Statistical Learning: The Complex Cases

- Case 0: Bayesian Network structure known, all variables observed
 - Easy: Just count!
- Case 1: Bayesian Network structure known, but some variables unobserved
- Case 2: Bayesian Network structure unknown, but all variables observed
- Case 3: Structure unknown, some variables unobserved

Case 1: Known structure, unobserved variables

- Simplest case: Finite Mixture Model
- Structure: Naïve Bayes network
- Missing variable: The class!

(c) 2003 Thomas G. Dietterich
Example Problem: Cluster Wafers for HP

- We wish to learn $P(C, X_1, X_2, \ldots, X_{105})$
- C is a hidden “class” variable

Complete Data and Incomplete data

<table>
<thead>
<tr>
<th>Wafer</th>
<th>X_1</th>
<th>X_2</th>
<th>...</th>
<th>X_{105}</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>...</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>...</td>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>...</td>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>1</td>
<td>?</td>
</tr>
</tbody>
</table>

- The given data are incomplete. If we could guess the values of C, we would have complete data, and learning would be easy.
“Hard” EM

- Let $W = (X_1, X_2, \ldots, X_{105})$ be the observed wafers
- Guess initial values for C (e.g., randomly)
- Repeat until convergence
 - Hard M-Step: (Compute maximum likelihood estimates from complete data)
 - Learn $P(C)$
 - Learn $P(X_i|C)$ for all i
 - Hard E-Step: (Re-estimate the C values)
 - For each wafer, set C to maximize $P(W|C)$

Hard EM Example

- Suppose we have 10 chips per wafer and 2 wafer classes. Suppose this is the “true” distribution:

<table>
<thead>
<tr>
<th>C</th>
<th>$P(C)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.58</td>
</tr>
<tr>
<td>1</td>
<td>0.42</td>
</tr>
</tbody>
</table>

| P($X_i=1|C$) | 0 | 1 |
|--------------|----|----|
| X_1 | 0.34 | 0.41 |
| X_2 | 0.19 | 0.83 |
| X_3 | 0.20 | 0.15 |
| X_4 | 0.69 | 0.19 |
| X_5 | 0.57 | 0.53 |
| X_6 | 0.71 | 0.93 |
| X_7 | 0.34 | 0.68 |
| X_8 | 0.43 | 0.04 |
| X_9 | 0.13 | 0.65 |
| X_{10} | 0.14 | 0.89 |

Draw 100 training examples and 100 test examples from this distribution
Fit of Model to Fully-Observed Training Data

| C | P(C) | P(X_i=1|C) | 0 | 1 |
|---|------|-----------|---|---|
| 0 | 0.61 | X_1 | 0.28| 0.41|
| 1 | 0.39 | X_2 | 0.15| 0.85|
| | | X_3 | 0.15| 0.13|
| | | X_4 | 0.67| 0.23|
| | | X_5 | 0.49| 0.51|
| | | X_6 | 0.74| 0.97|
| | | X_7 | 0.39| 0.69|
| | | X_8 | 0.34| 0.03|
| | | X_9 | 0.10| 0.67|
| | | X_10 | 0.16| 0.87|

- Hard-EM could achieve this if it could correctly guess C for each example.

EM Training and Testing Curve
Hard EM Fitted Model

- Note that the classes are “reversed”: The learned class 0 corresponds to the true class 1. But the likelihoods are the same if the classes are reversed.

<table>
<thead>
<tr>
<th>C</th>
<th>P(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.43</td>
</tr>
<tr>
<td>1</td>
<td>0.57</td>
</tr>
</tbody>
</table>

\[
P(X_i=1|C) \begin{array}{cc}
0 & 1 \\
X_1 & 0.35 & 0.32 \\
X_2 & 0.81 & 0.12 \\
X_3 & 0.09 & 0.18 \\
X_4 & 0.26 & 0.68 \\
X_5 & 0.60 & 0.42 \\
X_6 & 0.95 & 0.74 \\
X_7 & 0.65 & 0.40 \\
X_8 & 0.02 & 0.37 \\
X_9 & 0.67 & 0.05 \\
X_{10} & 0.86 & 0.12 \\
\end{array}
\]

