
Support Vector MachinesSupport Vector Machines
Hypothesis SpaceHypothesis Space
–– variable sizevariable size
–– deterministicdeterministic
–– continuous parameterscontinuous parameters

Learning AlgorithmLearning Algorithm
–– linear and quadratic programminglinear and quadratic programming
–– eagereager
–– batchbatch

SVMs combine three important ideasSVMs combine three important ideas
–– Apply optimization algorithms from Operations Reseach (Linear Apply optimization algorithms from Operations Reseach (Linear

Programming and Quadratic Programming)Programming and Quadratic Programming)
–– Implicit feature transformation using kernelsImplicit feature transformation using kernels
–– Control of overfitting by maximizing the marginControl of overfitting by maximizing the margin

White Lie WarningWhite Lie Warning

This first introduction to SVMs describes a This first introduction to SVMs describes a
special case with simplifying assumptionsspecial case with simplifying assumptions
We will revisit SVMs later in the quarter We will revisit SVMs later in the quarter
and remove the assumptionsand remove the assumptions
The material you are about to see does The material you are about to see does
not describe not describe ““realreal”” SVMsSVMs

Linear ProgrammingLinear Programming

The linear programming problem is the The linear programming problem is the
following:following:
find find ww
minimize c minimize c ·· ww
subject tosubject to

ww ·· aaii = b= bii for for ii = 1, = 1, ……, , mm
wwjj ≥≥ 0 for 0 for jj = 1, = 1, ……, , nn

There are fast algorithms for solving linear There are fast algorithms for solving linear
programs including the simplex algorithm and programs including the simplex algorithm and
KarmarkarKarmarkar’’s algorithms algorithm

Formulating LTU Learning as Formulating LTU Learning as
Linear ProgrammingLinear Programming

Encode classes as {+1, Encode classes as {+1, ––1}1}
LTU: LTU:
h(x) = +1 if h(x) = +1 if ww ·· xx ≥≥ 00

= = ––1 otherwise1 otherwise
An example (An example (xxii,,yyii) is classified correctly by) is classified correctly by hh if if
yyii ·· ww ·· xxii > 0> 0

Basic idea: The constraints on the linear Basic idea: The constraints on the linear
programming problem will be of the formprogramming problem will be of the form
yyii ·· ww ·· xxii > 0> 0

We need to introduce two more steps to convert We need to introduce two more steps to convert
this into the standard format for a linear programthis into the standard format for a linear program

Converting to Standard LP FormConverting to Standard LP Form
Step 1: Convert to equality constraints by using slack Step 1: Convert to equality constraints by using slack
variablesvariables
–– Introduce one slack variable Introduce one slack variable ssii for each training example for each training example xxii and and

require that require that ssii ≥≥ 0:0:
yyii ·· ww ·· xxii –– ssii = 0= 0

Step 2: Make all variables positive by subtracting pairsStep 2: Make all variables positive by subtracting pairs
–– Replace each Replace each wwjj be a difference of two variables: be a difference of two variables: wwjj = = uujj –– vvjj, ,

where where uujj, , vvjj ≥≥ 00
yyii ·· ((uu –– vv)) ·· xxii –– ssii = 0= 0

Linear program:Linear program:
–– Find Find ssii, , uujj, , vvjj
–– Minimize (no objective function)Minimize (no objective function)
–– Subject to:Subject to:

yyii ((∑∑jj ((uujj –– vvjj))xxijij)) –– ssii = 0= 0
ssii ≥≥ 0, 0, uujj ≥≥ 0, 0, vvjj ≥≥ 00

The linear program will have a solution iff the points are The linear program will have a solution iff the points are
linearly separablelinearly separable

ExampleExample
30 random data points labeled according to the line 30 random data points labeled according to the line xx22 = =
1 + 1 + xx11
Pink line is true classifierPink line is true classifier
Blue line is the linear programming fitBlue line is the linear programming fit

What Happens withWhat Happens with
NonNon--Separable Data?Separable Data?

