Evaluation of Classifiers

ROC Curves
Reject Curves
Precision-Recall Curves
Statistical Tests

Estimating the error rate of a classifier

- Comparing two classifiers
- Estimating the error rate of a learning algorithm
- Comparing two algorithms

Cost-Sensitive Learning

- In most applications, false positive and false negative errors are not equally important. We therefore want to adjust the tradeoff between them. Many learning algorithms provide a way to do this:
 - probabilistic classifiers: combine cost matrix with decision theory to make classification decisions
 - discriminant functions: adjust the threshold for classifying into the positive class
 - ensembles: adjust the number of votes required to classify as positive

Example: 30 decision trees constructed by bagging
 Classify as positive if K out of 30 trees predict positive. Vary K.

Directly Visualizing the Tradeoff

We can plot the false positives versus false negatives directly. If L(0,1) = R · L(1,0) (i.e., a FN is R times more expensive than a FP), then the best operating point will be tangent to a line with a slope of -R

If R=1, we should set the threshold to 10.

If R=10, the threshold should be 29

Receiver Operating Characteristic (ROC) Curve

It is traditional to plot this same information in a normalized form with 1 – False Negative Rate plotted against the False Positive Rate.

The optimal operating point is tangent to a line with a slope of R

Generating ROC Curves

- Linear Threshold Units, Sigmoid Units, Neural Networks
 - adjust the classification threshold between 0 and 1
- K nearest neighbor
 - adjust number of votes (between 0 and k) required to classify positive
- Naïve Bayes, Logistic Regression, etc.
 - vary the probability threshold for classifying as positive
- Support vector machines
 - require different margins for positive and negative examples

SVM: Asymmetric Margins Minimize $||w||^2 + C \sum_i \xi_i$ Subject to $\mathbf{w} \cdot \mathbf{x}_i + \xi_i \ge R$ (positive examples) $-\mathbf{w} \cdot \mathbf{x}_i + \xi_i \ge 1$ (negative examples)

ROC Convex Hull

- If we have two classifiers h_1 and h_2 with (fp1,fn1) and (fp2,fn2), then we can construct a stochastic classifier that interpolates between them. Given a new data point **x**, we use classifier h_1 with probability *p* and h_2 with probability (1-p). The resulting classifier has an expected false positive level of p fp1 + (1 – p) fp2 and an expected false negative level of p fn1 + (1 – p) fn2.
- This means that we can create a classifier that matches any point on the convex hull of the ROC curve

Maximizing AUC

- At learning time, we may not know the cost ratio R. In such cases, we can maximize the Area Under the ROC Curve (AUC)
- Efficient computation of AUC
 - Assume h(x) returns a real quantity (larger values => class 1)
 - Sort \mathbf{x}_i according to $h(\mathbf{x}_i)$. Number the sorted points from 1 to N such that r(i) = the rank of data point \mathbf{x}_i
 - AUC = probability that a randomly chosen example from class 1 ranks above a randomly chosen example from class 0 = the Wilcoxon-Mann-Whitney statistic

Computing AUC

Let S₁ = sum of r(i) for y_i = 1 (sum of the ranks of the positive examples)

$$\widehat{AUC} = \frac{S_1 - N_1(N_1 + 1)/2}{N_0 N_1}$$

where N_0 is the number of negative examples and N_1 is the number of positive examples

Optimizing AUC

A hot topic in machine learning right now is developing algorithms for optimizing AUC

RankBoost: A modification of AdaBoost. The main idea is to define a "ranking loss" function and then penalize a training example x by the number of examples of the other class that are misranked (relative to x)

Rejection Curves

- In most learning algorithms, we can specify a threshold for making a rejection decision
 - Probabilistic classifiers: adjust cost of rejecting versus cost of FP and FN
 - Decision-boundary method: if a test point **x** is within θ of the decision boundary, then reject
 - Equivalent to requiring that the "activation" of the best class is larger than the second-best class by at least θ

Rejection Curves (2)

Vary θ and plot fraction correct versus fraction rejected

Precision versus Recall

Information Retrieval:

