
Unsupervised LearningUnsupervised Learning

Learning without Class Labels (or correct Learning without Class Labels (or correct 
outputs)outputs)
–– Density EstimationDensity Estimation

Learn P(X) given training data for XLearn P(X) given training data for X
–– ClusteringClustering

Partition data into clustersPartition data into clusters
–– Dimensionality ReductionDimensionality Reduction

Discover lowDiscover low--dimensional representation of datadimensional representation of data
–– Blind Source SeparationBlind Source Separation

Unmixing multiple signalsUnmixing multiple signals



Density EstimationDensity Estimation

Given:  S = {Given:  S = {xx11, , xx22, , ……, , xxNN}}
Find: P(Find: P(xx))
Search problem:Search problem:
argmaxargmaxhh P(S|h) = argmaxP(S|h) = argmaxhh ∑∑ii log P(log P(xxii|h)|h)



Unsupervised Fitting of Unsupervised Fitting of 
the Nathe Naïïve Bayes Modelve Bayes Model

y is discrete with K valuesy is discrete with K values
P(P(xx) = ) = ∑∑kk P(y=k) P(y=k) ∏∏jj P(xP(xjj | y=k)| y=k)
finite mixture modelfinite mixture model
we can think of each y=k as a separate we can think of each y=k as a separate 
““clustercluster”” of data pointsof data points

y

x3x2x1 xn…



The ExpectationThe Expectation--Maximization Algorithm (1):Maximization Algorithm (1):
Hard EMHard EM

Learning would be easy if we knew Learning would be easy if we knew 
yyii for each for each xxii

Idea: guess them and then Idea: guess them and then 
iteratively revise our guesses to iteratively revise our guesses to 
maximize P(S|h)maximize P(S|h)

yy11xx11

yyNNxxNN

…………

yy22xx22

yyiixxii



Hard EM (2)Hard EM (2)

1.1. Guess initial Guess initial yy values to get values to get ““complete complete 
datadata””

2.2. M Step: Compute probabilities for M Step: Compute probabilities for 
hypotheses (model) from complete hypotheses (model) from complete 
data [Maximum likelihood estimate of data [Maximum likelihood estimate of 
the model parameters]the model parameters]

3.3. E Step: Classify each example using E Step: Classify each example using 
the current model to get a new the current model to get a new yy value value 
[Most likely class [Most likely class ŷŷ of each example]of each example]

4.4. Repeat steps 2Repeat steps 2--3 until convergence3 until convergence

yy11xx11

yyNNxxNN

…………

yy22xx22

yyiixxii



Special Case: kSpecial Case: k--Means ClusteringMeans Clustering

1.1. Assign an initial Assign an initial yyii to each data point to each data point xxii at at 
randomrandom

2.2. M Step.  For each class k = 1, M Step.  For each class k = 1, ……, K , K 
compute the mean:compute the mean:

µµkk = 1/N= 1/Nkk ∑∑ii xxi i ·· I[yI[yii = k]= k]
3.3. E Step.  For each example xE Step.  For each example xii, assign it to , assign it to 

the class k with the nearest mean:the class k with the nearest mean:
yyii = argmin= argminkk ||||xxii -- µµkk||||

4.4. Repeat steps 2 and 3 to convergenceRepeat steps 2 and 3 to convergence



Gaussian Interpretation of KGaussian Interpretation of K--meansmeans
Each feature xEach feature xjj in class k is gaussian in class k is gaussian 
distributed with mean distributed with mean µµkjkj and constant and constant 
variance variance σσ22
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1√
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P(x|y = k) = argmax
y

logP(x|y) = argmin
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kx− µkjk2 = argminy
kx− µkjk

This could easily be extended to have This could easily be extended to have 
general covariance matrix general covariance matrix ΣΣ or classor class--
specific specific ΣΣkk



The EM algorithmThe EM algorithm
The true EM algorithm augments The true EM algorithm augments 
the incomplete data with a the incomplete data with a 
probability distribution over the probability distribution over the 
possible possible yy valuesvalues