Bad News: Linear Program is InfeasibleBad News: Linear Program is Infeasible

Higher Dimensional SpacesHigher Dimensional Spaces

Theorem: For Theorem: For anyany data set, there exists a data set, there exists a
mapping mapping ΦΦ to a higherto a higher--dimensional space dimensional space
such that the data is linearly separablesuch that the data is linearly separable
ΦΦ((XX) = () = (φφ11((xx),), φφ22((xx),), ……, , φφDD((xx))))
Example: Map to quadratic spaceExample: Map to quadratic space
–– xx = (x= (x11, x, x22) (just two features)) (just two features)
–– ΦΦ((xx) =) =
–– compute linear separator in this spacecompute linear separator in this space

(x21,
√
2 x1x2, x

2
2,
√
2 x1,

√
2 x2,1)

Drawback of this approachDrawback of this approach

The number of features increases rapidlyThe number of features increases rapidly
This makes the linear program much This makes the linear program much
slower to solveslower to solve

Kernel TrickKernel Trick
A dot product between two higherA dot product between two higher--
dimensional mappings can sometimes be dimensional mappings can sometimes be
implemented by a implemented by a kernel functionkernel function
K(K(xxii, , xxjj) =) = ΦΦ((xxii)) ·· ΦΦ((xxjj))

Example: Quadratic KernelExample: Quadratic Kernel
K(xi,xj) = (xi · xj+1)2

= (xi1xj1 + xi2xj2 + 1)
2

= x2i1x
2
j1 + 2xi1xi2xj1xj2 + x2i2x

2
j2 + 2xi1xj1+ 2xi2xj2 + 1

= (x2i1,
√
2 xi1xi2, x

2
i2,
√
2 xi1,

√
2 xi2, 1) ·

(x2j1,
√
2 xj1xj2, x

2
j2,
√
2 xj1,

√
2 xj2,1)

= Φ(xi) ·Φ(xj)

IdeaIdea

Reformulate the LTU linear program so Reformulate the LTU linear program so
that it only involves dot products between that it only involves dot products between
pairs of training examplespairs of training examples
Then we can use kernels to compute Then we can use kernels to compute
these dot productsthese dot products
Running time of algorithm will not depend Running time of algorithm will not depend
on number of dimensions D of highon number of dimensions D of high--
dimensional spacedimensional space

Reformulating the Reformulating the
LTU Linear ProgramLTU Linear Program

Claim: In online Perceptron, Claim: In online Perceptron, ww can be written ascan be written as
ww = = ∑∑jj ααjj yyjj xxjj

Proof:Proof:
–– Each weight update has the formEach weight update has the form

wwtt := := wwtt--11 + + ηη ggi,ti,t

–– ggi,ti,t is computed asis computed as
ggi,ti,t = error= erroritit yyii xxi i (error(erroritit = 1 if x= 1 if xii misclassified in iteration t; 0 misclassified in iteration t; 0

otherwise)otherwise)
–– HenceHence

wwtt = = ww00 + + ∑∑tt ∑∑ii ηη errorerroritit yyii xxii

–– But But ww00 = (0, 0, = (0, 0, ……, 0), so, 0), so
wwtt = = ∑∑tt ∑∑ii ηη errorerroritit yyii xxii
wwtt = = ∑∑ii ((∑∑tt ηη errorerroritit) y) yii xxii
wwtt = = ∑∑ii ααii yyii xxii

Rewriting the Linear Separator Using Dot ProductsRewriting the Linear Separator Using Dot Products

Change of variablesChange of variables
–– instead of optimizing instead of optimizing ww, optimize {, optimize {ααjj}. }.
–– Rewrite the constraintRewrite the constraint

yyii ww ·· xxii > 0 as> 0 as
yyii ∑∑jj ααjj yyjj ((xxjj ·· xxii) > 0 or) > 0 or
∑∑jj ααjj yyjj yyii ((xxjj ·· xxii) > 0) > 0

w · xi =
⎛⎝X
j

αjyjxj

⎞⎠ · xi
=

X
j

αjyj(xj · xi)

The Linear Program becomesThe Linear Program becomes
–– Find {Find {ααjj}}
–– minimize (no objective function)minimize (no objective function)
–– subject tosubject to

∑∑jj ααjj yyjj yyii ((xxjj ·· xxii) > 0) > 0
ααjj ≥≥ 00

–– Notes:Notes:
The weight The weight ααjj tells us how tells us how ““importantimportant”” example example xxjj is. If is. If ααjj is is
nonnon--zero, then zero, then xxjj is called a is called a ““support vectorsupport vector””
To classify a new data point To classify a new data point xx, we take its dot product with , we take its dot product with
the support vectorsthe support vectors

 ∑∑jj ααjj yyjj ((xxjj ·· xx) > 0?) > 0?

