Evaluation of Classifiers

- ROC Curves
- Reject Curves
- Precision-Recall Curves
- Statistical Tests
 - Estimating the error rate of a classifier
 - Comparing two classifiers
 - Estimating the error rate of a learning algorithm
 - Comparing two algorithms
In most applications, false positive and false negative errors are not equally important. We therefore want to adjust the tradeoff between them. Many learning algorithms provide a way to do this:

- probabilistic classifiers: combine cost matrix with decision theory to make classification decisions
- discriminant functions: adjust the threshold for classifying into the positive class
- ensembles: adjust the number of votes required to classify as positive
Example: 30 decision trees constructed by bagging

Classify as positive if K out of 30 trees predict positive. Vary K.

![Graph showing number of errors vs. threshold with lines for False Negatives and False Positives]
Directly Visualizing the Tradeoff

We can plot the false positives versus false negatives directly. If \(L(0,1) = R \cdot L(1,0) \) (i.e., a FN is R times more expensive than a FP), then the best operating point will be tangent to a line with a slope of \(-R\).

If \(R=1 \), we should set the threshold to 10.
If \(R=10 \), the threshold should be 29.
Receiver Operating Characteristic (ROC) Curve

It is traditional to plot this same information in a normalized form with $1 - \text{False Negative Rate}$ plotted against the False Positive Rate.

The optimal operating point is tangent to a line with a slope of R.
Generating ROC Curves

- **Linear Threshold Units, Sigmoid Units, Neural Networks**
 - adjust the classification threshold between 0 and 1
- **K nearest neighbor**
 - adjust number of votes (between 0 and k) required to classify positive
- **Naïve Bayes, Logistic Regression, etc.**
 - vary the probability threshold for classifying as positive
- **Support vector machines**
 - require different margins for positive and negative examples
SVM: Asymmetric Margins

Minimize $||w||^2 + C \sum \xi_i$

Subject to

- $w \cdot x_i + \xi_i \geq R$ (positive examples)
- $-w \cdot x_i + \xi_i \geq 1$ (negative examples)
If we have two classifiers h_1 and h_2 with $(fp1, fn1)$ and $(fp2, fn2)$, then we can construct a stochastic classifier that interpolates between them. Given a new data point x, we use classifier h_1 with probability p and h_2 with probability $(1-p)$. The resulting classifier has an expected false positive level of $p \cdot fp1 + (1 - p) \cdot fp2$ and an expected false negative level of $p \cdot fn1 + (1 - p) \cdot fn2$.

This means that we can create a classifier that matches any point on the convex hull of the ROC curve.
ROC Convex Hull

Original ROC Curve

1 - False Negative Rate vs. False Positive Rate

ROC Convex Hull
Maximizing AUC

- At learning time, we may not know the cost ratio R. In such cases, we can maximize the Area Under the ROC Curve (AUC)

- Efficient computation of AUC
 - Assume $h(x)$ returns a real quantity (larger values \Rightarrow class 1)
 - Sort x_i according to $h(x_i)$. Number the sorted points from 1 to N such that $r(i) =$ the rank of data point x_i
 - AUC = probability that a randomly chosen example from class 1 ranks above a randomly chosen example from class 0 = the Wilcoxon-Mann-Whitney statistic
Computing AUC

Let \(S_1 = \) sum of \(r(i) \) for \(y_i = 1 \) (sum of the ranks of the positive examples)

\[
\hat{AUC} = \frac{S_1 - N_1(N_1 + 1)/2}{N_0 N_1}
\]

where \(N_0 \) is the number of negative examples and \(N_1 \) is the number of positive examples
Optimizing AUC

- A hot topic in machine learning right now is developing algorithms for optimizing AUC.

- RankBoost: A modification of AdaBoost. The main idea is to define a "ranking loss" function and then penalize a training example \(x \) by the number of examples of the other class that are misranked (relative to \(x \)).
Rejection Curves

In most learning algorithms, we can specify a threshold for making a rejection decision

- Probabilistic classifiers: adjust cost of rejecting versus cost of FP and FN
- Decision-boundary method: if a test point x is within θ of the decision boundary, then reject

 Equivalent to requiring that the “activation” of the best class is larger than the second-best class by at least θ
Vary θ and plot fraction correct versus fraction rejected
Precision versus Recall

Information Retrieval:
- $y = 1$: document is relevant to query
- $y = 0$: document is irrelevant to query
- K: number of documents retrieved

Precision:
- fraction of the K retrieved documents ($\hat{y}=1$) that are actually relevant ($y=1$)
- $\frac{TP}{TP + FP}$

Recall:
- fraction of all relevant documents that are retrieved
- $\frac{TP}{TP + FN} = \text{true positive rate}$
Precision Recall Graph

Plot recall on horizontal axis; precision on vertical axis; and vary the threshold for making positive predictions (or vary K)
The F_1 Measure

- Figure of merit that combines precision and recall.

$$F_1 = 2 \cdot \frac{P \cdot R}{P + R}$$

- where $P = \text{precision}$; $R = \text{recall}$. This is twice the harmonic mean of P and R.