1.1. Start with initial naive Bayes Start with initial naive Bayes 
hypothesishypothesis

2.2. E stepE step:: For each example, compute For each example, compute 
P(yP(yii) and add it to the table) and add it to the table

3.3. M step: Compute updated estimates M step: Compute updated estimates 
of the parametersof the parameters

4.4. Repeat steps 2Repeat steps 2--3 to convergence.3 to convergence.

P(yP(y11))xx11

P(yP(yNN))xxNN

…………

P(yP(y22))xx22

yyiixxii



Details of the M stepDetails of the M step

Each example Each example xxii is treated as if yis treated as if yii=k with =k with 
probability P(yprobability P(yii=k | =k | xxii))

P(y = k) :=
1

N

NX
i=1

P (yi = k|xi)

P (xj = v|y = k) :=

P
i P (yi = k|xi) · I(xij = v)PN

i=1P(yi = k|xi)



Example: Mixture of 2 GaussiansExample: Mixture of 2 Gaussians

Initial distributions

means at -0.5, +0.5



Example: Mixture of 2 GaussiansExample: Mixture of 2 Gaussians

Iteration 1



Example: Mixture of 2 GaussiansExample: Mixture of 2 Gaussians

Iteration 2



Example: Mixture of 2 GaussiansExample: Mixture of 2 Gaussians

Iteration 3



Example: Mixture of 2 GaussiansExample: Mixture of 2 Gaussians

Iteration 10



Example: Mixture of 2 GaussiansExample: Mixture of 2 Gaussians

Iteration 20



Evaluation: Test set likelihoodEvaluation: Test set likelihood
Overfitting is also a problem in unsupervised Overfitting is also a problem in unsupervised 
learninglearning



Potential ProblemsPotential Problems

If If σσkk is allowed to vary, it may go to zero, is allowed to vary, it may go to zero, 
which leads to infinite likelihoodwhich leads to infinite likelihood
Fix by placing an overfitting penalty on 1/Fix by placing an overfitting penalty on 1/σσ



Choosing KChoosing K

Internal holdout likelihoodInternal holdout likelihood



Unsupervised Learning for Unsupervised Learning for 
SequencesSequences

Suppose each training example Suppose each training example XXii is a  is a  
sequence of objects:sequence of objects:

XXii = (= (xxi1i1, , xxi2i2, , ……, , xxi,Ti,Tii
))

Fit HMM by unsupervised learningFit HMM by unsupervised learning
1.1. Initialize model parametersInitialize model parameters
2.2. E step: apply forwardE step: apply forward--backward algorithm to backward algorithm to 

estimate P(yestimate P(yitit | | XXii) at each point t) at each point t
3.3. M step: estimate model parametersM step: estimate model parameters
4.4. Repeat steps 2Repeat steps 2--3 to convergence3 to convergence



Agglomerative ClusteringAgglomerative Clustering
Initialize each data point to be its own clusterInitialize each data point to be its own cluster
Repeat:Repeat:
–– Merge the two clusters that are most similarMerge the two clusters that are most similar
–– Build dendrogram with height = distance between the most similarBuild dendrogram with height = distance between the most similar clustersclusters

Apply various intuitive methods to choose number of clustersApply various intuitive methods to choose number of clusters
–– Equivalent to choosing where to Equivalent to choosing where to ““sliceslice”” the dendrogramthe dendrogram

Source: Charity Morgan

http://www.people.fas.harvard.edu/~rizem/teach/stat325/CharityCluster.ppt



Agglomerative ClusteringAgglomerative Clustering

Each cluster is defined only by the points it Each cluster is defined only by the points it 
contains (not by a parameterized model)contains (not by a parameterized model)
Very fast (using priority queue)Very fast (using priority queue)
No objective measure of correctnessNo objective measure of correctness

Distance measuresDistance measures
–– distance between nearest pair of pointsdistance between nearest pair of points
–– distance between cluster centersdistance between cluster centers



Probabilistic Agglomerative Clustering Probabilistic Agglomerative Clustering 
= Bottom= Bottom--up Model Mergingup Model Merging

