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Abstract 
 

Visual dictionaries have been successfully applied 

to “bags-of-points” image representations for generic 

object recognition. Usually the choice of low-level 

interest region detector and region descriptor (chan-

nel) has significant impact on the performance of visu-

al dictionaries. In this paper, we propose a discrimina-

tive evaluation method -- Maximum Mutual Informa-

tion (MMI) curves to analyze the properties of the vis-

ual dictionaries built from different channels. Experi-

mental results on benchmark datasets show that MMI 

curves can give us not only insight into the discrimina-

tive characteristics of the visual dictionaries, but also 

provide straightforward guidelines for the design of 

the image classifier. 
 

 

1. Introduction 
 

    Real-world object recognition datasets usually con-

tain significant appearance variation in images due to 

different pose, visual transformation, occlusion, noise 

signals and so on. In order to obtain relatively invariant 

and compact representations of objects, various interest 

region detectors [1,2,3,7] have been applied to images 

to extract distinct and salient regions. Region descrip-

tors are then commonly computed to describe the im-

age contents within the interest regions. The most fam-

ous one is the SIFT descriptor [3].  

    Recently years have seen great success of visual dic-

tionary [4,5] approaches for generic object recognition 

based on these local region descriptors. These ap-

proaches use clusters of region descriptors as the initial 

entries in the visual dictionary. The recognition task is 

then accomplished by manipulating the entries and se-

lecting the most discriminative ones to build the final 

image classifier. Different combinations (channels) of 

interest region detectors and region descriptors will 

produce different pools of features to build the dictio-

naries. Ideally, all the entries should be consistent and 

informative to make classification a trivial task. The 

choice of detector has significant impact on the per-

formance of recognition approaches [4,5]. But it is not 

always obvious which detector preferred for a given 

problem. Usually, the choice is made purely empirical-

ly. Given an object recognition problem, it would be 

much more rational to experiment only with detectors 

that are promising for the problem, rather than trying 

every available detector.  

    Different evaluation criteria [4,5] have been pro-

posed to measure the discriminative ability of descrip-

tor clusters. In [4], the discriminative power of the 

clusters is evaluated using the classification likelihood 

and mutual information criteria. In [5], the clusters of 

region descriptors are evaluated based on their average 

cluster precision. Motivated by previous work and the 

successful discriminative feature selection algorithm in 

[6], we propose the Maximum Mutual Information 

(MMI) evaluation criterion, which measures the dis-

criminative power of visual dictionary entries quantita-

tively. Our evaluation method is closely related to the 

classification of image instances in the recognition task. 

It can be performed on any object recognition dataset 

efficiently without the requirement for prior knowledge 

of homographies. The MMI curves can clearly reveal 

the characteristics of dictionaries for the specific object 

recognition problem. Additionally, comparison results 

are valuable guidelines for the design of the image 

classifier. In this paper, visual dictionaries built from 

state-of-art interest region detectors are evaluated on 

benchmark datasets. The results can help future re-

searchers to select suitable detectors for similar object 

recognition problems.   
   

2. MMI evaluation method 
     

2.1. Clusters learned by GMM-EM algorithm 
 



   Given a binary object recognition dataset composed 

of object (positive) images and background (negative) 

images, the positive images are partitioned into two 

disjoint sets, one is called the clustering set, denoted as 

IC. The other positive set is combined with all negative 

images to form the evaluation set IE. Then a specific 

interest region detector is applied to all the images. For 

each detected region, a SIFT descriptor [3] is computed 

to produce the clustering descriptor vectors FC and 

evaluation descriptor vectors FE.  

    As in [4], our method first fits a Gaussian Mixture 

Model (GMM) to the clustering descriptor vectors. 

Each cluster Ck is described by a d-dimensional mean 

vector µk and a d×d diagonal covariance matrix Σk.  In 

our experiments, the number of clusters K is set to 50.  
 

2.2. MMI score 
 

    Given: a cluster Ck: (µk, Σk); the evaluation set IE 

contains I images; the class labels of evaluation images 

LE = (l1, …, li, … , lI), with li }1,1{ −+∈ ; and the SIFT 

vectors of evaluation images FE = (F1, …, Fi, … , FI), 

we would like to evaluate the discrimination property 

of cluster Ck, that is, how well does the cluster reveal 

the categories of evaluation images. This is done by 

employing cluster Ck to classify the evaluation images, 

and search for the maximum mutual information 

(MMI) between the classification results and the true 

class labels, then take MMI as the evaluation score for 

Ck. In order to classify the evaluation images using 

cluster Ck, first, we calculate the distance from Ck to all 

the evaluation images. For cluster Ck: (µk, Σk) and im-

age Ii, the distance between them is: 
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where vij∈Fi is the SIFT descriptor vector computed 

from region  j = 1, …, Di. Di is the total number of de-

tected regions in image Ii.  

