Unsupervised Learning

1 earning without Class Labels (or correct
outputs)
— Density Estimation
1Learn P(X) given training data for X
— Clustering
1Partition data into clusters
— Dimensionality Reduction
1Discover low-dimensional representation of data

— Blind Source Separation
1Unmixing multiple signals




Density Estimation

1Given: S = {X4, Xy, ..., X}
1 Find: P(x)
1 Search problem:
argmayx,, P(S|h) = argmax,, 2., log P(x;|h)




Unsupervised Fitting of
the Naive Bayes Model

1y is discrete with K values
P(x) = 2 P(y=k) L1, P(x; | y=k)
1 finite mixture model

1 we can think of each y=k as a separate
“cluster” of data points




The Expectation-Maximization Algorithm (1):
Hard EM

1 |_earning would be easy if we knew
y. for each x.

1 ldea: guess them and then
iteratively revise our guesses to

maximize P(S|h)




Hard EM (2)

1. Guess initial y values to get “complete
data”

M Step: Compute probabilities for
hypotheses (model) from complete
data [Maximum likelihood estimate of
the model parameters]

. E Step: Classify each example using
the current model to get a new y value
[Most likely class y of each example]

4. Repeat steps 2-3 until convergence




Special Case: k-Means Clustering

1. Assign an initial y; to each data point x; at
random

2. M Step. Foreachclassk=1, ..., K
compute the mean:
e = TNy 2 %+ Iy; = K]
3. E Step. For each example x;, assign it to
the class k with the nearest mean:

y; = argminy [[X; - |
4. Repeat steps 2 and 3 to convergence




Gaussian Interpretation of K-means

1 Each feature x; in class k is gaussian
distributed W|th mean p,; and constant
variance c?
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1 This could easily be extended to have
general covariance matrix X or class-
specific Z,




The EM algorithm

The true EM algorithm augments
the incomplete data with a
probability distribution over the
possible y values

. Start with initial naive Bayes
hypothesis

. E step: For each example, compute
P(y.) and add it to the table

. M step: Compute updated estimates
of the parameters

Repeat steps 2-3 to convergence.




Details of the M step

1 Each example x; is treated as if y.=k with
probability P(y.=k | x;)

P(y=k) : _ZP(yz—klxz)

D P(yz = k|x;) - I(m’l,] =)
Z?Ll P(y; = klxz)

Pz, =vly=k) :




Example: Mixture of 2 Gaussians

Initial distributions

means at -0.5, +0.5




Example: Mixture of 2 Gaussians
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Example: Mixture of 2 Gaussians
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Example: Mixture of 2 Gaussians
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Example: Mixture of 2 Gaussians

lteration 20




Evaluation: Test set likelihood

1 Overfitting is also a problem in unsupervised
learning

Test Data

- log likelihood

Training Data

| | 1
30 40 50
Iterations of EM




Potential Problems

1lf 5, Is allowed to vary, it may go to zero,
which leads to infinite likelihood

1 Fix by placing an overfitting penalty on 1/c




Choosing K

1 Internal holdout likelihood




Unsupervised Learning for
Sequences

1 Suppose each training example X is a
sequence of objects:
X = (Xits Xigs 205 Xi1)
1 Fit HMM by unsupervised learning

1. Initialize model parameters

2. E step: apply forward-backward algorithm to
estimate P(y, | X,) at each point t

3. M step: estimate model parameters
4. Repeat steps 2-3 to convergence




Agglomerative Clustering

1 Initialize each data point to be its own cluster

1 Repeat:
— Merge the two clusters that are most similar
— Build dendrogram with height = distance between the most similar clusters

1 Apply various intuitive methods to choose number of clusters
— Equivalent to choosing where to “slice” the dendrogram

Distance (d) Partition Members
5.07 e P5 [12345]
[12].]345]

(12}, [3]. [4 5]

[11. [21. [3]. [4]. [5]
Source: Charity Morgan '
http://www.people.fas.harvard.edu/~rizem/teach/stat325/CharityCluster.ppt




Agglomerative Clustering

1 Each cluster is defined only by the points it
contains (not by a parameterized model)

1 Very fast (using priority queue)
1 No objective measure of correctness

1 Distance measures
— distance between nearest pair of points
— distance between cluster centers




Probabilistic Agglomerative Clustering
Bottom-up Model Merging

1 Each data point is an initial cluster but with
penalized o,
1 Repeat:

— Merge the two clusters that would most
iIncrease the penalized log likelihood

— Until
likeli

1 Note t
algorit

no merger would further improve
gleJele

nat without the penalty on c,, the

nm would never merge anything




Dimensionality Reduction

1 Often, raw data have very high dimension
— Example: images of human faces

1 Dimensionality Reduction:

— Construct a lower-dimensional space that
preserves information important for the task

— Examples:
1preserve distances

1preserve separation between classes
1etc.