Each data point is an initial cluster but with Each data point is an initial cluster but with 
penalized penalized σσkk

Repeat:Repeat:
–– Merge the two clusters that would most Merge the two clusters that would most 

increase the penalized log likelihoodincrease the penalized log likelihood
–– Until no merger would further improve Until no merger would further improve 

likelihoodlikelihood

Note that without the penalty on Note that without the penalty on σσkk, the , the 
algorithm would never merge anythingalgorithm would never merge anything



Dimensionality ReductionDimensionality Reduction

Often, raw data have very high dimensionOften, raw data have very high dimension
–– Example: images of human facesExample: images of human faces
Dimensionality Reduction:Dimensionality Reduction:
–– Construct a lowerConstruct a lower--dimensional space that dimensional space that 

preserves information important for the taskpreserves information important for the task
–– Examples:Examples:

preserve distancespreserve distances
preserve separation between classespreserve separation between classes
etc.etc.



Principal Component AnalysisPrincipal Component Analysis

Given:Given:
–– Data: nData: n--dimensional vectors {dimensional vectors {xx11, , xx22, , ……, , xxNN}}
–– Desired dimensionality mDesired dimensionality m

Find an m x n orthogonal matrix A to minimizeFind an m x n orthogonal matrix A to minimize
∑∑ii ||A||A--11AAxxii –– xxii||||22

Explanation:Explanation:
–– AAxxii maps maps xxii into an minto an m--dimensional matrix dimensional matrix xx’’ii
–– AA--11AAxxii maps maps xx’’ii back to nback to n--dimensional spacedimensional space
–– We minimize the We minimize the ““squared reconstruction errorsquared reconstruction error””

between the reconstructed vectors and the original between the reconstructed vectors and the original 
vectorsvectors



Conceptual AlgorithmConceptual Algorithm

Find a line such that when the data is Find a line such that when the data is 
projected onto that line, it has the projected onto that line, it has the 
maximum variance:maximum variance:



Conceptual AlgorithmConceptual Algorithm

Find a new line, orthogonal to the first, that Find a new line, orthogonal to the first, that 
has maximum projected variance:has maximum projected variance:



Repeat Until m Lines Have Been Repeat Until m Lines Have Been 
FoundFound

The projected position of a point on these The projected position of a point on these 
lines gives the coordinates in the mlines gives the coordinates in the m--
dimensional reduced spacedimensional reduced space



A Better Method Numerical MethodA Better Method Numerical Method

Compute the coCompute the co--variance matrix variance matrix 
ΣΣ = = ΣΣii ((xxi i –– µµ) ) ·· ((xxii –– µµ))TT

Compute the singular value decompositionCompute the singular value decomposition
ΣΣ = U D V= U D VTT

where where 
–– the columns of U are the eigenvectors of the columns of U are the eigenvectors of ΣΣ
–– D is a diagonal matrix whose elements are the square D is a diagonal matrix whose elements are the square 

roots of the eigenvalues of roots of the eigenvalues of ΣΣ in descending orderin descending order
–– VVTT are the projected data pointsare the projected data points

Replace all but the m largest elements of D by Replace all but the m largest elements of D by 
zeroszeros



Example: EigenfacesExample: Eigenfaces

Database of 128 carefullyDatabase of 128 carefully--aligned facesaligned faces
Here are the first 15 eigenvectors:Here are the first 15 eigenvectors:



Face Classification in Eigenspace Face Classification in Eigenspace 
is Easieris Easier

Nearest Mean classifierNearest Mean classifier
ŷŷ = argmin= argminkk || A|| Axx –– AAµµkk ||||
AccuracyAccuracy
–– variation in lighting: 96%variation in lighting: 96%
–– variation in orientation: 85%variation in orientation: 85%
–– variation in size: 64%variation in size: 64%



PCA is a useful preprocessing stepPCA is a useful preprocessing step

Helps all LTU algorithms by making the Helps all LTU algorithms by making the 
features more independentfeatures more independent
Helps decision tree algorithmsHelps decision tree algorithms
Helps nearest neighbor algorithms by Helps nearest neighbor algorithms by 
discovering the distance metricdiscovering the distance metric

