{while } x > 0 \text{ do} \\
    &\text{for all candidate network } CN \text{ do} \\
    &\quad \text{if } CN \text{ is a single tuple-set then} \\
    &\quad \quad \text{for all } t \in CN \text{ do} \\
    &\quad \quad \quad \text{output } t \text{ with probability } \frac{Sc(t)}{W} \\
    &\quad \quad \text{if a tuple } t \text{ is picked then} \\
    &\quad \quad \quad x \leftarrow x - 1 \\
    &\quad \text{else} \\
    &\quad \quad \text{let } CN = R_1 \bowtie \ldots \bowtie R_n \\
    &\quad \quad \text{for all } t \in R_1 \text{ do} \\
    &\quad \quad \quad \text{Pick value } X \text{ from distribution } B(k, \frac{Sc(t)}{W}) \\
    &\quad \quad \quad \text{Pipeline } X \text{ copies of } t \text{ to the Olken algorithm} \\
    &\quad \quad \text{if Olken accepts } m \text{ tuples then} \\
    &\quad \quad \quad x \leftarrow x - m
\end{align*}
\]

than \(k\) tuples. To drastically reduce this chance, one may use a larger value for \(k\) in the algorithm and reject the appropriate number of the resulting tuples after the algorithm terminates [13]. The resulting algorithm will not progressively produce the sampled tuples, but, as our empirical study in Section 7 indicates, it is faster than Reservoir over large databases with relatively many candidate networks as it does not perform any full join.

7 EMPIRICAL STUDY

In this section we show the results of our empirical study of our proposed model and algorithms. We would like to validate and ground our proposed model and show that considering whether the user learns or not is an important aspect of interaction with a DBMS. We also want to evaluate the effectiveness and efficiency of our proposed learning algorithm for DBMS in the presence of the user learning.

7.1 Effectiveness

7.1.1 Experimental Setup. It is difficult to evaluate the effectiveness of online and reinforcement learning algorithms for information systems in a live setting with real users because it requires a very long time and a large amount of resources [29, 31, 54, 60, 65]. Thus, most studies in this area use purely simulated user interactions [31, 54, 60]. A notable expectation is [65], which uses a real-world interaction log to simulate a live interaction setting. We follow a similar approach and use Yahoo! interaction log [67] to simulate interactions using real-world queries and dataset.

7.1.2 User Strategy Initialization: We train a user strategy over the Yahoo! 43H-interaction log whose details are in Section 3 using Roth and Erev’s method, which is deemed the most accurate to model user learning according to the results of Section 3. This strategy has 341 queries and 151 intents. The Yahoo! interaction log contains user clicks on the returned intents, i.e. URLs. However, a user may click a URL by mistake [65]. We consider only the clicks that are not noisy according to the relevance judgment information that accompanies the interaction log. According to the empirical study reported in Section 3.2, the parameters of number and length of sessions and
the amount of time between consecutive sessions do not impact the user learning mechanism in
long-term communications. Thus, we have not organized the generated interactions into sessions.

7.1.3 Metric: Since almost all returned results have only one relevant answer and the relevant
answers to all queries have the same level of relevance, we measure the effectiveness of the
algorithms using the standard metric of Reciprocal Rank (RR) [47]. RR is $\frac{1}{r}$ where $r$ is the position
of the first relevant answer to the query in the list of the returned answers. RR is particularly useful
where each query in the workload has a very few relevant answers in the returned results, which
is the case for the queries used in our experiment.

7.1.4 Algorithms: We compare the algorithm introduced in Section 4.1 against the state-of-the-art
and popular algorithm for online learning in information retrieval called UCB-1 [3, 50, 54, 65]. It
has been shown to outperform its competitors in several studies [50, 54]. It calculates a score for
an intent $e$ given the $t$th submission of query $q$ as: $Score_t(q,e) = W_{t,q,e} + \alpha \sqrt{\frac{\ln t}{n_{q,e,t}}}$, in which $X$ is
how many times an intent was shown to the user, $W$ how many times the user selects a returned
intent, and $\alpha$ is the exploration rate set between $[0, 1]$. The first term in the formula prefers the
intents that have received relatively more positive feedback, i.e., exploitation, and the second term
gives higher scores to the intents that have been shown to the user less often and/or have not
been tried for a relatively long time, i.e., exploration. UCB-1 assumes that users follow a fixed
probabilistic strategy. Thus, its goal is to find the fixed but unknown expectation of the relevance
of an intent to the input query, which is roughly the first term in the formula; by minimizing the
number of unsuccessful trials.