    Given the distances between Ck and evaluation im-

ages: (dk,1, …, dk,i , … , dk,I); all the evaluation images 

can be sorted based on the distances. That is, find a 

permutation π = (π(1), … , π(i), …, π(I)) such that: 

                        dk,π(1) ≤ … ≤ dk,π(i) ≤ … ≤ dk,π(I)            (2)        

Then the sorted class labels are:  

lk,π = (lk,π(1), … , lk,π(i), … , lk,π(I)), lk,π(i) }1,1{ −+∈         (3) 

    The sorted label array illustrates the discrimination 

power of cluster Ck. A perfect cluster should have all 

the positive images (+1) ranked first followed by all the 

negative images (−1); while a poor cluster can never 

discriminate between them, so gives randomly ordered 

labels. From the view of Information Theory, the sorted 

label array lk,π indicates how much information the dis-

tance-based sorting can tell about class labels, which 

can be quantitatively measured by the maximum mutual 

information (MMI) between the sorting array and true 

class labels: 
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    MI(lk,π, s) calculates the mutual information between 

the classification results Ck,s and true image class LE. 

Ck,s is given by a decision stump [6] which set thre-

shold at the position s (1≤ s ≤ I) in the sorted label ar-

ray, and classifies the images before s to be positives, 

those after s to be negatives. The search for the maxi-

mum in (4) can be sped up by addressing the fact that 

the maximum can only possibly be obtained between 

+1 followed by a −1 in the sorted label array. Using the 

sorted label array lk,π, the mutual information in (4) can 

be calculated similarly as in [4]. MMI scores measure 

the discriminative power of  dictionary entries. A per-

fectly discriminative entry is assigned full MMI score 

of 1.0; while a non-discriminative entry will have a 

score near 0.   
 

2.3. MMI curves 
 

    We evaluate the performance of visual dictionaries 

built from several state-of-art interest region detectors: 

(1) Harris Laplace detector (HarLap), Hessian Laplace 

detector (HesLap), and their affine-invariant versions, 

Harris affine-invariant detector (HarAff) and Hessian 

affine-invariant detector (HesAff) in [1]; (2) Difference-

of-Gaussian (DoG) detector [3]; (3) Maximally Stable 

Extremal Regions (MSER) [7]; (4) Curvilinear Regions 

(Curvilinear) detector [2].  

    For each detector, we sort the dictionary entries 

(clusters) into decreasing order of their MMI scores, 

and plot the sorted scores as a function of their position 

in the ordering. We call such a plot an MMI curve (see 

Fig.1). A detector’s performance and suitability for 

object recognition can be measured by the Area-Under-

Curve (AUC) and the shape of the MMI curve. The 

MMI curve for a perfect detector is a horizontal line at 

full score (this also gives maximum AUC). If a detector 

produce an MMI curve which is above average but 

relatively flat, such as the MMI curve for DoG on the 

cars dataset in Fig.1, it indicates that most of the de-

tected regions are fairly distinctive and discriminative, 

only a few of the detections are very noisy. Under this 

situation, the classifiers that assume equal contribution 

from all features such as Nearest Neighbor and Neural 

Networks are probably able to tolerate the noise and 

give high recognition performance. On the other hand, 

if a detector generates a curve which has very high 

scores for the top ranking clusters but relatively low 

scores for the following clusters, for example, the MMI 

curve for Curvilinear detector on stoneflies in Fig.1. It 



shows that the detector can only find a few highly dis-

tinctive and discriminative regions while at the same 

time producing many uninformative detections. In this 

case, the classifiers mentioned above will probably fail. 

While this detector may work well with the algorithms 

based on discriminative feature selection [4,6], which 

are able to achieve high classification accuracy using 

only a small part of relevant features. In summary, 

MMI curves are valuable guidelines for the selection of 

detectors and the design of the image classifiers.      
 

3. Evaluation results 
 

    We experimented with three benchmark object rec-

ognition datasets: Caltech [2,4], GRAZ [6] and Stone-

flies [2]. Due to space limitation, we show the evalua-

tion results on six object classes. Some objects are 

highly textured (e.g. leopards), some are structured 

(e.g. leaves); and these datasets differ greatly in their 

complexity. Each experiment is repeated 10 times with 

random selection of the clustering and evaluation sets, 

and the results are the average of 10 iterations. The 

MMI curves are shown in Fig.1.   

    We can see that all the detectors work fairly well on 

simple objects, such as leaves; more than half of the 

dictionary entries have mutual information above 0.15, 

and some  entries achieve very high mutual information 

scores (> 0.5). But for relatively complex problems, 

such as leopards and stoneflies, the performance of 

detectors inevitably degrades a lot; most of the entries 

have the mutual information scores below 0.05.  

    Different detectors exhibit different characteristics 

and performance for different object classes, which are 

illustrated by the shapes of their MMI curves.  