- We can plot F_1 as a function of the classification threshold θ
WEKA and many other systems normally report various measures for a single operating point (e.g., $\theta = 0.5$). Here is example output from WEKA:

```plaintext
=== Detailed Accuracy By Class ===

<table>
<thead>
<tr>
<th>TP Rate</th>
<th>FP Rate</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.854</td>
<td>0.1</td>
<td>0.899</td>
<td>0.854</td>
<td>0.876</td>
<td>0</td>
</tr>
<tr>
<td>0.9</td>
<td>0.146</td>
<td>0.854</td>
<td>0.9</td>
<td>0.876</td>
<td>1</td>
</tr>
</tbody>
</table>
```
Visualizing ROC and P/R Curves in WEKA

- Right-click on the result list and choose "Visualize Threshold Curve". Select "1" from the popup window.

- ROC:
 - Plot False Positive Rate on X axis
 - Plot True Positive Rate on Y axis
 - WEKA will display the AUC also

- Precision/Recall:
 - Plot Recall on X axis
 - Plot Precision on Y axis

- WEKA does not support rejection curves
In medical testing, the terms “sensitivity” and “selectivity” are used:

- Sensitivity = $\frac{TP}{TP + FN}$ = true positive rate = recall
- Selectivity = $\frac{TN}{FP + TN}$ = true negative rate = recall for the negative class = 1 – the false positive rate

The sensitivity versus selectivity tradeoff is identical to the ROC curve tradeoff.
Estimating the Error Rate of a Classifier

Compute the error rate on hold-out data

– suppose a classifier makes k errors on n holdout data points
– the estimated error rate is $\hat{\epsilon} = k / n$.

Compute a confidence interval on this estimate

– the standard error of this estimate is

$$SE = \sqrt{\frac{\hat{\epsilon} \cdot (1 - \hat{\epsilon})}{n}}$$

– A $1 - \alpha$ confidence interval on the true error ϵ is

$$\hat{\epsilon} - z_{\alpha/2}SE \leq \epsilon \leq \hat{\epsilon} + z_{\alpha/2}SE$$

– For a 95% confidence interval, $Z_{0.025} = 1.96$, so we use

$$\hat{\epsilon} - 1.96SE \leq \epsilon \leq \hat{\epsilon} + 1.96SE.$$
Comparing Two Classifiers

Goal: decide which of two classifiers h_1 and h_2 has lower error rate

Method: Run them both on the same test data set and record the following information:
- n_{00}: the number of examples correctly classified by both classifiers
- n_{01}: the number of examples correctly classified by h_1 but misclassified by h_2
- n_{10}: The number of examples misclassified by h_1 but correctly classified by h_2
- n_{00}: The number of examples misclassified by both h_1 and h_2.

\[\begin{array}{cc}
 n_{00} & n_{01} \\
 n_{10} & n_{11} \\
\end{array} \]
McNemar’s Test

\[M = \frac{(|n_{01} - n_{10}| - 1)^2}{n_{01} + n_{10}} > \chi^2_{1, \alpha} \]

- M is distributed approximately as \(\chi^2 \) with 1 degree of freedom. For a 95% confidence test, \(\chi^2_{1,095} = 3.84 \). So if M is larger than 3.84, then with 95% confidence, we can reject the null hypothesis that the two classifies have the same error rate.
Confidence Interval on the Difference Between Two Classifiers

Let $p_{ij} = n_{ij}/n$ be the 2x2 contingency table converted to probabilities

$$SE = \sqrt{\frac{p_{01} + p_{10} + (p_{01} - p_{10})^2}{n}}$$

$$p_A = p_{10} + p_{11}$$

$$p_B = p_{01} + p_{11}$$

A 95% confidence interval on the difference in the true error between the two classifiers is

$$p_A - p_B - 1.96 \left(SE + \frac{1}{2n} \right) \leq \epsilon_A - \epsilon_B \leq p_A - p_B + 1.96 \left(SE + \frac{1}{2n} \right)$$
Cost-Sensitive Comparison of Two Classifiers

Suppose we have a non-0/1 loss matrix \(L(\hat{y}, y) \) and we have two classifiers \(h_1 \) and \(h_2 \). Goal: determine which classifier has lower expected loss.