7.1.5 Parameter Estimation: We randomly select 50% of the intents in the trained user strategy to
learn the exploration parameter $\alpha$ in UCB-1 using grid search and sum of squared errors over 10,000
interactions that are after the interactions in the 43H-interaction log. We do not use these intents
to compare algorithms in our simulation. We calculate the prior probabilities, $\pi$ in Equation 1, for
the intents in the trained user strategy that are not used to find the parameter of UCB-1 using the
entire Yahoo! interaction log.

7.1.6 DBMS Strategy Initialization: The DBMS starts the interaction with an strategy that does
not have any query. Thus, the DBMS is not aware of the set of submitted queries apriori. When the
DBMS sees a query for the first time, it stores the query in its strategy, assigns equal probabilities for
all intents to be returned for this query, returns some intent(s) to answer the query, and stores the
user feedback on the returned intent(s) in the DBMS strategy. If the DBMS has already encountered
the query, it leverages the previous user’s feedback on the results of this query and returns the set
of intents for this query using our proposed learning algorithm. Retrieval systems that leverage
online learning perform some filtering over the initial set of answers to make efficient and effective
exploration possible [31, 65]. More precisely, to reduce the set of alternatives over a large dataset,
online and reinforcement learning algorithms apply a traditional selection algorithm to reduce the
number of possible intents to a manageable size. Otherwise, the learning algorithm has to explore
and solicit user feedback on numerous items, which takes a very long time. For instance, online
learning algorithms used in searching a set of documents, e.g., UCB-1, use traditional information
retrieval algorithms to filter out obviously non-relevant answers to the input query, e.g.,
the documents with low TF-IDF scores. Then, they apply the exploitation-exploration paradigm and
solicit user feedback on the remaining candidate answers. The Yahoo! interaction workload has
all queries and intents anonymized, thus we are unable to perform a filtering method of our own
choosing. Hence, we use the entire collection of possible intents in the portion of the Yahoo! query
log used for our simulation. This way, there 4521 intent per query that can be returned, which is
close to the number of answers a reinforcement learning algorithm may consider over a large data set after filtering [65]. The DBMS strategy for our method is initialized to be completely random.

7.1.7 Results. We simulate the interaction of a user population that starts with our trained user strategy with UCB-1 and our algorithm. In each interaction, an intent is randomly picked from the set of intents in the user strategy by its prior probability and submitted to UCB-1 and our method. Afterwards, each algorithm returns a list of 10 answers and the user clicks on the top-ranked answer that is relevant to the query according to the relevance judgment information. The details of simulation is reported in our technical report [49]. We run our simulations for one million interactions.

Figure 3 shows the accumulated Mean Reciprocal Rank (MRR) over all queries in the simulated interactions. Our method delivers a higher MRR than UCB-1 and its MRR keeps improving over the duration of the interaction. UCB-1, however, increases the MRR at a much slower rate. Since UCB-1 is developed for the case where users do not change their strategies, it learns and commits to a fixed probabilistic mapping of queries to intents quite early in the interaction. Hence, it cannot learn as effectively as our algorithm where users modify their strategies using a randomized method, such as Roth and Erev’s. As our method is more exploratory than UCB-1, it enables users to provide feedback on more varieties of intents than they do for UCB-1. This enables our method to learn more accurately how users express their intents in the long-run.

We have also observed that our method allows users to try more varieties of queries to express an intent and learn the one(s) that convey the intent effectively. As UCB-1 commits to a certain mapping of a query to an intent early in the interaction, it may not return sufficiently many relevant answers if the user tries this query to express another intent. This new mapping, however, could be promising in the long-run. Hence, the user and UCB-1 strategies may stabilize in less than desirable states. Since our method does not commit to a fixed strategy that early, users may try this query for another intent and reinforce the mapping if they get relevant answers. Thus, users have more chances to try and pick a query for an intent that will be learned and mapped effectively to the intent by the DBMS.

