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With rapid increase in the number and size of image databases, there has been intensified 
interest in automated management and retrieval of digital images. In this work we 
develop a technique for automatic classification of digitized images of plant leaves. The 
inducement behind this work is to contribute to research in the field of computer vision 
and content-based image retrieval. The algorithms presented in this report can be applied 
in general for shape-based image retreival. They can be employed for querying  and 
retrieving similar shapes that may be deformed, occluded and/or overlapped. 
 
The performance of the technique built in this work was evaluated on six different plant 
species belonging to two separate genera. When applied to classify hand picked isolated 
leaves, the method yields 96% correct decisions. Classifying digitized plant images from 
the herbarium, with the training set consisting of only isolated leaves, yields an accuracy 
of 59%. An accuracy of 61% is obtained in classifying isolated leaves when the training 
set is constructed from the herbarium samples. 
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1 Introduction 
 
Computer vision and pattern recognition is an intrinsic part of  recondite research in 
computer technologies. It has application in industrial inspection, biometrics, security, 
document analysis, robotics applications, image/video indexing and retrieval, underwater 
industrial applications, etc. In recent times, in areas like academia and entertainment, 
large collections of digital images have been created.  Many of these collections are the 
product of digitizing existing collections of analogue photographs, drawings and 
paintings. With rapid increase in the number and size of image databases, there has been 
intensified interest in automated management and retrieval of digital images.  
 
In this work we develop a technique for the automatic classification of digitized images 
of plant leaves. The method employs a dynamic programming algorithm [BEL57] for 
efficiently and accurately matching unblemished, deformed, occluded and overlapping 
leaf shapes. The inducement behind this work is to contribute to research in the field of 
computer vision and content-based image retrieval [GR97, RHC99]. The algorithms 
presented in this report can be applied in general for shape-based image retreival. They 
can be employed for querying  and retrieving similar shapes that may be deformed, 
occluded and/or overlapped. Similar work has been done by [GMK88][PDM02]. They 
have considered distorted, occluded and partial matches but not overlapped shapes and 
they have experimented mainly with artificially created shapes. 
 
1.1 Background 
 
Digital image databases have seen an enormous growth over the past few years. There is 
a great need for automated, content-based methods that could help users retrieve, browse, 
classify or structure image databases. Users are exploiting the opportunity to access 
remotely stored images in all kinds of new and exciting ways. This has led to increased 
interest in research on content-based image retrieval (CBIR). CBIR essentially is retrieval 
of images based on features automatically extracted from the images themselves.  
 
CBIR at its core is a computer vision and pattern recognition problem. Several 
approaches and their combinations can be used for image recognition. Image data can be 
compared using intensity (color and texture) and geometry (shape). Color features are 
relatively robust to background complication and independent of image size and 
orientation. Texture refers to the visual patterns that have properties of homogeneity that 
do not result from the presence of only a single color or intensity. It contains important 
information about the structural arrangement of surfaces. Shape representation can be 
divided into two categories, boundary-based and region-based. The former uses only the 
outer boundary of the shape while the latter uses the entire shape region. The Fourier 
Descriptor [PF94] is a representative of the boundary-based category, while the Moment 
Invariants [MKH77] is a representative of the region-based category. Shape, color and 
texture feature extraction depend on good image segmentation [RP98, SC95]. Accurate 
segmentation is highly desirable for shape features, while for other features, a coarse 
segmentation may suffice.  
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For our method, boundary shape is the main feature. Generally, after boundary detection, 
a scalar transformation [LON98] is performed. In this, the shape is described indirectly 
by means of a one-dimensional characteristic function of the boundary instead of the two-
dimensional boundary itself. The one-dimensional function is easier to process. The 
scalar transformation can be information preserving, where accurate reconstruction of the 
shape is possible or information non-preserving, which is incapable or only partially 
capable of reconstructing the original shape. 
 
1.2 Plant Species Identification: An Overview 
 
We designed a method to identify species from digitized plant leaf images. Figure 1 
shows the kinds of images the method has to deal with. These images are the result of 
digitizing samples from a large herbarium1 collection. The way it is desired to work is as 
follows. We create a database consisting of isolated leaves or overlapped and occluded 
leaf images. These samples in the database library have their species labeled. For an 
incoming leaf (isolated or from the herbarium sample), whose species is to be 
determined, we retrieve from the database all samples that have a similar shape. The 
species is predicted based on the species of the annotated samples retrieved from the 
database. 
  
 

 

 

 
 

Figure 1: Sample digitized images  
(Hand collected isolated leaf in center  

and samples from digitized herbarium on sides) 
 
 
The method described here employs a discriminative approach as opposed to a model-
based [CD86] approach. Discrimination is based on the external shape (boundary) of the 
leaves. The process first extracts the boundary from the leaf silhouette. A boundary scalar 
transformation transforms the boundary into a series of angles measured along the 
contour. Pattern matching is then performed using this scalar representation to retrieve 
similar leaves from the annotated database. A dynamic programming technique described 
in section 2 performs the matching of the whole, deformed, occluded and overlapped leaf 

                                                           
1 The sample images are from the Herbarium at the Plant and Botany Department, Oregon State University 
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shapes. The species of the unknown leaf is then predicted based on the retrieved 
information. This whole proceeding is elucidated in section 3. 
  
