
Statistical and Computational Statistical and Computational 
Learning TheoryLearning Theory

Fundamental Question: Predict Error RatesFundamental Question: Predict Error Rates
–– Given:Given:

The space H of hypothesesThe space H of hypotheses
The number and distribution of the training examples SThe number and distribution of the training examples S
The complexity of the hypothesis The complexity of the hypothesis hh ∈∈ H output by the H output by the 
learning algorithmlearning algorithm
Measures of how well Measures of how well hh fits the examplesfits the examples
etc.etc.

–– Find:Find:
Theoretical bounds on the error rate of Theoretical bounds on the error rate of hh on new data points.on new data points.



General Assumptions General Assumptions 
(Noise(Noise--Free Case)Free Case)

Assumption: Examples are generated according to a Assumption: Examples are generated according to a 
probability distribution D(probability distribution D(xx) and labeled according to an ) and labeled according to an 
unknown function f:  unknown function f:  yy = f(= f(xx))
Learning Algorithm:  The learning algorithm is given a Learning Algorithm:  The learning algorithm is given a 
set of set of mm examples, and it outputs an hypothesis examples, and it outputs an hypothesis hh ∈∈ H H 
that is that is consistentconsistent with those examples (i.e., correctly with those examples (i.e., correctly 
classifies all of them).classifies all of them).
Goal: Goal: hh should have a low error rate should have a low error rate εε on new examples on new examples 
drawn from the drawn from the same distributionsame distribution D.D.

f h

error(h, f) = PD[f(x) 6= h(x)]



ProbablyProbably--Approximately Correct Approximately Correct 
LearningLearning

We allow our algorithms to fail with probability We allow our algorithms to fail with probability δδ
Imagine drawing a sample of Imagine drawing a sample of mm examples, running the examples, running the 
learning algorithm, and obtaining learning algorithm, and obtaining hh.  Sometimes, the .  Sometimes, the 
sample will be unrepresentative, so we only want to sample will be unrepresentative, so we only want to 
insist that 1 insist that 1 –– δδ of the time, the hypothesis will have error of the time, the hypothesis will have error 
less than less than εε.  For example, we might want to obtain a .  For example, we might want to obtain a 
99% accurate hypothesis 90% of the time.99% accurate hypothesis 90% of the time.
Let PLet Pmm

DD(S) be the probability of drawing data set S of (S) be the probability of drawing data set S of mm
examples according to D.examples according to D.

PmD [error(f, h) > ²] < δ



Case 1: Finite Hypothesis SpaceCase 1: Finite Hypothesis Space

Assume HAssume H is finiteis finite
Consider Consider hh11 ∈∈ H such that H such that errorerror((hh,,ff) > ) > εε.  What is .  What is 
the probability that it will correctly classify the probability that it will correctly classify mm
training examples?training examples?
If we draw If we draw oneone training example, (training example, (xx11,,yy11), what is ), what is 
the probability that the probability that hh11 classifies it correctly?classifies it correctly?
P[hP[h11((xx11) = ) = yy11] = (1 ] = (1 –– εε))

What is the probability that What is the probability that hh will be right will be right mm
times?times?
PPmm

DD[h[h11((xx11) = ) = yy11] = (1 ] = (1 -- εε))mm



Finite Hypothesis Spaces (2)Finite Hypothesis Spaces (2)
Now consider a second hypothesis Now consider a second hypothesis hh22 that is that is 
also also εε--bad.  What is the probability that bad.  What is the probability that eithereither hh11
or or hh22 will survive the will survive the mm training examples?training examples?
PPmm

DD[[hh11 ∨∨ hh22 survives] = Psurvives] = Pmm
DD[[hh11 survives] + survives] + 

PPmm
DD[[hh22 survives] survives] ––

PPmm
DD[h[h11 ∧∧ hh22 survives]survives]

·· PPmm
DD[[hh11 survives] + Psurvives] + Pmm

DD[[hh22 survives]survives]
·· 2(1 2(1 –– εε))mm

So if there are So if there are kk εε--bad hypotheses, the bad hypotheses, the 
probability that probability that any oneany one of them will survive is of them will survive is ··
k (1 k (1 –– εε))mm

Since Since kk < |H|, this is < |H|, this is ·· |H|(1 |H|(1 –– εε))mm



Finite Hypothesis Spaces (3)Finite Hypothesis Spaces (3)

