Aggregation Based Feature Invention and Relational Concept Classes

(Claudia Perlich & Foster Provost)

Relational Learning

• Expressive

• Background Knowledge can be incorporated easily

• Aggregation
Predictive Relational Learning

- $M: (t, RDB) \rightarrow y$

$$y = \varphi(t, \psi(RDB)) + \varepsilon$$

- Complexity of relational concept
 1. Complexity of relationships
 2. Complexity of Aggregation Function
 3. Complexity of the function

Figure 1: Transaction database
Relational Concept Classes

• Propositional
 – Features can be concatenated
 – No aggregation
 – Example – One customer table and other
demographic table

• Independent Attributes
 – 1 to n relationship requires simple aggregation
 – Mapping from a bag of zero or more attributes to a
categorical or numeric value
 – Ex Sum, Average for numeric values
 – Ex Mode for categorical attributes

Relational Concept Classes - Contd

• Dependent Attributes within one table
 – Multi-dimensional Aggregation
 – Number of products bought on Dec 22nd (conditioned on Date)

• Dependent Attributes across tables
 – More than one bag of objects of different type
 – Amount spent on items returned at a later date
 – Needs info from more than 1 table

• Global graph features
 – Transitive closure over a set possible joins
 – Customer Reputation
Methods for Relational Aggregation

- First Order Logic - ILP
- Simple Numeric Aggregation
 - Simple Aggregation operators – Mean, Min, Max, Mode
 - Cannot express above level 2
- Set Distances
 - Relational Distance metric & KNN
 - Calculates the minimum distance of all possible pairs of objects
 - Distance – Sum of squared distance (numeric values) or edit distance (categorical values)
 - Assumes attribute independence

Transformation Based Learning

![Diagram of Transformation Based Learning](image)
Value Distributions

- **Value Order**: List of (Value: Index) pairs
 - Ex (watch:1, book:2, CD:3, DVD:4)
- **Case Vector**
 - Ex \{book, CD, CD, book, DVD, book\} for case t
 - \(CV^t_{\text{Products.ProductType}} = (0,3,2,1)\)
- **Reference Vector** – based on a condition c
 - Has at position i the sum of values \(CV[i]\) for all cases t for which c was true
 - Ex Number of CDs
- **Variance Vector** – \((CV[i])^2 / (N_c - 1)\)
 where \(N_c\) – number of cases where c is true

Aggregation = Density Estimation

Target Dependent Individual Values

<table>
<thead>
<tr>
<th>RV Class +ve</th>
<th>RV Class -ve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Book</td>
<td>Book</td>
</tr>
<tr>
<td>.01</td>
<td>.21</td>
</tr>
<tr>
<td>CD</td>
<td>CD</td>
</tr>
<tr>
<td>.31</td>
<td>.36</td>
</tr>
<tr>
<td>DVD</td>
<td>DVD</td>
</tr>
<tr>
<td>.35</td>
<td>.28</td>
</tr>
<tr>
<td>VCR</td>
<td>VCR</td>
</tr>
<tr>
<td>.33</td>
<td>.15</td>
</tr>
</tbody>
</table>

- Most common (MC) - CD
- Most common positive (MOP): DVD
- Most common Negative (MON): CD
- Most Discriminative (MOD): Book
Feature Complexity

1. No Relational Features
2. Unconditional Features MC, Count
3. Class Conditional Features – MOP, MON
4. Discriminative Class Conditional Features – MOD, MOM

Vector Distances

\[
\begin{align*}
EDD &= ED(RV^0, CV) - ED(RV^1, CV) \\
EUD &= EU(RV^0, CV) - EU(RV^1, CV) \\
COSD &= COS(RV^0, CV) - COS(RV^1, CV) \\
MAD &= MA(RV^0, CV) - MA(RV^1, CV)
\end{align*}
\]

<table>
<thead>
<tr>
<th>Reference Vector</th>
<th>Euclidean</th>
<th>Edit</th>
<th>Cosine</th>
<th>Mahalanobis</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>EU</td>
<td>ED</td>
<td>COS</td>
<td>MA</td>
</tr>
<tr>
<td>Positive</td>
<td>EUP</td>
<td>EDP</td>
<td>COSP</td>
<td>MAP</td>
</tr>
<tr>
<td>Negative</td>
<td>EUN</td>
<td>EDN</td>
<td>COSN</td>
<td>MAN</td>
</tr>
<tr>
<td>Positive vs.</td>
<td>EUD</td>
<td>EDD</td>
<td>COSD</td>
<td>MAD</td>
</tr>
<tr>
<td>Negative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Domain: Initial Public Offerings

- IPO(Date, Size, Price, Ticker, Exchange, SIC, Runup)
- HEAD(Ticker, Bank)
- UNDER(Ticker, Bank)
- IND(SIC, Ind2)
- IND2(Ind2, Ind)

- **Goal:** To predict whether the offer was made on the NASDAQ exchange

Implementation details

- Four approaches were tested
 - ILP
 - Logic Based feature construction
 - Selection of specific individual values
 - Target dependent vector aggregation

- Two features were constructed
 - One for (n:1) joins
 - Other for autocorrelation
Details (Contd)

- Exploration – To find related objects
 - Uses BFS
 - Stopping criterion – maximum number of chains
- Feature Selection – Weighted Sampling to select a subset of 10 features
- Model Estimation – Uses C4.5 to learn a tree
 - No change in results if logistic regression was used
- Logic Based Feature construction – Uses ILP to learn FOL clauses and append the binary features
- ILP – Only class labels

Aggregation approaches

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>No Feature Construction</td>
</tr>
<tr>
<td>MOC</td>
<td>Unconditional features – Counts in IPO table</td>
</tr>
<tr>
<td>VD</td>
<td></td>
</tr>
<tr>
<td>MVD</td>
<td></td>
</tr>
<tr>
<td>MOP</td>
<td>Class Conditional Features – Most positive and Negative categoricals and vector distances</td>
</tr>
<tr>
<td>MON</td>
<td></td>
</tr>
<tr>
<td>VDPN</td>
<td></td>
</tr>
<tr>
<td>MOD</td>
<td>Discriminative Features – Most common categoricals and vector distances</td>
</tr>
<tr>
<td>MOM</td>
<td></td>
</tr>
<tr>
<td>MVDD</td>
<td></td>
</tr>
</tbody>
</table>
As complexity increases, performance increases
As training size increases, performance increases
Conclusions

- Expressive power of models combined with aggregation
- Distance metric
- Complex aggregations can reduce explorations
- Focusses only up to level 2 of the hierarchy