- y = 1: document is relevant to query
- y = 0: document is irrelevant to query
- K: number of documents retrieved
- Precision:
 - fraction of the K retrieved documents (ŷ=1) that are actually relevant (y=1)
 - TP / (TP + FP)

Recall:

- fraction of all relevant documents that are retrieved

– TP / (TP + FN) = true positive rate

Precision Recall Graph

Plot recall on horizontal axis; precision on vertical axis; and vary the threshold for making positive predictions (or vary K)

The F₁ Measure

Figure of merit that combines precision and recall.

$$F_1 = 2 \cdot \frac{P \cdot R}{P + R}$$

where P = precision; R = recall. This is twice the harmonic mean of P and R.
 We can plot F₁ as a function of the classification threshold θ

Summarizing a Single Operating Point

WEKA and many other systems normally report various measures for a single operating point (e.g., θ = 0.5). Here is example output from WEKA:

=== Detailed Accuracy By Class ===						
TP Rate	FP Rate	Precision	Recall	F-Measure	Class	
0.854	0.1	0.899	0.854	0.876	0	
0.9	0.146	0.854	0.9	0.876	1	

Visualizing ROC and P/R Curves in WEKA

Right-click on the result list and choose "Visualize Threshold Curve". Select "1" from the popup window.

ROC:

- Plot False Positive Rate on X axis
- Plot True Positive Rate on Y axis
- WEKA will display the AUC also
- Precision/Recall:
 - Plot Recall on X axis
 - Plot Precision on Y axis
- WEKA does not support rejection curves

Sensitivity and Selectivity

In medical testing, the terms "sensitivity" and "selectivity" are used

- Sensitivity = TP/(TP + FN) = true positive rate = recall
- Selectivity = TN/(FP + TN) = true negative rate = recall for the negative class = 1 – the false positive rate

The sensitivity versus selectivity tradeoff is identical to the ROC curve tradeoff

Estimating the Error Rate of a Classifier

Compute the error rate on hold-out data

- suppose a classifier makes k errors on n holdout data points
- the estimated error rate is $\hat{e} = k / n$.

Compute a confidence internal on this estimate

- the standard error of this estimate is

$$SE = \sqrt{\frac{\widehat{\epsilon} \cdot (1 - \widehat{\epsilon})}{n}}$$

 $-A1 - \alpha$ confidence interval on the true error ϵ is

$$\hat{\epsilon} - z_{\alpha/2}SE <= \epsilon <= \hat{\epsilon} + z_{\alpha/2}SE$$

For a 95% confidence interval, Z_{0.025} = 1.96, so we use

$$\hat{\epsilon} - 1.96SE \le \epsilon \le \hat{\epsilon} + 1.96SE.$$

Comparing Two Classifiers

- Goal: decide which of two classifiers h₁ and h₂ has lower error rate
- Method: Run them both on the same test data set and record the following information:
 - n₀₀: the number of examples correctly classified by both classifiers
 - n_{01} : the number of examples correctly classified by h_1 but misclassified by h_2
 - n_{10} : The number of examples misclassified by h_1 but correctly classified by h_2
 - n_{00} : The number of examples misclassified by both h_1 and h_2 .

n ₀₀	n ₀₁	
n ₁₀	n ₁₁	

M is distributed approximately as χ² with 1 degree of freedom. For a 95% confidence test, χ²_{1,095} = 3.84. So if M is larger than 3.84, then with 95% confidence, we can reject the null hypothesis that the two classifies have the same error rate

Confidence Interval on the Difference Between Two Classifiers

Let p_{ij} = n_{ij}/n be the 2x2 contingency table converted to probabilities

$$SE = \sqrt{\frac{p_{01} + p_{10} + (p_{01} - p_{10})^2}{n}}$$
$$p_A = p_{10} + p_{11}$$
$$p_B = p_{01} + p_{11}$$

A 95% confidence interval on the difference in the true error between the two classifiers is

$$p_A - p_B - 1.96\left(SE + \frac{1}{2n}\right) <= \epsilon_A - \epsilon_B <= p_A - p_B + 1.96\left(SE + \frac{1}{2n}\right)$$

