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This paper examines how six online multiclass text classification algorithms perform 

in the domain of email tagging within the TaskTracer system. TaskTracer is a project-

oriented user interface for the desktop knowledge worker.  TaskTracer attempts to tag 

all documents, web pages, and email messages with the projects to which they are 

relevant. In previous work, we deployed an SVM email classifier to tag email 

messages.  However, the SVM is a batch algorithm whose training time scales 

quadratically with the number of examples. The goal of the study reported in this 

paper was to select an online learning algorithm to replace this SVM classifier.  We 

investigated Bernoulli Naïve Bayes, Multinomial Naïve Bayes, Transformed Weight-

Normalized Complement Naïve Bayes, Term Frequency – Inverse Document 

Frequency counts, Online Passive Aggressive algorithms, and Linear Confidence 

Weighted classifiers.  These methods were evaluated for their online accuracy, their 

sensitivity to the number and frequency of classes, and their tendency to make 

repeated errors. The Confidence Weighted Classifier and Bernoulli Naïve Bayes were 

found to perform the best.  They behaved more stably than the other algorithms when 

handling the imbalanced classes and sparse features of email data. 
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Evaluating Online Text Classification Algorithms for Email Prediction in TaskTracer 
 

1. INTRODUCTION 

The TaskTracer system [5] is an intelligent activity management system that helps 

knowledge workers manage their work based on two assumptions: (a) the user's work 

can be organized as a set of ongoing activities such as “Write TaskTracer Paper” or 

“CS534 Class”, (b) each activity is associated with a set of resources.  “Resource” is 

an umbrella term for documents, folders, email messages, email contacts, web pages 

and so on.  The key function of TaskTracer is to tag resources according to the 

activities to which they are relevant.  Once resources are tagged, TaskTracer can help 

the knowledge worker recover from interruptions, re-find previously-visited resources, 

and triage incoming email. 

Most resources, including documents, web pages, and file system folders, are tagged 

at the time they are visited by the user based on the “current project” of the user.  

However, because email arrives asynchronously, it requires a different approach. In 

previous work [13], we developed and deployed a hybrid learning system that 

classifies email messages as they arrive. This classifier employs a standard SVM 

classifier (based on libSVM) to make classification decisions.  A companion Bernoulli 

Naive Bayes classifier provides a confidence estimate, which is employed to decide 

whether to use the SVM’s prediction.  The hybrid classifier is fully integrated into 

Microsoft Outlook via a VSTO Addin.  It provides a convenient user interface for 

providing and correcting email tags.    

While our hybrid classifier is reasonably accurate, it is quite slow.  The SVM is 

trained via the standard batch (SMO) algorithm, which scales approximately 

quadratically with the number of examples.  Hence, as more and more email arrives, 

the classifier requires unacceptably large amounts of time to train.  In addition, batch 

training requires storing all of the training examples, which is undesirable for both 

practical and policy reasons. 



2 
 

The goal of this research was to compare six state-of-the-art online classifiers to 

determine which would be best to deploy within TaskTracer.  In our work, we have 

made the following assumptions: 

• Email messages are associated with exactly one activity (class). Although there are 

multilabel document classification methods, they are not nearly as mature as 

standard multi-class classifiers. 

• There are hundreds of classes. 

• The classifier must be trained online in time linear in the size of the email message 

and linear in the number of classes. 

• The set of classes changes over time as different activities rise and fall in 

importance. 

2. ALGORITHMS 

Six different text classification algorithms were examined:  Bernoulli Naïve Bayes, 

Multinomial Naïve Bayes, Transformed Weight-Normalized Complement Naïve 

Bayes, Term Frequency-Inverse Document Frequency Counts, Online Passive 

Aggressive, and Confidence Weighted. 

Bernoulli Naïve Bayes (BNB) is the standard Naïve Bayes classification algorithm 

which is frequently used in simple text classification [11].  BNB estimates for each 

class c and each word w, P(w | c) and P(c), where w is 1 if the word appears in the 

document and 0 otherwise.  A document is predicted to belong to the class c that 

maximizes P(c) Πw P(w | c), where the product is taken over all words in the lexicon.  

(This can be implemented in time proportional to the number of words present in the 

document.) 