    DoG has best overall performance for most of the 

datasets (except leaves set). This demonstrates DoG’s 

ability to detect discriminative regions in natural 

scenes, and its robustness to various planar transforma-

tions and limited view changes. In Fig.1, we can see 

that on leopards set DoG performs far better than other 

detectors. Fig.2 (a) shows the top 10 dictionary entries 

extracted by DoG on a leopard image. We can see that 

they are located on spots in the skin which are charac-

teristic for leopards. On leaves set, DoG is outper-

formed by Hessian detectors and Curvilinear detector.  

    Curvilinear detector has evaluation scores above 

average on all the object classes. It works especially 

well on highly structured objects, such as leaves and 

cars. Curvilinear is usually able to find several highly 

distinctive and discriminative patterns, e.g. on leopards 

and stoneflies set. So implies its potential utility with 

feature selection methods. 

    On most of the datasets, HarLap and HesLap have 

similar MMI curves; so for HarAff and HesAff. This 

can be explained by their similar local intensity based 

detecting principles. But on leaves set in Fig.1, Hessian 

detectors evaluated much higher than the correspond-

ing Harris detectors, HesLap works much better than 

all the other detectors. The top 10 dictionary entries 

extracted by HesLap on a leave image are show in 

Fig.2 (b). They are located on the edge of the leave 

which is characteristic for the object class. Few back-

ground detections are evaluated high by our method. 

    In addition to evaluate the relative performance of 

detectors, MMI curves also reveal the intrinsic charac-

teristics of the visual dictionaries. MMI curves for DoG 

are fairly good and quite flat; it indicates that most of 

the dictionary entries are informative, so they can be 

appropriately used with the classifiers that assume 

equal contribution from all features; Curvilinear has 

similar MMI curve on cars set, so for Hessian detectors 

on leaves set. On the other hand, we also notice that 

some other detectors produce quite different MMI 

curves on some datasets. MSER is not stable on all the 

object classes in the sense that most of the entries are 

evaluated relatively low, while it has the ability to ex-

tract a few highly distinctive and discriminative entries 

in cars set. As shown in Fig. 1, its MMI curve start at 

0.82, which is about 0.3 higher than any other dictio-

nary entries. Similarly for Curvilinear detector and 

HesAff on Stoneflies set. Their MMI curves all start 

with very high score while soon drop down with the 

noise detections. For these dictionaries, classifiers 

based on discriminative feature selection are more 

promising. So even a detector fail to give stable detec-

tions (low repeatability), it is still possible that it can 

produce a small number of highly distinctive and dis-

criminative dictionary entries if it fits the object class. 

In summary, the characteristics of the visual dictiona-

ries generated by different interest region detectors can 

be explored directly by the shapes of their MMI curves. 

    We also extensively studied the robustness of our 

MMI evaluation criteria to several key factors: (1) den-

sity of detection; (2) the size of regions and (3) number 

of clusters. The MMI criterion is robust to these factors 

in that the relative ranking of the detectors are mostly 

invariant to different settings. For example, we show 

the evaluation results on leaves set with K=20 in Fig 3. 

Comparing with the curves in Fig 1, we can see little 

difference between the rankings.   

    To validate the MMI evaluation results, we also em-

ploy a boosted feature selection classifier [6] to select 

the highly evaluated dictionary entries, and test their 

combinational classification accuracy on real-world 

problem. The evaluation set is divided into two non-

overlapping sets. One set is used as training set to train 

the image classifier; the other is used for testing. Then 



decision stumps are learned on the training set similar-

ly as in Sec 2.2. Each iteration of AdaBoost searches 

among the unused entries and select the one which 

have highest MMI score. The boosted decision stumps 

are then applied to testing images to evaluate the per-

formance of the detector. The results are summaries in 

Table.1. We can see that the results are consistent to 

the comparison of the detectors using MMI curves. 
 

Table 1. Classification accuracies of detectors (%) 

Class Har- 

Lap 

Hes- 

Lap 

Har- 

Aff 

Hes- 

Aff 

DoG MS-

ER 

Cur-

vi 

Lea 98.9 99.6 98.5 99.3 99.3 92.7 99.6 

Car 96.4 96.4 96.4 94.1 98.3 97.2 93.6 

Face 97.05 97.9 96.8 98.8 99.7 99.1 99.7 

Leop 80.65 80.6 79.6 80.7 79.4 80.8 82.1 

Bike 72.05 75.6 71.6 67.3 70.3 69.4 61.3 

SF 80.8 78.7 70.2 80.9 83.0 70.2 69.4 

 

4. Conclusions 
 

In this paper, we proposed MMI curves to evaluate 

the discriminative power of the visual dictionaries built 

from different interest region detectors. Extensive ex-

periments are performed on benchmark datasets. 
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Figure 2. Examples of highly evaluated regions 

  

 

 

 

 
Figure 1. MMI curves of detectors 

 

 
Figure 3. MMI curves of detectors with K = 20 