Fails when data consists of multiple Fails when data consists of multiple 
separate clustersseparate clusters
–– mixtures of PCAs can be learned toomixtures of PCAs can be learned too



NonNon--Linear Dimensionality Linear Dimensionality 
Reduction: ISOMAPReduction: ISOMAP

Replace Euclidean distance by geodesic distanceReplace Euclidean distance by geodesic distance
–– Construct a graph where each point is connected to its k nearestConstruct a graph where each point is connected to its k nearest

neighbors by an edge AND any pair of points are connected if neighbors by an edge AND any pair of points are connected if 
they are less than they are less than εε apartapart

–– Construct an N x N matrix D in which D[i,j] is the shortest pathConstruct an N x N matrix D in which D[i,j] is the shortest path in in 
the graph connecting the graph connecting xxii to to xxjj

–– Apply SVD to D and keep the m most important Apply SVD to D and keep the m most important 
dimensionsdimensions



Two more ISOMAP Two more ISOMAP 
examplesexamples



Linear Interpolation Between Points Linear Interpolation Between Points 
in ISOMAP Spacein ISOMAP Space

Algorithm Algorithm 
generates new generates new 
posesposes

and new 2and new 2’’ss



Blind Source SeparationBlind Source Separation

Suppose we have two sound sources that Suppose we have two sound sources that 
have been linearly mixed and recorded by have been linearly mixed and recorded by 
two microphones.  Given the two two microphones.  Given the two 
microphone signals, we want to recover microphone signals, we want to recover 
the two sound sourcesthe two sound sources

y1

y2

ŷ1

ŷ2

Magic
Box

α

1 − α

1 − β

β
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Minimizing Mutual InformationMinimizing Mutual Information

If the input sources are independent, then If the input sources are independent, then 
they should have zero mutual information.they should have zero mutual information.
Idea: Minimize the mutual information Idea: Minimize the mutual information 
between the outputs while maximizing the between the outputs while maximizing the 
information (entropy) of each output information (entropy) of each output 
separately:separately:
maxmaxWW H(H(ŷŷ11) + H() + H(ŷŷ22) ) –– I(I(ŷŷ11; ; ŷŷ22))
where [where [ŷŷ11, , ŷŷ] = F] = FWW(x(x11, x, x22))
and Fand FWW is a sigmoid neural networkis a sigmoid neural network



Independent Component Analysis Independent Component Analysis 
(ICA)(ICA)

Microphone 1Microphone 1
Microphone 2Microphone 2
Reconstructed Reconstructed 
source 1source 1
Reconstructed Reconstructed 
source 2source 2

source: http://www.cnl.salk.edu/~tewon/Blind/blind_audio.html



Unsupervised Learning SummaryUnsupervised Learning Summary

Density Estimation: Learn P(X) given training Density Estimation: Learn P(X) given training 
data for Xdata for X
–– Mixture models and EMMixture models and EM

Clustering: Partition data into clustersClustering: Partition data into clusters
–– Bottom up aggomerative clusteringBottom up aggomerative clustering

Dimensionality Reduction: Discover lowDimensionality Reduction: Discover low--
dimensional representation of datadimensional representation of data
–– Principal Component AnalysisPrincipal Component Analysis
–– ISOMAPISOMAP

Blind Source Separation: Unmixing multiple Blind Source Separation: Unmixing multiple 
signalssignals
–– Many algorithmsMany algorithms



Objective FunctionsObjective Functions

Density Estimation: Density Estimation: 
–– Log likelihood on training dataLog likelihood on training data

Clustering:Clustering:
–– ????????

Dimensionality ReductionDimensionality Reduction
–– Minimum reconstruction errorMinimum reconstruction error
–– Maximum likelihood (gaussian interpretation of PCA)Maximum likelihood (gaussian interpretation of PCA)

Blind Source SeparationBlind Source Separation
–– Information MaximizationInformation Maximization
–– Maximum Likelihood (assuming models of the Maximum Likelihood (assuming models of the 

sources)sources)