Multinomial Naïve Bayes (MNB) is a variation on Bernoulli Naïve Bayes [3] in which 

w is a multinomial random variable that indexes the words in the lexicon, so P(w|c) is 

a multinomial distribution.  We can conceive of this as a die with one “face” for each 

word.  A document is generated by first choosing the class according to P(c) and then 

rolling the die for class c once to generate each word in the document.  A document is 
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predicted to belong to the class c that maximizes P(c) Πw P(w | c), but now the product 

w is over all appearances of a word in the document.  Hence, multiple occurrences are 

captured.  

Rennie et al. introduced the Transformed Weight-Normalized Complement Naïve 

Bayes (TWCNB) algorithm [10]. This improves MNB through several small 

adaptations.  It transforms the feature count to pull down higher counts while 

maintaining an identity transform on 0 and 1 counts.  It uses inverse document 

frequency to give less weight to words common among several different classes. It 

normalizes word counts so that long documents do not receive too much additional 

weight for repeat occurrences. Instead of looking for a good match of the target email 

to a class, TWCNB looks for a poor match to the class’s complement.  It also 

normalizes the weights.  

Term Frequency-Inverse Document Frequency (TFIDF) is a set of simple counts that 

reflect how closely a target email message matches a class by dividing the frequency 

of a feature within a class by the log of the number of times the feature appears in 

messages belonging to all other classes.  A document is predicted to belong to the 

class that gives the highest sum of TFIDF counts [3].  

Crammer et al [3] introduced the Online Passive Aggressive Classifier (PA), the 

multiclass version of which uses TFIDF counts along with a shared set of learned 

weights.  When an email message is correctly predicted by a large enough margin, the 

weights are not changed (“passive”).  When a message is incorrectly predicted, the 

weights are aggressively updated so that the correct class would have been predicted 

by a margin of 1. 

Confidence Weighted Linear Classification (CW) is an online algorithm introduced in 

Dredze et al [6].  It also makes use of a weight vector, which is updated more 

aggressively for parameters in which the classifier has less confidence and less 

aggressively for parameters in which it has more confidence. 
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3. PREVIOUS RESEARCH 

Many researchers have studied email classification, particularly in the context of email 

foldering.  Bekkerman et al. [1] compared a variety of algorithms (including MNB and 

SVMs) on the Enron and SRI/CALO email corpora. Of these, only MNB was a fully 

online algorithm. They found that SVMs performed the best, with logistic regression 

(maxent) second, wide-margin Winnow third, and MNB worst. Many authors have 

studied the performance of Naïve Bayes, SVMs, and Ripper on email classification 

tasks including Cohen [2], Provost [8], Rennie [9], Kiritchenko and Matwin [6], and 

Segal and Kephart [12].  An open source tool, POPfile (popfile.org) provides an 

implementation of Naïve Bayes that integrates well with POP email clients. To our 

knowledge, no previous work has compared the broad set of online algorithms 

evaluated in this paper. 

Dietterich et al [4] also investigated user email behaviors with tasks.  They track 

several Intel knowledge workers, finding them to work on an average 16 tasks per 

month and 7 tasks per day and to open an average approximately 17 emails per day.   

4. DATA SET 

The data set consists of email received and tagged (using the TaskTracer user 

interface) by the author’s major advisor.  Previous research has shown that email 

folder structures can be difficult to predict, because their semantics can vary greatly.  

One potential advantage of TaskTracer tags is that they correspond to on-going 

activities which are likely to be more stable and more predictable than arbitrary user-

defined folders.  Spam has already been filtered from the email set, leaving almost 

21,000 examples, dating from 2004 to 2008.  There are 380 classes, ranging in size 

from a single message to 2500 messages.  Comparing the user which provides our data 

set to those studied by Dietterich et al [4], he is atypical in his reading five times more 

emails per day and working on ten times more tasks per month.  However, he works 

on a typical number of tasks per day, despite the larger overall volume.  While not 
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entirely typical, this data set should still be meaningful with the large number of 

labeled email examples over an extended period of time. 

Feature extraction is performed as follows.  One boolean feature is defined for each 

unique sender/recipient email address.  In addition, one boolean feature is defined for 

each unique set of recipients (including the sender) as a proxy for the “project team”.  