Kernel Version of Linear ProgramKernel Version of Linear Program

–– Find {Find {ααjj}}
–– minimize (no objective function)minimize (no objective function)
–– subject tosubject to

∑∑jj ααjj yyjj yyii K(K(xxjj,,xxii) > 0) > 0
ααjj ≥≥ 00

Classify new x according toClassify new x according to
∑∑jj ααjj yyjj K(K(xxjj,,xx) > 0?) > 0?

Two support vectors (blue) with Two support vectors (blue) with αα11 = 0.205 and = 0.205 and αα22 = =
0.3380.338
Equivalent to the line xEquivalent to the line x22 = = ––0.0974 + x0.0974 + x11*1.341*1.341

Solving the NonSolving the Non--Separable Case Separable Case
with Cubic Polynomial Kernelwith Cubic Polynomial Kernel

KernelsKernels

Dot product Dot product
K(K(xxii, , xxjj) =) = xxii ·· xxjj

Polynomial of degree dPolynomial of degree d
K(K(xxii, , xxjj) = () = (xxii ·· xxjj + 1)+ 1)dd

Gaussian with scale Gaussian with scale σσ
K(K(xxii, , xxjj) = exp() = exp(––||||xxii –– xxjj||||22//σσ22))
Polynomials often give strange Polynomials often give strange
boundaries. Gaussians generally work boundaries. Gaussians generally work
well.well.

Gaussian kernel with Gaussian kernel with σσ22 = 4= 4

The gaussian kernel is equivalent to an infiniteThe gaussian kernel is equivalent to an infinite--
dimensional feature space!dimensional feature space!

Evaluation of SVMsEvaluation of SVMs

nono

nono

somewhatsomewhat

nono

nono

nono

yesyes

somewhatsomewhat

nono

NNbrNNbr

yesyes

yes**yes**

yesyes

yes*yes*

nono

nono

yesyes

nono

nono

SVMSVM

yesyes

nono

yesyes

nono

yesyes

somewhatsomewhat

yesyes

nono

nono

NetsNets

nono

yesyes

nono

somewhatsomewhat

yesyes

yesyes

yesyes

yesyes

yesyes

TreesTrees

yesyes

yesyes

yesyes

nono

yesyes

nono

nono

yesyes

nono

LDALDA

yesyesyesyesAccurateAccurate

yesyesyesyesInterpretableInterpretable

yesyesyesyesLinear combinationsLinear combinations

nonononoIrrelevant inputsIrrelevant inputs

yesyesyesyesScalabilityScalability

nonononoMonotone transformationsMonotone transformations

yesyesnonoOutliersOutliers

nonononoMissing valuesMissing values

nonononoMixed dataMixed data

LogisticLogisticPercPercCriterionCriterion

* = dot product kernel with absolute value penalty

** = dot product kernel

Support Vector Machines SummarySupport Vector Machines Summary

Advantages of SVMsAdvantages of SVMs
–– variablevariable--sized hypothesis spacesized hypothesis space
–– polynomialpolynomial--time exact optimization rather than approximate time exact optimization rather than approximate

methodsmethods
unlike decision trees and neural networksunlike decision trees and neural networks

–– Kernels allow very flexible hypothesesKernels allow very flexible hypotheses
Disadvantages of SVMsDisadvantages of SVMs
–– Must choose kernel and kernel parameters: Gaussian, Must choose kernel and kernel parameters: Gaussian, σσ
–– Very large problems are computationally intractable Very large problems are computationally intractable

quadratic in number of examplesquadratic in number of examples
problems with more than 20,000 examples are very difficult to soproblems with more than 20,000 examples are very difficult to solve lve
exactlyexactly

–– Batch algorithmBatch algorithm

SVMs Unify SVMs Unify
LTUs and Nearest NeighborLTUs and Nearest Neighbor

With Gaussian kernelWith Gaussian kernel
–– compute distance to a set of compute distance to a set of ““support vectorsupport vector””

nearest neighborsnearest neighbors
–– transform through a gaussian (nearer transform through a gaussian (nearer

neighbors get bigger votes)neighbors get bigger votes)
–– take weighted sum of those distances for take weighted sum of those distances for

each classeach class
–– classify to the class with most votesclassify to the class with most votes