Cost-Sensitive Comparison of Two Classifiers

- Suppose we have a non-0/1 loss matrix L(ŷ,y) and we have two classifiers h₁ and h₂. Goal: determine which classifier has lower expected loss.
- A method that does not work well:
 - For each algorithm *a* and each test example (\mathbf{x}_i, y_i) compute $l_{a,i} = L(h_a(\mathbf{x}_i), y_i)$.
 - Let $\delta_i = \ell_{1,i} \ell_{2,i}$
 - Treat the δ 's as normally distributed and compute a normal confidence interval
- The problem is that there are only a finite number of different possible values for δ_i. They are not normally distributed, and the resulting confidence intervals are too wide

A Better Method: BDeltaCost

- Let Δ = {δ_i}^N_{i=1} be the set of δ_i's computed as above
- For b from 1 to 1000 do
 - Let T_b be a bootstrap replicate of Δ
 - Let s_b = average of the δ 's in T_b
- Sort the s_b's and identify the 26th and 975th items. These form a 95% confidence interval on the average difference between the loss from h₁ and the loss from h₂.
- The bootstrap confidence interval quantifies the uncertainty due to the size of the test set. It does not allow us to compare <u>algorithms</u>, only <u>classifiers</u>.

Estimating the Error Rate of a Learning Algorithm

Under the PAC model, training examples x are drawn from an underlying distribution D and labeled according to an unknown function f to give (x,y) pairs where y = f(x).

■ The error rate of a <u>classifier</u> *h* is error(h) = $P_D(h(\mathbf{x}) \neq f(\mathbf{x}))$

Define the error rate of a <u>learning algorithm</u> A for sample size *m* and distribution *D* as

 $error(A,m,D) = E_{S} [error(A(S))]$

- This is the expected error rate of h = A(S) for training sets S of size m drawn according to D.
- We could estimate this if we had several training sets S₁, ..., S_L all drawn from *D*. We could compute A(S₁), A(S₂), ..., A(S_L), measure their error rates, and average them.
 Unfortunately, we don't have enough data to do this!

Two Practical Methods

k-fold Cross Validation

This provides an unbiased estimate of error(A, (1 – 1/k)m, D) for training sets of size (1 – 1/k)m

Bootstrap error estimate (out-of-bag estimate)

- Construct L bootstrap replicates of S_{train}
- Train A on each of them
- Evaluate on the examples that *did not appear* in the bootstrap replicate
- Average the resulting error rates

Estimating the Difference Between Two Algorithms: the 5x2CV F test

for *i* from 1 to 5 **do**

perform a 2-fold cross-validation split S evenly and randomly into S_1 and S_2 **for** *j* from 1 to 2 **do**

Train algorithm A on S_j , measure error rate $p_A^{(i,j)}$ Train algorithm B on S_j , measure error rate $p_B^{(i,j)}$ $p_i^{(j)} := p_A^{(i,j)} - p_B^{(i,j)}$

Difference in error rates on fold j

Average difference in error rates in iteration i

 $\overline{p}_{i} := \frac{p_{i}^{(1)} + p_{i}^{(2)}}{2}$ $F_{i} := \frac{p_{i}^{(1)} + p_{i}^{(2)}}{2}$ $S_{i}^{2} = \left(p_{i}^{(1)} - \overline{p}_{i}\right)^{2} + \left(p_{i}^{(2)} - \overline{p}_{i}\right)^{2}$ $F_{i} = \left(p_{i}^{(1)} - \overline{p}_{i}\right)^{2} + \left(p_{i}^{(2)} - \overline{p}_{i}\right)^{2}$ $F_{i} = \left(p_{i}^{(1)} - \overline{p}_{i}\right)^{2}$

 $F := \frac{\sum_i \overline{p}_i^2}{2\sum_i s^2}$

5x2CV F test

If F > 4.47, then with 95% confidence, we can reject the null hypothesis that algorithms A and B have the same error rate when trained on data sets of size m/2.

Summary

ROC Curves
Reject Curves
Precision-Recall Curves
Statistical Tests

Estimating error rate of classifier
Comparing two classifiers
Estimating error rate of a learning algorithm

Comparing two algorithms