Because our proposed learning algorithm is more exploratory than UCB-1, it may have a longer startup period than UCB-1’s. One method is for the DBMS to use a less exploratory learning algorithm, such as UCB-1, at the beginning of the interaction. After a certain number of interactions, the DBMS can switch to our proposed learning algorithm. The DBMS can distinguish the time of switching to our algorithm by observing the amount of positive reinforcement it receives from the user. If the user does not provide any or very small number of positive feedback on the returned results, the DBMS is not yet ready to switch to a relatively more exploratory algorithm. If the DBMS observes a relatively large number of positive feedback on sufficiently many queries, it has already provided a relatively accurate answers to many queries. Finally, one may use a relatively large value of reinforcement in the database learning algorithm at the beginning of the interaction to reduce its degree of exploration. The DBMS may switch to a relatively small value of reinforcement after it observes positive feedback on sufficiently many queries.

We have implemented the latter of these methods by increasing the value of reinforcement by some factor. Figure 2 shows the results of applying this technique in our proposed DBMS learning algorithm over the Yahoo! query workload. The value of reinforcement is initially 3 and 6 times larger than the default value proposed in Section 4 until a threshold satisfaction value is reached, at which point the reinforcement values scales back down to its original rate.

We notice that by increasing the reinforcement value by some factor, the startup period is reduced. However, there are some drawbacks to this method. Although we don’t see it here, by increasing the rate of reinforcement in the beginning, some amount of exploration may be sacrificed. Thus
Fig. 2. Mean reciprocal rank for 1,000,000 interactions with different degrees of reinforcements

more exploitation will occur in the beginning of the series of interactions. This may lead to behavior similar to UCB-1 and perform too much exploitation and not enough exploration. Finding the correct degree of reinforcement is an interesting area for future work.

7.2 Efficiency

7.2.1 Experimental Setup. We have built two databases from Freebase (developers.google.com/freebase), TV-Program and Play. TV-Program contains 7 tables and consisting of 291,026 tuples. Play contains 3 tables and consisting of 8,685 tuples. For our queries, we have used two samples of 621 (459 unique) and 221 (141 unique) queries from Bing (bing.com) query log whose relevant answers after filtering our noisy clicks, are in TV-program and Play databases, respectively [24]. After submitting each query and getting some results, we simulate user feedback using the relevance information in the Bing log.

Freebase is built based on the information about entities in the Wikipedia (wikipedia.org) articles. Each entity in Freebase database contains the URL of its corresponding article in Wikipedia. For our queries, we have used a sample of Bing (bing.com) query log whose relevant answers according to the click-through information, after filtering our noisy clicks, are in the Wikipedia articles [24]. We use two subsets of this sample whose relevant answers are in the TV-Program and Play databases. The set of queries over TV-Program has 621 (459 unique) queries with the average number of 3.65 keywords per query and the one over Play has 221 (141 unique) queries with the average number of 3.66 keywords per query. We use the frequencies of queries to calculate the prior probabilities of submission. After submitting each query and getting some results, we simulate user feedback using the relevance information in the Bing query log.
7.2.2 Query Processing: We have used Whoosh inverted index (whoosh.readthedocs.io) to index each table in databases. Whoosh recognizes the concept of table with multiple attributes, but cannot perform joins between different tables. Because the Poisson-Olken algorithm needs indexes over primary and foreign keys used to build candidate network, we have build hash indexes over these tables in Whoosh. Given an index-key, these indexes return the tuple(s) that match these keys inside Whoosh. To provide a fair comparison between Reservoir and Poisson-Olken, we have used these indexes to perform join for both methods. We also precompute and maintain all 3-grams of the tuples in each database as mentioned in Section 6.1. We have implemented our system using both Reservoir and Poisson algorithms. We have limited the size of each candidate network to 5. Our system returns 10 tuples in each interaction for both methods.

Hardware Platform: We run experiments on a server with 32 2.6GHz Intel Xeon E5-2640 processors with 50GB of main memory.

7.2.3 Results. Table 13 depicts the time for processing candidate networks and reporting the results for both Reservoir and Poisson-Olken over TV-Program and Play databases over 1000 interactions. These results also show that Poisson-Olken is able to significantly improve the time for executing the joins in the candidate network, shown as performing joins in the table, over Reservoir in both databases. The improvement is more significant for the larger database, TV-Program. Poisson-Olken progressively produces tuples to show to user. But, we are not able to use this feature for all interactions. For a considerable number of interactions, Poisson-Olken does not produce 10 tuples, as explained in Section 6.2. Hence, we have to use a larger value of $k$ and wait for the algorithm to finish in order to find a randomize sample of the answers as explained at the end of Section 6.2.
Both methods have spent a negligible amount of time to reinforce the features, which indicate that using a rich set of features one can perform and manage reinforcement efficiently.

