Learning Bayesian Networks:
Naive and non-Naive Bayes
1 Hypothesis Space

— fixed size
— stochastic

— continuous parameters

1 Learning Algorithm
— direct computation
— eager
— batch




Multivariate Gaussian Classifier
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1 The multivariate Gaussian Classifier Is
equivalent to a simple Bayesian network

1 This models the joint distribution P(Xx,y) under
the assumption that the class conditional
distributions P(x|y) are multivariate gaussians
— P(y): multinomial random variable (K-sided coin)

— P(X|y): multivariate gaussian mean p, covariance
matrix X,




Naive Bayes Model
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1 Each node contains a probability table
— y: P(y=K)
— X P(x;=Vv |y =Kk) “class conditional probability”
1 Interpret as a generative model
— Choose the class k according to P(y = k)
— Generate each feature independently according to P(x=v | y=k)
— The feature values are conditionally independent

PXiX [ y) =P [y)-P(x1|y)




Representing P(x;|y)

1 Many representations are possible

— Univariate Gaussian
1 if X. IS a continuous random variable, then we can use a normal

distribution and learn the mean u and variance c?

— Multinomial

1 if X, iIs a discrete random variable, X; € v, ..,

the conditional probability table

y=1 y=2

v..}, then we construct

y=K

P(x=v, |y =K)
Px=v, |y =K)

X=V, P(XJ-:Vl ly=1) P(XJ-:Vl |y =2)

X=V, P(Xj=V2 ly=1) P(Xj=V2 |y =2)

X=Vy, | PX=v,|ly=1) P(x=v, |y =2) Px=v, |y =K)

— Discretization
1 convert continuous X into a discrete variable

— Kernel Density Estimates
1 apply a kind of nearest-neighbor algorithm to compute P(X; | y) in

neighborhood of query point




Discretization via Mutual Information

i Many discretization algorithms have been studied. One
of the best is mutual information discretization

— To discretize feature x;, grow a decision tree considering only

splits on x;. Each leaf of the resulting tree will correspond to a
single value of the discretized x;.

— Stopping rule (applied at each node). Stop when
logo(N — 1) A

I(x;; <
(]y) N N

A = logo (3% —2)—[K-H(S)—K;-H(S))—Kr-H(Sr)]

— where S is the training data in the parent node; S, and S, are the
examples in the left and right child. K, K,, and K, are the
corresponding number of classes present in these examples. |

Is the mutual information, H is the entropy, and N is the number
of examples in the node.




Kernel Density Estimators
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1Define K(zj2ij) = —5= exp_( ) to
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be the Gaussian Kernel with parameter o

1 Estimate

P(zjly =k) = N,

where N, Is the number of training
examples in class k.




Kernel Density Estimators (2)

1 This Is equivalent to placing a Gaussian
“bump” of height 1/N, on each trianing
data point from class k and then adding
them up




Kernel Density Estimators

1 Resulting probabllity density




The value chosen for o Is critical




Nalve Bayes learns a
Linear Threshold Unit

1 For multinomial and discretized attributes (but
not Gaussian), Naive Bayes gives a linear
decision boundary

PX|Y =y) =P(z1 =v1]Y =y)-P(zo =w|Y =y) - P(zn =v|Y =y)

1 Deflne a discriminant function for class 1 versus
class K

PY=1X)  Pl@i1=un1lY=1) PlEn=w|Y=1) P(Y =1)

h(x) = P(Y =KIX) Pzi=v]Y=K) Pzpn=uwv|Y=K)PY =K)




Log of Odds Ratio

Ply=1x) _ Pl@i=wly=1) Pan=wly=1) Ply=1)

Ply=Kix)  P@i=vily=K) Pan=uvny=K) P(y=K)

Ply=1x) _ . Plzi=vily=1)
Ply=Kk) 9

+ . log P(xp =vply=1)

log ..
P(zx1=vily = K) P(zn = vnly = K)

Suppose each x; is binary and define

P(z; =0y=1)
P(z; =0ly = K)

ajo = log

P(z;=1ly=1)
P(z; = 1lly = K)

aj1 = log




Log Odds (2)

1 Now rewrite as

P(y = 1x)
P(y = Klx)

P(y=1)
Ply=K)

log = > (051 —aj0)zj+ ajp+log

J

P(y = 1|x)

| Ply=1)
log Ply=KR) %:(ozj,l —aj0)z; + (%: aj o+ 1og Py = K))

1 We classify into class 1 if this is > 0 and
Into class K otherwise




Learning the Probabillity
Distributions by Direct Computation

1 P(y=k) Is just the fraction of training examples
nelonging to class k.

1 For multinomial variables, P(x; = v | y = k) Is the
fraction of training examples in class k where Xx;

=V
1 For Gaussian variables, Uk is the average

P

value of x; for training examples in class k. ok
IS the sample standard deviation of those points:

\

Ojk =




Improved Probability Estimates via
Laplace Corrections

1 When we have very little training data, direct probability computation
can give probabilities of 0 or 1. Such extreme probabilities are “too
strong” and cause problems

1 Suppose we are estimate a probability P(z) and we have n,
examples where z is false and n; examples where z is true. Our
direct estimate is

P(z=1) =

ni

no + ni
i Laplace Estimate. Add 1 to the numerator and 2 to the denominator

This says that in the absence of any evidence, we expect P(z) = 0.5,
but our belief is weak (equivalent to 1 example for each outcome).

1 Generalized Laplace Estimate. If z has K different outcomes, then
we estimate it as
ny+1

P(Z=1)=no_|__|_nK_1_|_K




Nalve Bayes Applied to Diabetes Diagnosis

Diabetes

+

(Insulin| [Glucose| ( Mass | [ Preg | [ Age |

1 Bayes nets and causality
— Bayes nets work best when arrows follow the direction of
causality

1 two things with a common cause are likely to be conditionally
independent given the cause; arrows in the causal direction capture
this independence

— In a Naive Bayes network, arrows are often not in the causal
direction

1 diabetes does not cause pregnancies
1 diabetes does not cause age
— But some arrows are correct
1 diabetes does cause the level of blood insulin and blood glucose




Non-Naive Bayes

8 Manually construct a graph in which
all arcs are causal

Learning the probability tables is still
easy. For example, P(Mass | Age,
Preg) involves counting the number
of patients of a given age and
number of pregnancies that have a

given body mass
Classification:

P(D =d|A,P,M,I,G) =

P(I|D = d)P(G|I,D = d)P(D = d|A, M, P)
P(I,G)

D1abetes

Glucose




Evaluation of Naive Bayes

Criterion LMS Logistic LDA Trees Nets NNbr  SVM NB

Mixed data no no no yes no no no yes
Missing values no no yes no yes
Outliers no yes disc
Monotone transformations no yes no disc
Scalability yes no yes
Irrelevant inputs no no no some some some
Linear combinations yes yes yes no yes yes
Interpretable yes yes yes no some yes

Accurate yes yes yes yes yes yes

Naive Bayes is very popular, particularly in natural language processing
and information retrieval where there are many features compared to the
number of examples

In applications with lots of data, Naive Bayes does not usually perform
as well as more sophisticated methods




Nalve Bayes Summary

1 Advantages of Bayesian networks
— Produces stochastic classifiers
1 can be combined with utility functions to make optimal decisions
— Easy to incorporate causal knowledge
1 resulting probabilities are easy to interpret
— Very simple learning algorithms
1 if all variables are observed in training data

1 Disadvantages of Bayesian networks

— Fixed sized hypothesis space
1 may underfit or overfit the data
1 may not contain any good classifiers if prior knowledge is wrong

— Harder to handle continuous features




