

Challenges

- Common-sense reasoning
- Language understanding at a deep level
- Semantics-based information retrieval
- Knowledge representation and inference
- A model of learning semantics or meaning
- Robust learning of grammars

Vector Space Model

- TF-IDF computed for each word-doc pair
- There are many versions of this measure
- TF is the term frequency: the number of times a term (word) occurs in the doc
- IDF is "inverse document frequency" of the word = log(|D|/DF(w)), where DF(w) is the number of documents in which w occurs and D is the set of all documents.
- Common words like "all" "the" etc. have high document frequency and low IDF

Cosine Distance

Naïve Bayes for Retrieval

- Build a unigram model for each document: Estimate *P*(W_j |*D_j*) for each document *D_j* and W_i (easily done by counting).
- Each document D_i has a prior probability P(D_i) of being relevant regardless of any query, e.g., today's newspaper has much higher prior than, say, yesterday's paper.

Evaluating IR Systems

	Relevant	Not relevant
Retrieved	15	10
Not retrieved	20	55

Accuracy = (15+55)/100 = 70%. It is misleading! Accuracy if no docs are retrieved = 65%.

Recall = number of retrieved docs as a percentage of relevant documents =15/35 = 43% Precision = number of relevant docs as a percentage of retrieved documents =15/25 = 60%