One boolean feature is defined for each unique word in the email subject and body 

with the exception of stopwords.  No stemming is performed.  There were a total of 

84,247 features.  We will refer to this as the Full data set. Many tests are run on a 

smaller feature set, which does not include words in the body.  This yields 21,827 

features, and we will call it the NoBody data set.  The data sets are otherwise the 

same, based on the same email messages. 

 
Figure 1 – Histogram of frequency of class size. 

5. EXPERIMENTAL PROTOCOL 

We ran each of the different algorithms on the Full and NoBody data sets. We follow 

the standard online learning protocol:  Messages are processed in the order they were 

received.  Each message is first predicted by the algorithm and that prediction is then 

scored as correct/incorrect.  (We also retain the confidence of each prediction so that 

we can produce precision/coverage curves.)  After prediction, the message with its 

correct class label is given to the online algorithm to update the classifier.   

We compute several measures of performance.  First, we plot the precision versus the 

coverage.  This is performed by varying a confidence threshold and scoring the 
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precision of those predictions where the confidence was above the threshold.  This is 

computed for the entire period covered by the data sets.  Second, we plot the 

cumulative error rate under 100% coverage.  Third, we performed a series of analyses 

to understand how accuracy relates to the number of training examples in each class.  

Finally, we have noticed in our current system that the SVM classifier tends to make 

“the same” error repeatedly.  This is very annoying for the user, who finds him/herself 

repeatedly correcting the learning algorithm and wondering when it is going to figure 

out its mistakes.  Two of the learning algorithms, PA and CW, try to make big 

corrections when an error is made so that error will not be immediately repeated. We 

wanted to see whether these corrections achieve this effect. 

6. RESULTS 

Figures 2 and 3 show the tradeoff between precision and coverage for each algorithm. 

On the Full dataset, CW attains the highest accuracy across the range of coverage.  On 

the NoBody dataset, BNB performs slightly better than CW at 100% coverage, but 

CW is still better at lower coverage levels.  MNB performs badly until coverage is 

very low. TWCNB, PA, and TFIDF all perform very similarly, each performing best 

among the three at different times, but never outperforming either CW or BNB. 

 
Figure 2 – Precision versus coverage graph for predictions made on the Full 

dataset, showing the decrease in precision as the confidence threshold is lowered. 
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As CW and BNB performed well in experiments both with and without email bodies, 

we composed the results from both data sets into the graph in Figure 3 to show how 

inclusion of email body affects the accuracy of the predictors.  Interestingly, instead of 

improving across the board with the inclusion of additional data from the email 

bodies, the results are mixed.  On NoBody accuracy of BNB increases throughout the 

range of coverage compared to Full. While CW has higher accuracy at 100% coverage 

on Full, at lower coverage CW performs better without the bodies.  The other 

algorithms have similarly mixed results, some improving with the use of the bodies 

and others not. 

 
Figure 3 – Precision versus coverage graph for predictions made on NoBody. 
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Figure 4 – Composed precision versus coverage graph of predictions on email 
data with email body included or not included on the top performing algorithms, 

to show the difference attributable to including email body. 

These results indicate that CW with the bodies gives the highest precision.  In 

particular, if we are interested in 90% precision, CW+Full can achieve this with 72% 

coverage, whereas BNB+NoBody can only achieve this with 67% coverage. 

The number of classes in our data set, 380, is larger than all previous email 

classification studies.  To determine to what extent the number of classes affects the 

performance of each of the different algorithms, we created several smaller subsets of 

the data in which we retain only data from very populous or very sparse classes.  The  

 
Figure 5 – Precision versus coverage graph for the 25 most populous classes in 

Full. 
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Figure 6 – Precision versus coverage graph for the 5 most populous classes in 
Full. 

results on the 25 and 5 most populous classes for the Full dataset appear in Figures 5 

and 6. Figures 7, 8, and 9 display the results of the 100, 25 and 5 most populous 

classes on the NoBody data set.  We also look at the 100 least populous classes that 

have at least two examples. The results on Full and NoBody are displayed in Figures 

10 and 11. 

 
Figure 7 – Precision versus coverage graph for the 100 most populous classes in 

NoBody. 

 
Figure 8 – Precision versus coverage graph for the 25 most populous classes in 

NoBody. 
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Figure 9 – Precision versus coverage graph for the 5 most populous classes in 

NoBody. 

