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Agents and Environments
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Example: Vacuum Cleaner Agent

agent: robot vacuum cleaner
environment: floors of your apartment
Sensors:
= dirt sensor: detects when floor in front of robot is dirty
= bump sensor: detects when it has bumped into something
= power sensor: measures amount of power in battery
= bag sensor: amount of space remaining in dirt bag
effectors:
= motorized wheels
= suction motor
= plug into wall? empty dirt bag?
percepts: “Floor is dirty”
actions: “Forward, 0.5 ft/sec”
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Rational Agent

+ Performance Measure: Criteria for

determining the quality of an agent’s
behavior

= Example: dirt collected in 8 hour shift

+ Avoiding Omniscience

= An omniscient agent is one that can predict
the future perfectly. We don’t want this!

+ Agent: Mapping from percept sequences

to actions
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Defn: Ideal Rational Agent

+ For each percept sequence, choose the

action that maximizes the expected value
of the performance measure given only
builtin knowledge and the percept
sequence
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Policies

+ Policy: A mapping from percept sequences to
actions

+ Agent programming: designing and
implementing good policies

+ Policies can be designed and implemented in
many ways:
= Tables
« Rules
= Search algorithms
= Learning algorithms
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Implementing Agents Using Tables
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+ Problems:
+ Space: For chess this would require 3519 entries
+ Design difficulty: The designer would have to
anticipate how the agent should respond to every
possible percept sequence
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Avoiding Tables

+ Compact Representations of the Table. Many
cells in the table will be identical.
= Irrelevant Percepts: Example: If the car in front of
you slows down, you should apply the breaks. The
color and model of the car, the music on the radio,
the weather, and so on, are all irrelevant.
Markov Environments: Example: In chess, only the
current board position matters, so all previous
percepts dictate the same move.
Environments where this is always true are called
Markov Environments
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Example of Compact Representation:
Implementing Agents using Rules

If car-in-frontis-braking then initiate-braking
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Avoiding Tables (2)

+ Summarizing the Percept Sequence
= By analyzing the sequence, we can
compute amodel of the current state of the
world. With this state, the agent can act as
if the world is a Markov environment
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Summarizing Percepts as
Environment Model
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Pseudo-Code
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PR

Goal-Based Agents

Generate possible sequences of actions

Predict resulting states

Assess goals in each resulting state

Choose an action that will achieve the goal

We can reprogram the agent simply by changing the goals
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Goal-Based Agents compute the Example of Computing Table
Dynamically

desired action on demand

+ In many cases, the agent can compute
the desired action rather than looking it
up. This trades extra CPU time to
reduce memory.
= Example: Deep Blue
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Problems with Computing Table -
Dynamically Utility-Based Agents
+ Search space may be exponentially large

= Computing the best action may be computationally
intractable

+ World may change while we are searching
= In a dynamic environment, we must act promptly
+ Knowledge of the world may be incomplete or
wrong
= We may not be able to accurately predict the future

+ In some applications, we need to make quantitative
comparisons of states based on utilities. Important
when there are tradeoffs.
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PEAS Descriptions

+ P: Performance Measure
* E: Environment

+ A: Actuators

+ S: Sensors
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Examples of agent types
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z Different Kinds of Environments = Examples of Environments
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Advantages of Simpler
Environments

+ Observable: policy can be based on only most
recent percept

+ Deterministic: predicting effects of actions is
easier

+ Episodic: Do not need to look ahead beyond
end of episode

+ Static: Can afford lots of time to make
decisions

+ Discrete: Reasoning is simpler
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Learning Agents
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