Fact:  When 0 Fact:  When 0 ·· εε ·· 1, (1 1, (1 –– εε) ) ·· ee––εε

thereforetherefore
|H|(1 |H|(1 –– εε))mm ·· |H| |H| ee––εεmm



Blumer BoundBlumer Bound
(Blumer, Ehrenfeucht, Haussler, Warmuth)(Blumer, Ehrenfeucht, Haussler, Warmuth)

Lemma.  For a finite hypothesis space H, given Lemma.  For a finite hypothesis space H, given 
a set of a set of mm training examples drawn training examples drawn 
independently according to D, the probability independently according to D, the probability 
that there exists an hypothesis that there exists an hypothesis hh ∈∈ H with true H with true 
error greater than error greater than εε consistent with the training consistent with the training 
examples is less than |H|examples is less than |H|ee––εεmm..
We want to ensure that this probability is less We want to ensure that this probability is less 
than than δδ..

|H||H|ee––εεmm ·· δδ
This will be true whenThis will be true when

m ≥ 1
²

µ
ln |H|+ ln 1

δ

¶
.



Finite Hypothesis Space BoundFinite Hypothesis Space Bound

Corollary:  If Corollary:  If hh ∈∈ H is consistent with all H is consistent with all mm
examples drawn according to D, then the examples drawn according to D, then the 
error rate error rate εε on new data points can be on new data points can be 
estimated asestimated as

² =
1

m

µ
ln |H|+ ln1

δ

¶
.



ExamplesExamples
Boolean conjunctions over Boolean conjunctions over nn features.features.
|H| = 3|H| = 3nn, since each feature can appear as , since each feature can appear as xxjj, , ¬¬xxjj, or be , or be 

missing.missing.

kk--DNF formulas:DNF formulas:
((xx11 ∧∧ xx33) ) ∨∨ ((xx22 ∧∧ ¬¬ xx44) ) ∨∨ ((xx11 ∧∧ xx44))

There are at most (2n)There are at most (2n)kk disjunctions, sodisjunctions, so
|H| |H| ·· 22(2n)(2n)kk

for for fixedfixed kk, this gives, this gives
loglog22 |H| = (2n)|H| = (2n)kk

which is polynomial in which is polynomial in nn::

²=
1

m

µ
n ln3+ ln

1

δ

¶

²=
1

m
O
µ
nk+ ln

1

δ

¶



Finite Hypothesis Space: Finite Hypothesis Space: 
Inconsistent HypothesesInconsistent Hypotheses

Suppose that Suppose that hh does not perfectly fit the does not perfectly fit the 
data, but rather that it has an error rate of data, but rather that it has an error rate of 
εεTT.  Then the following holds:.  Then the following holds:

This makes it clear that the error rate on This makes it clear that the error rate on 
the test data is usually going to be larger the test data is usually going to be larger 
than the error rate than the error rate εεTT on the training data.on the training data.

² <= ²T +

vuut ln |H|+ ln 1δ
2m



Case 2: Infinite Hypothesis Spaces Case 2: Infinite Hypothesis Spaces 
and the VC Dimensionand the VC Dimension

Most of our classifiers (LTUs, neural networks, SVMs) Most of our classifiers (LTUs, neural networks, SVMs) 
have continuous parameters and therefore, have infinite have continuous parameters and therefore, have infinite 
hypothesis spaceshypothesis spaces
Despite their infinite size, they have limited expressive Despite their infinite size, they have limited expressive 
power, so we should be able to prove somethingpower, so we should be able to prove something
Definition:  Consider a set of Definition:  Consider a set of mm examples S = {(examples S = {(xx11,y,y11)),, ……, , 
((xxmm,y,ymm)})}.. An hypothesis space H can An hypothesis space H can trivially fittrivially fit S, if for S, if for 
every possible way of labeling the examples in S, there every possible way of labeling the examples in S, there 
exists an exists an hh ∈∈ H that gives this labeling.  (H is said to H that gives this labeling.  (H is said to 
““shattershatter”” S)S)
Definition: The Definition: The VapnikVapnik--ChervonenkisChervonenkis dimension (VCdimension (VC--
dimension) of an hypothesis space H is the size of the dimension) of an hypothesis space H is the size of the 
largest set S of examples that can be trivially fit by H.largest set S of examples that can be trivially fit by H.
For finite H, VC(H) For finite H, VC(H) ·· loglog22 |H||H|