 
Figure 10 – Precision versus coverage graph for the 100 least populous classes 

(with >1 example) in Full. 
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Figure 11 – Precision versus coverage graph 100 least populous classes (with >1 

example) in NoBody. 

As expected, all algorithms improve when measured on only the most populous 

classes.  Their relative ordering is essentially the same as on the complete datasets, but 

some algorithms perform relatively better.  For example, PA outperforms all of the 

other algorithms on the 5 largest classes in Full. This suggests that PA is more 

sensitive to large numbers of classes than the other algorithms. This makes sense, 

because the version of multiclass PA that we are using just learns a global reweighting 

of the class-specific TFIDF scores. This apparently breaks down when there are large 

numbers of classes. In addition, the TFIDF statistics are less reliable for very sparse 

classes. BNB’s lead on CW also increases slightly with the decreasing number of 

classes on NoBody, and it also grows closer to the level of CW even on Full, possibly 

indicating that CW also has a slight weakness on large numbers of classes. 

In the datasets with the 100 least populous classes, the results were very similar to the 

overall results and to the results of the 100 most populous classes in ordering, but with 

some differences and a reduction in accuracy.  Most significantly, PA is the top-

performing algorithm, improving in accuracy from the overall results.  This is 

consistent with PA’s early strong performance in the progressive results, since fewer 

training examples are seen in both cases, lending strength to the conclusion that PA is 

able to predict accurately on classes with very little training. 
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Figures 12 and 13 show the cumulative accuracy of each classifier for Full and 

NoBody.  On Full, CW begins with a lead, which it maintains throughout the entire 

course of examples, showing that CW learns relatively quickly in addition to its ability 

to use the bodies of the email.  Backing this conclusion up, on NoBody, CW still 

shows a very slight initial lead in accuracy, despite BNB’s overall lead on NoBody.  

PA also demonstrates an ability to learn quickly on Full—it is more accurate than 

BNB for the first 5000 examples before BNB eventually overtakes it.  Even on 

NoBody, PA shows an early advantage over TFIDF and TWCNB after a few hundred 

examples, which lasts until several thousand examples have been seen.  This 

strengthens the argument that PA learns quickly, despite disadvantages in the long 

run.  

 
Figure 12 – Progressive results graph comparing how many examples have been 

seen to the cumulative accuracy to that point on the Full dataset. 

 
Figure 13 – Progressive results graph comparing how many examples have been 

seen to the cumulative accuracy up to that point on the NoBody dataset.
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Several of the algorithms also demonstrate a gradual decline in accuracy, which seems 

counterintuitive since they are continually receiving additional training data.  We 

determined that this is likely due to the addition of new classes after significant 

training had already occurred. Figures 14 and 15 show how the progressive results 

change when classes which first appear after 10,000 examples have already been seen 

are excluded on the Full and NoBody dataset. These graphs demonstrate a 

significantly reduced downward tendency with the exclusion of the later classes.   

  
Figure 14 – Progressive results graph comparing how many examples have been 

seen to the cumulative accuracy up to that point on the Full dataset both with 
and without tasks which are introduced after 10,000 examples. 

Figure 15 – Progressive results graph comparing how many examples have been 
seen to the cumulative accuracy up to that point on the NoBody dataset both with 

and without tasks which are introduced after 10,000 examples. 
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To show that this tendency is specific to classes which are introduced late and not 

simply to large numbers of classes, Figures 16 and 17 show the progressive results for 

the 25 most populous classes and for these same classes with those after the first 

10,000 examples in the full dataset omitted.  The results with the full 25 classes show 

a significant downward tendency, while the results with the later classes excluded 

show a reduced tendency, reinforcing that the problem lies in classes being introduced 

late, regardless of their size.  CW and BNB, both of which show less of this tendency 

towards declining accuracy, seem to be more resilient against late introduced tasks. 

 
Figure 16 – Progressive results graph comparing number of examples seen to the 

cumulative accuracy up to that point on the 25 most populous classes of Full 
dataset both with and without tasks which are introduced after 10,000 examples. 

 
Figure 17 – Progressive results graph comparing number of examples seen to the 
cumulative accuracy up to that point on the 25 most populous classes of NoBody 

both with and without tasks which are introduced after 10,000 examples. 