### Table 13. Average candidate networks processing times in seconds for 1000 interactions

<table>
<thead>
<tr>
<th>Database</th>
<th>Reservoir</th>
<th>Poisson-Olken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Play</td>
<td>0.078</td>
<td>0.042</td>
</tr>
<tr>
<td>TV Program</td>
<td>0.298</td>
<td>0.171</td>
</tr>
</tbody>
</table>

8 RELATED WORK

Database community has proposed several systems that help the DBMS learn the user’s information need by showing examples to the user and collecting her feedback [2, 7, 21, 42, 63]. In these systems, a user explicitly teaches the system by labeling a set of examples potentially in several steps without getting any answer to her information need. Thus, the system is broken into two steps: first it learns the information need of the user by soliciting labels on certain examples from the user and then once the learning has completed, it suggests a query that may express the user’s information need. These systems usually leverage active learning methods to learn the user intent by showing the fewest possible examples to the user [21]. However, ideally one would like to have a query interface in which the DBMS learns about the user’s intents while answering her (vague) queries as our system does. As opposed to active learning methods, one should combine and balance exploration and learning with the normal query answering to build such a system. Moreover, current query learning systems assume that users follow a fixed strategy for expressing their intents. Also, we focus on the problems that arise in the long-term interaction that contain more than a single query and intent.

Sampling has been used to approximate the results of SQL queries with aggregation functions and achieve the fast response time needed by interactive database interfaces [12, 35]. However, we use sampling techniques to learn the intent behind imprecise point queries and answer them effectively and efficiently.

Reinforcement learning is a classic and active research area in machine learning and AI [61]. There is a recent interest in using exploitation-exploration paradigm to improve the understanding of users intents in an interactive document retrieval [29]. The exploitation-exploration trade-off has been also considered in finding keyword queries for data integration [68]. These methods, however, do not consider the impact of user learning throughout the interaction. Reinforcement learning has also been utilized in database areas for some time [39].

Researchers have leveraged economical models to build query interfaces that return desired results to the users using the fewest possible interactions [73]. In particular, researchers have recently applied game-theoretic approaches to model the actions taken by users and document retrieval systems in a single session [44]. They propose a framework to find out whether the user likes to continue exploring the current topic or move to another topic. We, however, explore the development of common representations of intents between the user and DMBS. We also investigate the interactions that may contain various sessions and topics. Moreover, we focus on structured rather than unstructured data. Avestani et al. have used signaling games to create a shared lexicon between multiple autonomous systems [5]. Our work, however, focuses on modeling users’ information needs and development of mutual understanding between users and the DBMS. Moreover, as opposed to the autonomous systems, a DBMS and user may update their information about the interaction in different time scales.
Our game is a special case of signaling games, which model communication between two or more agents and have been widely used in economics, sociology, biology, and linguistics [16, 22, 41, 52]. Generally speaking, in a signaling game a player observes the current state of the world and informs the other player(s) by sending a signal. The other player interprets the signal and makes a decision and/or performs an action that affects the payoff of both players. A signaling game may not be cooperative in which the interests of players do not coincide [16]. Our framework extends a particular category of signaling games called language games [22, 52, 64] and is closely related to learning in signaling games [33].

Some of the results reported in this manuscript have appeared at [48]. The current submission extends our previous work in three main directions. First, we have investigated the convergence properties of our proposed learning algorithm in a simplified setting where the DBMS returns only one (candidate) answer to the user. Current manuscript formally explores the convergence of our learning algorithm where the DBMS returns more than a single answer to the user in Section 4.2.3.

It also investigates the convergence of the algorithm when the relevance of an answer to a query is a binary value, i.e., relevant or non-relevant. This is an special case of the general result proved in [48] in which an answer can have multiple levels of relevance to a query. However, the proof presented in the current submission for this special case is simpler than the one of the more general result in [48]. Second, we have defined and analyzed the eventual stable states of the game in the long-term interaction of the user and DBMS in Section 5. An important aspect of analyzing a game is to understand whether they have any eventual stable states and the characteristics of such states. We have analyzed the Nash equilibria of the game and the accuracy of the common understanding between the user and DBMS in these equilibria. Finally, our previous work aims at understanding user learning mechanism by considering all users as one collective agent. This assumption, however, requires users to share the outcomes of their explorations and learning. Since users do not generally communicate, it is not clear whether or how they share their experiences. Thus, we have performed a new empirical study and analyzed the learning mechanisms of both individual users and groups of users in Section 3.