Principal Component Analysis

1 Given:
— Data: n-dimensional vectors {x,, X,, ..., Xy}
— Desired dimensionality m

1 Find an m x n orthogonal matrix A to minimize
2 ||ATAX; = Xil[2

1 Explanation:
— AX; maps X; into an m-dimensional matrix x’,
— A-TAx; maps x’, back to n-dimensional space

— We minimize the “squared reconstruction error”
between the reconstructed vectors and the original
vectors




Conceptual Algorithm

1 Find a line such that when the data is
projected onto that line, it has the
maximum variance:




Conceptual Algorithm

1 Find a new line, orthogonal to the first, that
has maximum projected variance:




Repeat Until m Lines Have Been
Found

1 The projected position of a point on these
lines gives the coordinates in the m-
dimensional reduced space




A Better Method Numerical Method

1 Compute the co-variance matrix
2= (=) (=)t

1 Compute the singular value decomposition
>=UDVT
where

— the columns of U are the eigenvectors of X

— D is a diagonal matrix whose elements are the square
roots of the eigenvalues of X in descending order

— VT are the projected data points

1 Replace all but the m largest elements of D by
Zeros




Example: Eigenfaces

1 Database of 128 carefully-aligned faces
1 Here are the first 15 eigenvectors:




Face Classification in Eigenspace
IS Easiler

1 Nearest Mean classifier
g = argmin, || Ax — Ay |
1 Accuracy
— variation in lighting: 96%
— variation in orientation: 85%
— variation in size: 64%




PCA is a useful preprocessing step

1 Helps all LTU algorithms by making the
features more independent

1 Helps decision tree algorithms

1 Helps nearest neighbor algorithms by
discovering the distance metric

1 Fails when data consists of multiple
separate clusters

— mixtures of PCAs can be learned too




Non-Linear Dimensionality
Reduction: ISOMAP

1 Replace Euclidean distance by geodesic distance

— Construct a graph where each point is connected to its k nearest
neighbors by an edge AND any pair of points are connected if
they are less than ¢ apart

— Construct an N x N matrix D in which D[i,j] is the shortest path in
the graph connecting X; to X;

— Apply SVD to D and keep the m most important
dimensions




1 Two more ISOMAP
examples
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Linear Interpolation Between Points
in ISOMAP Space

1 Algorithm
generates new
poses

1 and new 2’s




Blind Source Separation

1 Suppose we have two sound sources that
have been linearly mixed and recorded by
two microphones. Given the two
microphone signals, we want to recover
the two sound sources

g y2

=
"




Minimizing Mutual Information

1If the input sources are independent, then
they should have zero mutual information.

1 |dea: Minimize the mutual information
between the outputs while maximizing the
information (entropy) of each output
separately:

maxy, H(y1) + H(§,) = (71 ¥2)
where [y, Y1 = Fy(Xq, X)
and F,, is a sigmoid neural network




Independent Component Analysis
(ICA)

1 Microphone 1 4

1 Microphone 2 4

1 Reconstructed

source 1

1 Reconstructed
source 2

source: http://www.cnl.salk.edu/~tewon/Blind/blind _audio.html




Unsupervised Learning Summary

1 Density Estimation: Learn P(X) given training
data for X

— Mixture models and EM

1 Clustering: Partition data into clusters
— Bottom up aggomerative clustering

1 Dimensionality Reduction: Discover low-
dimensional representation of data
— Principal Component Analysis
— ISOMAP

1 Blind Source Separation: Unmixing multiple
signals
— Many algorithms




Objective Functions

1 Density Estimation:
— Log likelihood on training data

1 Clustering:
— 2777
1 Dimensionality Reduction

— Minimum reconstruction error
— Maximum likelihood (gaussian interpretation of PCA)

1 Blind Source Separation

— Information Maximization

— Maximum Likelihood (assuming models of the
sources)