VCVC--dimension Example (1)dimension Example (1)
Let H be the set of intervals on the real line such that Let H be the set of intervals on the real line such that 
hh((xx) = 1 iff ) = 1 iff xx is in the interval.  H can trivially fit any pair is in the interval.  H can trivially fit any pair 
of examples:of examples:

However, H cannot trivially fit any triple of examples.  TherefoHowever, H cannot trivially fit any triple of examples.  Therefore the re the 
VCVC--dimension of H is 2dimension of H is 2



VCVC--dimension Example (2)dimension Example (2)

Let H be the space of linear separators in Let H be the space of linear separators in 
the 2the 2--D plane.  We can trivially fit any 3 D plane.  We can trivially fit any 3 
points.points.



VCVC--dimension Example (3)dimension Example (3)
We cannot separate any set of 4 points (XOR).  In We cannot separate any set of 4 points (XOR).  In 
general, the VCgeneral, the VC--dimension for LTUs in dimension for LTUs in nn--dimensional dimensional 
space is space is nn+1.  A good heuristic is that the VC+1.  A good heuristic is that the VC--dimension dimension 
is equal to the number of tunable parameters in the is equal to the number of tunable parameters in the 
model (unless the parameters are redundant)model (unless the parameters are redundant)



VCVC--dimension of Neural Networksdimension of Neural Networks

The VCThe VC--dimension of a multidimension of a multi--layer layer 
perceptron network of depth perceptron network of depth ss isis

VC VC ·· 22((n + n + 1) 1) s s (1(1 + + lnln ss))

The exact value for sigmoid units is open, The exact value for sigmoid units is open, 
but probably largerbut probably larger



Error Bound for Consistent Error Bound for Consistent 
HypothesesHypotheses

The following bound is analogous to the The following bound is analogous to the 
Blumer bound.  If Blumer bound.  If hh is an hypothesis that is an hypothesis that 
makes no error on a training set of size makes no error on a training set of size mm, , 
and and hh is drawn from an hypothesis space is drawn from an hypothesis space 
H with VCH with VC--dimension dimension dd, then with , then with 
probability 1 probability 1 –– δδ, , hh will have an error rate will have an error rate 
less than less than εε ifif

m ≥ 1
²
(4 log2(2/δ)+ 8d log2(13/²))



Error Bound for Inconsistent Error Bound for Inconsistent 
HypothesesHypotheses

Theorem.  Suppose H has VCTheorem.  Suppose H has VC--dimension dimension dd and and 
a learning algorithm finds a learning algorithm finds hh ∈∈ H with error rate H with error rate εεTT
on a training set of size on a training set of size mm.  Then with probability .  Then with probability 
1 1 –– δδ, the error rate , the error rate εε on new data points ison new data points is

² <= 2²T +
4

m

µ
d log

2em

d
+ log

4

δ

¶
Empirical Risk Minimization PrincipleEmpirical Risk Minimization Principle
–– If you have a fixed hypothesis space H, then your If you have a fixed hypothesis space H, then your 

learning algorithm should minimize learning algorithm should minimize εεTT: the error on the : the error on the 
training data.  (training data.  (εεTT is also called the is also called the ““empirical riskempirical risk””))



Case 3: VariableCase 3: Variable--Sized Hypothesis SpacesSized Hypothesis Spaces

A fixed hypothesis space may not work well for A fixed hypothesis space may not work well for 
two reasonstwo reasons
–– Underfitting:  Every hypothesis in H has high Underfitting:  Every hypothesis in H has high εεTT.  We .  We 

would like to consider a larger hypothesis space Hwould like to consider a larger hypothesis space H’’ so so 
we can reduce we can reduce εεTT

–– Overfitting:  Many hypotheses in H have Overfitting:  Many hypotheses in H have εεTT = 0.  We = 0.  We 
would like to consider a smaller hypothesis space Hwould like to consider a smaller hypothesis space H’’
so we can reduce so we can reduce dd..