9 CONCLUSION

Much of the world data is in structured forms, but many users do not know how to express their information needs over structured data using precisely framed and formal languages, such as SQL. These users may express their intents using easy-to-use and inherently vague languages, such as keyword queries. A DBMS may interact with these users and learn their information needs. We showed that users also learn and modify how they express their information needs during their interaction with the DBMS. We modeled the interaction between the user and the DBMS as a game, where the players would like to establish a common mapping from information needs to queries via learning. We showed that users exhibit some reinforcement learning tendencies when interacting with database systems. They remember past decisions and attempt to improve their queries over time to get better results. We have shown that these behavior can be modeled accurately using a well-known reinforcement learning scheme used to model human learning in behavioral game theory called Roth and Erev’s model.

Current query interfaces assume that the user has a static strategy and do not learn over time. Thus, they do not effectively learn the information needs behind queries in such a setting. We proposed a reinforcement learning algorithm for the DBMS that learns the querying strategy of the user effectively. We proved that our proposed algorithm converges in both the cases that users learn and do not modify her method of expressing her intents stochastically speaking. We have also analyzed the equilibria of this game and showed that the game has both desirable, in which the user and the DBMS get the highest possible rewards and undesirable ones, where none of the players
may get their maximum reward. We also propose an efficient implementation of our algorithm for large databases by leveraging novel sampling techniques. Our empirical study validates our model and indicates that our proposed algorithm is more effective compared to other popular ranking and online learning algorithms. It also shows that our sampling techniques improve the running times of the algorithm over large databases significantly.

We believe that our proposed game-theoretic setting can be used as an effective method to tackle the important and long-standing problem of data interoperability in databases. It is well established that due to the enormous upfront cost of data integration and conversion, one ought to find the right mapping between databases gradually and using human-in-the-loop methods [68]. A game-theoretic approach to this problem will help users and underlying data sources to collectively establish a common representation and mapping effectively. Our work can also be extended to other types of interactions, such as data exploration. During data exploration, users may follow different states of interactions, e.g., exploring the whole data versus focusing on some parts of the data, and may adapt different learning mechanisms in each state. An interesting future work is to explore the learning behavior of users in these states and find the effective learning algorithm for the DBMS that can effectively collaborate with users in each state.

REFERENCES

A Game-theoretic Approach to Data Interaction


[27] [45] Yi Luo, Xumein Lin, Wei Wang, and Xiaofang Zhou. SPARK: Top-k Keyword Query in Relational Databases. In SIGMOD


[36] [45] Yi Luo, Xumein Lin, Wei Wang, and Xiaofang Zhou. SPARK: Top-k Keyword Query in Relational Databases. In SIGMOD

2108 2007.
2112 Cambridge University Press.
2114 Game. In *Proceedings of the 2018 International Conference on Management of Data (SIGMOD ’18).* ACM, New York, NY,
2115 USA, 83–98. DOI: http://dx.doi.org/10.1145/3183713.3196899
2116 [49] Ben McCamish, Arash Termechey, and Behrouz Touri. 2016. A Signaling Game Approach to Databases Querying and
2125 [55] Herbert Robbins and David Siegmund. 1985. A convergence theorem for non negative almost supermartingales and
2131 manuscript* (2003).
2132 [59] Hanan Shieingart and Yonatan Loewenstein. 2014. Reinforcement learning and human behavior. *Current Opinion in
2133 Neurobiology* 25 (04/2014 2014), 93–98.
2137 MA, USA.
2142 [65] Aleksandr Vorobev, Damien Lefortier, Gleb Gusev, and Pavel Serdyukov. 2015. Gathering additional feedback on
2143 search results by multi-armed bandits with respect to production ranking. In *WWW.* International World Wide Web
2144 Conferences Steering Committee, 1177–1187.
2148 [68] Zhepeng Yan, Nan Zheng, Zachary G Ives, Partha Pratim Talukdar, and Cong Yu. 2013. Actively soliciting feedback
2149 for query answers in keyword search-based data integration. In *Proceedings of the VLDB Endowment,* Vol. 6. VLDB
2150 Endowment, 205–216.
2154 Behavioral Economics,* L. Blume and S. Durlauf (Eds.). Palgrave Macmillan.
2159 Interactive Retrieval Interface. In *SIGIR*. 