Support Vector Machines

1 Hypothesis Space
— variable size
— deterministic

— continuous parameters
1 Learning Algorithm

— linear and quadratic programming
— eager
— batch

a8 SVMs combine three important ideas

— Apply optimization algorithms from Operations Reseach (Linear
Programming and Quadratic Programming)

— Implicit feature transformation using kernels
— Control of overfitting by maximizing the margin




White Lie Warning

1 This first introduction to SVMs describes a
special case with simplifying assumptions

1 \We will revisit SVMs later in the quarter
and remove the assumptions

1 The material you are about to see does
not describe “real” SVMs




Linear Programming

1 The linear programming problem is the
following:
find w
minimize ¢ -w
subject to
w-a=Dbfori=1, .., m
w;>0forj=1,..,n
1 There are fast algorithms for solving linear

programs including the simplex algorithm and
Karmarkar’s algorithm




Formulating LTU Learning as
Linear Programming

1 Encode classes as {+1, -1}

1 LTU:
h(x)=+1ifw.-x>0
= —1 otherwise
1 An example (x;,y;) Is classified correctly by h if

Yi-W-X;>0

1 Basic idea: The constraints on the linear
programming problem will be of the form
Yi-W-X;>0

1 We need to introduce two more steps to convert
this into the standard format for a linear program




Converting to Standard LP Form

1 Step 1: Convert to equality constraints by using slack
variables

— Introduce one slack variable s; for each training example x; and
require that s; > O:

Y,-W-X;—5,=0
1 Step 2: Make all variables positive by subtracting pairs

— Replace each w, be a difference of two variables: w;, = u, — v,

where U, V; > > O

Y.-(uU-vVv)-x,—s=0
1 Linear program:
— Finds;, u, v,
— Minimize (no objective function)
— Subject to:
Yi (2 (U= VX)) —s,=0
sizo,ujzo,vjzo
1 The linear program will have a solution iff the points are
linearly separable




Example

1 30 random data points labeled according to the line x, =
1+ X

1 Pink line Is true classifier
1 Blue line is the linear programming fit




What Happens with
Non-Separable Data?

1 Bad News: Linear Program is Infeasible




Higher Dimensional Spaces

1 Theorem: For any data set, there exists a
mapping ® to a higher-dimensional space

such that the o

ata Is linearly separable

1 D(X) = (91(X), ¢

05(X); ++0s Op(X))

1 Example: Map to quadratic space

— X = (Xq, X5)

(just two features)

- O(x) = (27, V2 2122, 25, V2 21, V2 22, 1)
— compute linear separator in this space




Drawback of this approach

1 The number of features increases rapidly

1 This makes the linear program much
slower to solve




Kernel Trick

1 A dot product between two higher-
dimensional mappings can sometimes be
Implemented by a kernel function

K(Xj, Xj) = D(X;) - D(X;)
1 Example: Quadratic Kernel

K(x,x;) = (x;-x;+1)°
= (zj17j1 + zozjo + 1)2
= 507:2133]21 + 2zj1zi0 51252 + :Uizzzvjz-z + 2z51251 + 2z40%50 + 1
= (271, V2 212,25, V2 21, V2 20, 1) -
(%2'17 V2 wj1$j2a%2'27 V2 Tj15 V2 T2, 1)
D(x;) - P(x;)




|dea

1 Reformulate the LTU linear program so
that it only involves dot products between
pairs of training examples

1 Then we can use kernels to compute
these dot products

1 Running time of algorithm will not depend
on number of dimensions D of high-
dimensional space




Reformulating the

LTU Linear Program

1 Claim: In online Perceptron, w can be written as
W =2 oy Y X
1 Proof:

— Each weight update has the form
Wi 1= Wiy + 1 Qi
— 0, Is computed as
9. = error, y; X; (error, = 1 if X, misclassified in iteration t; O
otherwise)
— Hence
Wy = Wq + 2 25 M error; Y; X;
— Butw,=(0,0, ..., 0), so
Wy = 2 2 1 eIror, Y; X;
W, = 2 (2 €rrory) Y; X;
Wi = 25 04 Y X




Rewriting the Linear Separator Using Dot Products

. Xi (Z Oé]y]XJ> . Xi
J

> (X - Xq)
j

1 Change of variables
— Instead of optimizing w, optimize {o}.
— Rewrite the constraint
yiw -X,>0 as
yi 2o Y (X - %) >0 or
205y Y (X - %) >0




The Linear Program becomes

— Find {oy}
— minimize (no objective function)
— subject to
205y, Y (X - %) >0
a; >0
— Notes:

1 The weight al tells us how “important” example X; Is. If o IS
non-zero, then X; is called a “support vector”

1 To classify a new data point x, we take its dot product with
the support vectors

2 o Y (X - X) > 07




Kernel Version of Linear Program

— Find {oy}
— minimize (no objective function)

— subject to
2 a; Y; i K(X;,x;) > 0
o >0
1 Classify new x according to
2 a; Y; K(X;,x) > 0?
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1 Two support vectors (blue) with a; = 0.205 and o, =
0.338

1 Equivalent to the line x, = -0.0974 + x,*1.341




Solving the Non-Separable Case
with Cubic Polynomial Kernel
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Kernels

1 Dot product
KXy Xj) = X; - X;

1 Polynomial of degree d
KX, X;) = (X; - x; + 1)

1 Gaussian with scale o
K(X;, X;) = exp(=[x; — X;|[*/c?)
1 Polynomials often give strange

boundaries. Gaussians generally work
well.




Gaussian kernel with ¢2 = 4
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1 The gaussian kernel is equivalent to an infinite-
dimensional feature space!




Evaluation of SVMs

Criterion

Logistic

LDA

Trees

Mixed data

Missing values

Outliers

Monotone transformations
Scalability

Irrelevant inputs

Linear combinations
Interpretable

Accurate

no

no

no

yes no
yes no
yes yes
yes somewhat
yes yes
somewhat no

no

* = dot product kernel with absolute value penalty

** = dot product kernel

no
somewhat
yes

no

no

no
somewhat
no

no




Support Vector Machines Summary

1 Advantages of SVMs
— variable-sized hypothesis space

— polynomial-time exact optimization rather than approximate
methods

1 unlike decision trees and neural networks
— Kernels allow very flexible hypotheses

1 Disadvantages of SVMs

— Must choose kernel and kernel parameters: Gaussian, ¢

— Very large problems are computationally intractable
1 quadratic in number of examples

1 problems with more than 20,000 examples are very difficult to solve
exactly

— Batch algorithm




SVMs Unify
LTUs and Nearest Neighbor

1 With Gaussian kernel

— compute distance to a set of “support vector”
nearest neighbors

— transform through a gaussian (nearer

neighbors get bigger votes)

— take weighted sum of those distances for
each class

— classify to the class with most votes