The search can get stuck in local minima

- Parameters can go to zero or one!
- Should use Laplace Estimates

<table>
<thead>
<tr>
<th>C</th>
<th>P(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.93</td>
</tr>
<tr>
<td>1</td>
<td>0.07</td>
</tr>
</tbody>
</table>

\[
P(X_i=1|C) \begin{array}{cc}
0 & 1 \\
X_1 & 0.35 & 0.00 \\
X_2 & 0.42 & 0.43 \\
X_3 & 0.12 & 0.43 \\
X_4 & 0.47 & 0.86 \\
X_5 & 0.53 & 0.14 \\
X_6 & 0.83 & 0.86 \\
X_7 & 0.51 & 0.57 \\
X_8 & 0.16 & 1.00 \\
X_9 & 0.34 & 0.00 \\
X_{10} & 0.47 & 0.00 \\
\end{array}
\]
The Expectation-Maximization (EM) Algorithm

- Initialize the probability tables randomly
- Repeat until convergence
 - E-Step: For each wafer, compute $P'(C|W)$
 - M-Step: Compute maximum likelihood estimates from weighted data (S)

$$P(C) = \frac{\sum_i P'(C|W_i)}{|S|}$$

$$P(X = x|C = c) = \frac{\sum_i \{i: X = x\} P'(C = c|W_i)}{\sum_i P'(C = c|W_i)}$$

We treat $P'(C|W)$ as fractional “counts”. Each wafer W_i belongs to class C with probability $P'(C|W)$.

EM Training Curve

- Each iteration is guaranteed to increase the likelihood of the data. Hence, EM is guaranteed to converge to a local maximum of the likelihood.
EM Fitted Model

| C | P(C) | P(Xi=1|C) | 0 | 1 |
|---|------|----------|-----|-----|
| 0 | 0.35 | X_1 | 0.41| 0.28|
| 1 | 0.65 | X_2 | 0.81| 0.21|
| | | X_3 | 0.11| 0.15|
| | | X_4 | 0.26| 0.63|
| | | X_5 | 0.56| 0.47|
| | | X_6 | 0.97| 0.75|
| | | X_7 | 0.74| 0.38|
| | | X_8 | 0.00| 0.34|
| | | X_9 | 0.76| 0.08|
| | | X_{10} | 0.96| 0.16|

Avoiding Overfitting

- Early stopping. Hold out some of the data, monitor log likelihood on this holdout data, and stop when it starts to decrease
- Laplace estimates
- Full Bayes
EM with Laplace Corrections

- When correction is removed, EM overfits immediately

Comparison of Results

<table>
<thead>
<tr>
<th>Method</th>
<th>Training Set</th>
<th>Test Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>true model</td>
<td>-802.85</td>
<td>-816.40</td>
</tr>
<tr>
<td>hard-EM</td>
<td>-791.69</td>
<td>-826.94</td>
</tr>
<tr>
<td>soft-EM</td>
<td>-790.97</td>
<td>-827.27</td>
</tr>
<tr>
<td>soft-EM + Laplace</td>
<td>-794.31</td>
<td>-823.19</td>
</tr>
</tbody>
</table>
Graphical Comparison

- hard-EM and soft-EM overfit
- soft-EM + Laplace gives best test set result

Unsupervised Learning of an HMM

- Suppose we are given only the Umbrella observations as our training data
- How can we learn $P(R_t|R_{t-1})$ and $P(U_t|R_t)$?
EM for HMMs: “The Forward-Backward Algorithm”

- Initialize probabilities randomly
- Repeat to convergence
 - E-step: Run the forward-backward algorithm on each training example to compute $P'(R_t|U_{1:N})$ for each time step t.
 - M-step: Re-estimate $P(R_t|R_{t-1})$ and $P(U_t|R_t)$ treating the $P'(R_t|U_{1:N})$ as fractional counts
- Also known as the Baum-Welch algorithm