Suppose we have a nested series of hypothesis Suppose we have a nested series of hypothesis 
spaces:spaces:

HH11 ⊆⊆ HH22 ⊆⊆ …… ⊆⊆ HHkk ⊆⊆ ……

with corresponding VC dimensions and errorswith corresponding VC dimensions and errors
dd11 ·· dd22 ·· …… ·· ddkk ·· ……
εε11

TT ≥≥ εε22
TT ≥≥ …… ≥≥ εεkk

TT ≥≥ ……



Structural Risk Minimization Structural Risk Minimization 
Principle (Vapnik)Principle (Vapnik)

Choose the hypothesis space HChoose the hypothesis space Hkk that that 
minimizes the combined error boundminimizes the combined error bound

² <= 2²kT +
4

m

Ã
dk log

2em

dk
+ log

4

δ

!



Case 4: DataCase 4: Data--Dependent BoundsDependent Bounds

So far, our bounds on So far, our bounds on εε have depended only on have depended only on 
εεTT and quantities that could be computed prior to and quantities that could be computed prior to 
trainingtraining
The resulting bounds are The resulting bounds are ““worst caseworst case””, because , because 
they must hold for all but 1 they must hold for all but 1 –– δδ of the possible of the possible 
training sets.training sets.
DataData--dependent bounds measure other dependent bounds measure other 
properties of the fit of properties of the fit of hh to the data.  Suppose S to the data.  Suppose S 
is not a worstis not a worst--case training set.  Then we may case training set.  Then we may 
be able to obtain a tighter error boundbe able to obtain a tighter error bound



Margin BoundsMargin Bounds
Suppose Suppose gg((xx) is a real) is a real--valued function that will be thresholded at 0 valued function that will be thresholded at 0 
to give to give hh((xx):  ):  hh((xx) = sgn() = sgn(gg((xx)).  The )).  The functional marginfunctional margin γγ of of gg on on 
training example training example hhxx,,yyii is is γγ = = ygyg((xx).  The margin with respect to the ).  The margin with respect to the 
whole training set is defined as the minimum margin over the entwhole training set is defined as the minimum margin over the entire ire 
set:  set:  γγ((gg,S) = min,S) = minii yyii gg((xxii))



Margin Bounds: Key IntuitionMargin Bounds: Key Intuition
Consider the space of realConsider the space of real--valued functions G that will be valued functions G that will be 
thresholded at 0 to give H.  This space has some VC dimension thresholded at 0 to give H.  This space has some VC dimension dd.  .  
But now, suppose that we consider But now, suppose that we consider ““thickeningthickening”” each each gg ∈∈ G by G by 
requiring that it correctly classify every point with a margin orequiring that it correctly classify every point with a margin of at least f at least 
γγ.  The VC dimension of these .  The VC dimension of these ““fatfat”” separators will be much less separators will be much less 
than than dd.  It is called the .  It is called the fat shattering dimensionfat shattering dimension: fat: fatGG((γγ))



NoiseNoise--Free Margin BoundFree Margin Bound

Suppose a learning algorithm finds a Suppose a learning algorithm finds a gg ∈∈ G with margin G with margin γγ
= = γγ((gg,S) for a training set S of size ,S) for a training set S of size mm.  Then with .  Then with 
probability 1 probability 1 –– δδ, the error rate on new points will be, the error rate on new points will be

where where dd = fat= fatGG((γγ/8) is the fat shattering dimension of G /8) is the fat shattering dimension of G 
with margin with margin γγ/8./8.
We can see that the fat shattering dimension is behaving We can see that the fat shattering dimension is behaving 
much as the VC dimension did in our error boundsmuch as the VC dimension did in our error bounds

² <=
2

m

Ã
d log

2em
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+ log
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!



Fat Shattering using Linear Fat Shattering using Linear 
SeparatorsSeparators

Let D be a probability distribution such that Let D be a probability distribution such that 
all points all points xx drawn according to D satisfy drawn according to D satisfy 
the condition ||the condition ||xx|| || ·· R, so all points R, so all points xx lie lie 
within a sphere of radius R.within a sphere of radius R.
Consider the functions defined by a unit Consider the functions defined by a unit 
weight vector:weight vector:

G = {g | g = G = {g | g = ww ·· xx and ||and ||ww|| = 1}|| = 1}
Then the fat shattering dimension of G isThen the fat shattering dimension of G is

fatG(γ) =

Ã
R

γ

!2



NoiseNoise--Free Margin Bound for Free Margin Bound for 
Linear SeparatorsLinear Separators