15 
 

With classes ranging in number of examples from 1 to more than 2500, there is a large 

variation in how much training each class receives.  Previous results from the 

progressive and number of classes investigations suggest that the size of classes is 

significant.  We examine how the size of each class affects algorithm accuracy by 

tracking online the average (instantaneous) size of the true class for correct predictions 

and incorrect predictions, as well as the average (instantaneous) size of the incorrectly 

predicted class for incorrect predictions.  The results are displayed in Table 1.  The 

results show that MNB and TFIDF have a much higher average size for predictions 

made—they like to predict the popular classes. TWCNB also shows this same 

tendency, but to a lesser extent, which makes sense given that this is one of the 

problems that Rennie’s modifications are supposed to overcome. BNB and CW have 

relatively even average sizes between the correct task and predicted task in incorrect 

predictions, showing resilience to class size in predictions made. 

Table 1 – Average sizes of classes at the time that predictions are made for each 
of the different algorithms. 

 Avg Size 
of 
Correctly 
Predicted 
Class 

Avg Size of 
Correct 
Class in 
Incorrect 
Predictions 

Avg Size of 
Predicted 
Class in 
Incorrect 
Predictions 

TFIDF 346 81 532 

PA 310 145 314 

BNB 280 171 196 

MNB 413 68 682 

TWCNB 333 91 354 

CW 288 146 195 

 

Our final analysis focuses on the problem of repeated errors.  As mentioned above, in 

the current TaskTracer system, we sometimes observe that the email predictor seems 

to have a “favorite class of the day” such that it repeatedly predicts a particular class c 

regardless of the true class of the email message.  We also notice cases where all 

messages belonging to class c are repeatedly misclassified as various other classes. 
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This pattern of repeated error persists even as the user is continually giving corrective 

feedback. Users hate this kind of behavior. 

To determine if algorithms were making predominately the same mistakes, we define 

three kinds of repeated errors. Repeated source errors occur when two messages both 

belong to true class c but are both misclassified (to the same or different predicted 

classes). Repeated destination errors occur when two messages are both incorrectly 

predicted to belong to class c. Finally, Repeated Confusion errors occur when two 

messages that both belong to true class c are both predicted to belong to a different 

class c’. Figures 18, 19, and 20 plot the number of repeated errors as a function of the 

temporal separation between the pairs of email messages. Specifically, if two 

misclassified messages are within window size W messages of each other, then they 

are included in the plot for the corresponding type of repeated error.  

 
Figure 18 – Repeated error graph showing the number of repeated source errors, 
in which two emails from the same class are both predicted incorrectly within a 

window of examples, compared to the size of the window for each of the different 
algorithms. 
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Figure 19 – Repeated error graph showing the number of repeated destination 

errors, in which two emails are both incorrectly predicted to be of the same class 
within a window of examples, compared to the size of the window for each of the 

different algorithms. 

 
Figure 20 – Repeated error graph showing the number of repeated errors 

sharing both source and destination, in which two emails labeled with the same 
class are both incorrectly predicted to be of the same class within a window of 

examples, compared to the size of the window for each of the different 
algorithms. 
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These graphs show that repeated destination errors are more common than repeated 

source errors, likely due to large classes being assigned to emails that belong to many 

different smaller classes. The graphs also show that MNB, TFIDF and TWCNB are 

significantly more likely than the other algorithms to make repeated errors. For 

repeated source and repeated destination errors, BNB and CW are essentially tied for 

first place. CW is the clear winner for repeated confusion errors. The results suggest 

that multiclass PA—despite its attractive theoretical basis—does not do all that well at 

avoiding repeated errors. But CW’s performance on this measure is impressive. 

7. CONCLUSION 

The Confidence Weighted and Bernoulli Naïve Bayes algorithms show the most 

promise for email classification, with CW generally giving the best performance. Both 

perform very well on our email data set, showing good performance on both frequent 

and sparse classes. They also both avoid repeated errors. Conversely, Multinomial 

Naïve Bayes and Term Frequency-Inverse Document Frequency show themselves to 

be poor choices.  The generality of these conclusions is limited by the fact that we 

only have data from one user, but the size and complexity of this data set provide a 

good basis for eliminating some algorithms from further consideration. We plan to 

deploy CW, BNB, and PA in a publically-distributed version of TaskTracer later this 

year. 
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