Hard-EM for HMMs: Viterbi Training

- EM requires forward and backward passes. In the early iterations, just finding the single best path usually works well
- Initialize probabilities randomly
- Repeat to convergence
 - E-step: Run the Viterbi algorithm on each training example to compute $R'_t = \arg\max_{R_t} P(R_t|U_{1:N})$ for each time step t.
 - M-step: Re-estimate $P(R_t|R_{t-1})$ and $P(U_t|R_t)$ treating the R'_t as if they were correct labels
Case 2: All variables observed; Structure unknown

• Search the space of structures
 – For each potential structure
 • Apply standard maximum likelihood method to fit the parameters

• Problem: How to score the structures?
 – The complete graph will always give the best likelihood on the training data (because it can memorize the data)

MAP Approach:

\[M = \text{model}; \quad D = \text{data} \]

\[
\text{argmax}_M P(M \mid D) = \text{argmax}_M P(D \mid M) \cdot P(M)
\]

\[
\text{argmax}_M \log P(M \mid D) = \text{argmin}_M \left(\log P(D \mid M) - \log P(M) \right)
\]

\[\text{log } P(M) = \text{number of bits required to represent } M \text{ (for some chosen representation scheme)} \]

Therefore:
 – Choose a representation scheme
 – Measure description length in this scheme
 – Use this for \(-\log P(M)\)
Representation Scheme

- Representational cost of adding a parent p to a child node c that already has k parents
 - Must specify link: $\log_2 n(n-1)/2$ bits
 - c already requires 2^k parameters. Adding another (boolean) parent will make this 2^{k+1} parameters, so the increase is $2^{k+1} - 2^k = 2^k$ each of which requires, say, 8 bits. This gives $8 \cdot 2^k$ bits
 - Total: $8 \cdot 2^k + \log_2 n(n-1)/2$
- Min: $-\log P(D | M) + \lambda \left[8 \cdot 2^k + \log_2 n(n-1)/2\right]$
 - λ is adjusted (e.g., by internal holdout data) to give best results

Note: There are many other possible representation schemes

- Example: Use joint distribution plus the graph structure
 - Joint distribution always has 2^N parameters
 - Describe graph by which edges are missing!
 - This scheme would assign the smallest description length to the complete graph!
- The chosen representation scheme implies a prior belief that graphs that can be described compactly under the scheme have higher prior probability $P(M)$
Search Algorithm

• Search space is all DAGs with N nodes
 – Very large!
• Greedy method
 – Operators: Add an edge, Delete an edge, Reverse an edge
 – At each step,
 • Apply each operator to change the structure
 • Fit the resulting graph to the data
 • Measure total description length
 • Take the best move
 – Stop when local maximum is reached

Alternative Search Algorithm

• Operator:
 – Delete a node and all of its edges from the graph
 – Compute the optimal set of edges for the node and re-insert it into the graph
 • Surprisingly, this can be done efficiently!
• Apply this operator greedily
Initializing the Search

• Compute the best tree-structured graph using Chou-Liu Algorithm

Chou-Liu Algorithm

• for all pairs \((X_i, X_j)\) of variables do
 – compute mutual information:
 \[
 I(X_i; X_j) = \sum_{x_i, x_j} P(x_i, x_j) \log \frac{P(x_i, x_j)}{P(x_i) P(x_j)}
 \]
• Construct complete graph \(G\) such that the edge \((X_i, X_j)\) has weight \(I(X_i; X_j)\)
• Compute maximum weight spanning tree
• Choose root node arbitrarily and direct edges away from it recursively
Case 3: Unknown structure AND hidden variables

- Structural EM algorithm (Friedman, 1997)
- Repeat
 - E-step: Compute “complete data” from current network structure and parameters
 - Structural M-Step: Apply structure learning algorithm to find MAP structure from complete data
 - Standard M-Step: Find ML estimate of the network parameters
- Until convergence
- Works ok if there are not too many hidden variables

Statistical Learning Summary

- Case 0: Bayesian Network structure known, all variables observed
 - Easy: Just count!
- Case 1: Bayesian Network structure known, but some variables unobserved
 - EM Algorithm
- Case 2: Bayesian Network structure unknown, but all variables observed
 - Greedy structure search with MDL to penalize complex networks
- Case 3: Structure unknown, some variables unobserved
 - Structural EM: Combine greedy structure search with EM