By plugging this in, we find that the error rate of a linear By plugging this in, we find that the error rate of a linear 
classifier with unit weight vector and with margin classifier with unit weight vector and with margin γγ on the on the 
training data (lying in a sphere of radius R) istraining data (lying in a sphere of radius R) is

Ignoring all of the log terms, this says we should try to Ignoring all of the log terms, this says we should try to 
minimizeminimize

R and R and mm are fixed by the training set, so we should try to are fixed by the training set, so we should try to 
find a find a gg that maximizes that maximizes γγ.  This is the theoretical .  This is the theoretical 
rationale for finding a rationale for finding a maximum margin classifier.maximum margin classifier.

² <=
2

m

Ã
64R2
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mγ2



Margin Bounds for Inconsistent ClassifiersMargin Bounds for Inconsistent Classifiers
(soft margin classification) (soft margin classification) 

We can extend the margin analysis to the case We can extend the margin analysis to the case 
when the data are not linearly separable (i.e., when the data are not linearly separable (i.e., 
when a linear classifier is not consistent with the when a linear classifier is not consistent with the 
data).  We will do this by measuring the margin data).  We will do this by measuring the margin 
on each training exampleon each training example
Define  Define  ξξii = max{0, = max{0, γγ –– yyii gg((xxii)})}
ξξii is called the is called the margin slack variablemargin slack variable for example for example 
hhxxii,,yyiiii
Note that Note that ξξii > > γγ implies that implies that xxii is misclassified by is misclassified by 
gg..
Define Define ξξ = (= (ξξ11, , ……, , ξξmm) to be the ) to be the margin slack margin slack 
vectorvector for the classifier for the classifier gg on training set Son training set S



Soft Margin Classification (2)Soft Margin Classification (2)

ξi = max{0, γ – yi g(xi)



Soft Margin Classification (3)Soft Margin Classification (3)
Theorem.  With probability 1 Theorem.  With probability 1 –– δδ, a linear separator with , a linear separator with 
unit weight vector and margin unit weight vector and margin γγ on training data lying in a on training data lying in a 
sphere of radius R will have an error rate on new data sphere of radius R will have an error rate on new data 
points bounded bypoints bounded by

for some constant C.for some constant C.
This result tells us that we shouldThis result tells us that we should
–– maximize maximize γγ
–– minimize ||minimize ||ξξ||||22
–– but it doesnbut it doesn’’t tell us how to tradeoff among these two (because C t tell us how to tradeoff among these two (because C 

may vary depending on may vary depending on γγ and and ξξ))
This will give us the full support vector machineThis will give us the full support vector machine

² <=
C

m

Ã
R2 + kξk2

γ2
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δ

!



Statistical Learning Theory: SummaryStatistical Learning Theory: Summary

There is a 3There is a 3--way tradeoff between way tradeoff between εε, , mm, and the complexity of the , and the complexity of the 
hypothesis space H.hypothesis space H.
The complexity of H can be measured by the VC dimensionThe complexity of H can be measured by the VC dimension
For a fixed hypothesis space, we should try to minimize trainingFor a fixed hypothesis space, we should try to minimize training set set 
error (empirical risk minimization)error (empirical risk minimization)
For a variableFor a variable--sized hypothesis space, we should be willing to sized hypothesis space, we should be willing to 
accept some training set errors in order to reduce the VC dimensaccept some training set errors in order to reduce the VC dimension ion 
of Hof Hkk (structural risk minimization)(structural risk minimization)
Margin theory shows that by changing Margin theory shows that by changing γγ, we continuously change , we continuously change 
the effective VC dimension of the hypothesis space.  Large the effective VC dimension of the hypothesis space.  Large γγ means means 
small effective VC dimension (fat shattering dimension)small effective VC dimension (fat shattering dimension)
Soft margin theory tells us that we should be willing to accept Soft margin theory tells us that we should be willing to accept an an 
increase in ||increase in ||ξξ||||22 in order to get an increase in in order to get an increase in γγ..
We will be able to implement structural risk minimization withinWe will be able to implement structural risk minimization within a a 
single optimizer by having a dual objective function that tries single optimizer by having a dual objective function that tries to to 
maximize maximize γγ while minimizing ||while minimizing ||ξξ||||22