A method that does not work well:

- For each algorithm \(a \) and each test example \((x_i, y_i)\) compute \(\ell_{a,i} = L(h_a(x_i), y_i) \).
- Let \(\delta_i = \ell_{1,i} - \ell_{2,i} \)
- Treat the \(\delta \)'s as normally distributed and compute a normal confidence interval

The problem is that there are only a finite number of different possible values for \(\delta_i \). They are not normally distributed, and the resulting confidence intervals are too wide.
A Better Method: BDeltaCost

Let $\Delta = \{\delta_i\}_{i=1}^N$ be the set of δ_i’s computed as above.

For b from 1 to 1000 do

- Let T_b be a bootstrap replicate of Δ
- Let $s_b = \text{average of the } \delta_i$’s in T_b

Sort the s_b’s and identify the 26th and 975th items. These form a 95% confidence interval on the average difference between the loss from h_1 and the loss from h_2.

The bootstrap confidence interval quantifies the uncertainty due to the size of the test set. It does not allow us to compare algorithms, only classifiers.
Estimating the Error Rate of a Learning Algorithm

- Under the PAC model, training examples x are drawn from an underlying distribution D and labeled according to an unknown function f to give (x,y) pairs where $y = f(x)$.
- The error rate of a classifier h is
 \[\text{error}(h) = P_D(h(x) \neq f(x)) \]
- Define the error rate of a learning algorithm A for sample size m and distribution D as
 \[\text{error}(A,m,D) = E_S [\text{error}(A(S))] \]
- This is the expected error rate of $h = A(S)$ for training sets S of size m drawn according to D.
- We could estimate this if we had several training sets S_1, \ldots, S_L, all drawn from D. We could compute $A(S_1), A(S_2), \ldots, A(S_L)$, measure their error rates, and average them.
- Unfortunately, we don’t have enough data to do this!
Two Practical Methods

- **k-fold Cross Validation**
 - This provides an unbiased estimate of error$(A, (1 - \frac{1}{k})m, D)$ for training sets of size $(1 - \frac{1}{k})m$

- **Bootstrap error estimate (out-of-bag estimate)**
 - Construct L bootstrap replicates of S_{train}
 - Train A on each of them
 - Evaluate on the examples that *did not appear* in the bootstrap replicate
 - Average the resulting error rates
Estimating the Difference Between Two Algorithms: the 5x2CV F test

for i from 1 to 5 do
 perform a 2-fold cross-validation
 split S evenly and randomly into S_1 and S_2
 for j from 1 to 2 do
 Train algorithm A on S_j, measure error rate $p_A^{(i,j)}$
 Train algorithm B on S_j, measure error rate $p_B^{(i,j)}$
 $p_i^{(j)} := p_A^{(i,j)} - p_B^{(i,j)}$ \hspace{1cm} \text{Difference in error rates on fold } j$
 end /* for j */
 $\bar{p}_i := \frac{p_i^{(1)} + p_i^{(2)}}{2}$ \hspace{1cm} \text{Average difference in error rates in iteration } i$
 $s_i^2 = (p_i^{(1)} - \bar{p}_i)^2 + (p_i^{(2)} - \bar{p}_i)^2$ \hspace{1cm} \text{Variance in the difference, for iteration } i$
end /* for i */

$F := \frac{\sum_i \bar{p}_i^2}{2 \sum_i s_i^2}$
5x2cv F test

\[p_A^{(1,1)} \quad p_B^{(1,1)} \quad p_A^{(1,2)} \quad p_B^{(1,2)} \quad p_A^{(2,1)} \quad p_B^{(2,1)} \quad p_A^{(2,2)} \quad p_B^{(2,2)} \quad p_A^{(3,1)} \quad p_B^{(3,1)} \quad p_A^{(3,2)} \quad p_B^{(3,2)} \quad p_A^{(4,1)} \quad p_B^{(4,1)} \quad p_A^{(4,2)} \quad p_B^{(4,2)} \quad p_A^{(5,1)} \quad p_B^{(5,1)} \quad p_A^{(5,2)} \quad p_B^{(5,2)} \]

\[\bar{p}_1 \quad s_1^2 \quad \bar{p}_2 \quad s_2^2 \quad \bar{p}_3 \quad s_3^2 \quad \bar{p}_4 \quad s_4^2 \quad \bar{p}_5 \quad s_5^2 \]
If $F > 4.47$, then with 95% confidence, we can reject the null hypothesis that algorithms A and B have the same error rate when trained on data sets of size $m/2$.
Summary

- ROC Curves
- Reject Curves
- Precision-Recall Curves
- Statistical Tests
 - Estimating error rate of classifier
 - Comparing two classifiers
 - Estimating error rate of a learning algorithm
 - Comparing two algorithms