The pattern-matching algorithm is educed from the dynamic time warping [KL83] 
algorithm used for speech recognition and the sequence alignment algorithm [GOT82] 
used on biological sequences. Speech recognition using dynamic time warping can be 
defined as the problem of finding the minimum distance between a set of template 
streams and the input stream. The class chosen is the closest template. The algorithm for 
aligning biological sequences stems from the pioneering work of Needleman & Wunsch 
[NW70]. Sellers’ [SEL74] work on a similar algorithm, later generalized by Waterman et 
al. [WSB76], allows multiple-sized insertions and deletions (gaps) of any length. The 
Dynamic time warping, the biological sequence alignment algorithm and a dynamic 
program for shape matching are described in the next section. 
 
The performance of the algorithm developed in this project was evaluated using six 
different species belonging to the genera Acer (maples) and Quercus (oaks) [PK00]. For 
each species, we have both isolated and herbarium samples. The performance was 
evaluated for different configurations obtained by permuting isolated leaves and 
herbarium samples for construction of the template database and the evaluation test set. 
The experiment and its results are described in section 4. 
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2 Pattern Matching using Dynamic Programming 
 
This section describes the application of dynamic programming to pattern matching. 
First, matching isolated spoken word signals by dynamic time warping is explained. A 
simple extension of this dynamic programming algorithm can perform shape matching. 
Algorithms for matching biological sequences exist that allow similar sequences 
containing multiple-sized gaps to be matched. One such algorithm is discussed here. 
Finally, a dynamic programming formulation for partial and overlapped cyclic patterns is 
developed. Expressing shapes as cyclic patterns offers translation and rotation invariance. 
 
When comparing two patterns, it is necessary to examine the distances between every 
feature element of both sequences. This is conveniently done with a distance table. The 
columns represent the feature vector elements of one pattern and the rows represent the 
feature vector of the other. Each entry in the table is the distance between the two 
features corresponding to the given row and column. Distances between matching 
features of the two sequences will be smaller than the rest of the distances. Pattern 
matching can then be formulated as finding a minimum distance path, i.e. finding the 
path through the table with minimum sum of distances of the features compared in the 
path. This minimum sum or the cost of the minimum distance path gives a measure of 
how well the two sequences match. 
 
Let M be the number of elements in the known pattern represented by rows in the 
distance table. Let the unknown pattern have N elements represented by the columns. The 
entry in the ith row and jth column of the distance table then corresponds to the distance 
between element i of the known contour and segment j of the unknown contour for i = 1, 
…, M and j = 1, …, N. The distance between the elements could be Euclidean distance or 
some other measure, which is inversely related to the similarity of the elements. The 
criterion for minimum distance path completeness is that the path must make use of all N 
elements of the unknown pattern. This corresponds to a path that begins in the first 
column of the distance table and ends in the last column. Due to the sequential nature of 
the patterns, the path may only proceed up and to the right (considering bottom-left 
corner to be the cell corresponding to first row and first column). 
 
2.1 Dynamic Time Warping (DTW) 
 
One of the earliest approaches to isolated-word speech recognition was to store a 
prototypical version of each word (called a template) in the vocabulary and to compare 
incoming speech with each word, taking the closest match. A dynamic programming 
technique called dynamic time warping can find the closet match. The cost of the 
minimum distance path in the distance table is calculated for each template and the 
incoming signal pair. The template that gives the lowest cost is then considered the best 
prediction for the incoming word stream. 
 
Comparing the template with incoming speech might be achieved via a pair wise 
comparison of the feature vectors in each signal. The total distance between the 
sequences would be the sum or the mean of the individual distances between feature 
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vectors. The problem with this approach is that if constant window spacing is used, the 
lengths of the input and stored sequences are unlikely to be the same. Moreover, within a 
word, there will be variation in the length of individual phonemes. The matching process 
needs to compensate for length differences and take into account the non-linear nature of 
the length differences within the words. The Dynamic Time Warping algorithm achieves 
this goal; it finds an optimal match between two sequences of feature vectors, which 
allows for stretched and compressed sections of the sequence.  
  
Suppose we wish to compare and evaluate the difference (minimum distance path) 
between the following two signals shown in figure 2. Both signals are similar in that they 
are single-peaked. However, the stored reference signal is longer than the test signal, and 
the peak is later.  
 
 

 xi  yj 

  
a) (Input) test signal, yj 1 1 2 3 2 0  

b) (Stored) reference signal, xi 0 1 1 2 3 2 1
  

 Figure 2: Test and reference patterns for DTW 
 
 
To calculate the minimum distance path, consider the distance table for sequences xi and 
yj with distance di,j between ith element of x and jth element of y calculated as: 

 
di,j = | xi – yj | 

 
The table consists of seven rows and six columns. Figure 3 shows the feature vector 
difference table. Note that in this figure, the unknown (test) pattern is shown along the 
horizontal axis and templates (reference) along the vertical axis. There is a sequence of 
low numbers (shaded), close to the diagonal, indicating which samples of xi are closest in 
value to those of yj. This sequence actually corresponds to the minimum distance path. In 
this example, D6,7 (as calculated using algorithm given in figure 4) gives the cost of best 
match between the two signals. 
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xi 

1 0 0 1 2 1 1 

2 1 1 0 1 0 2 

3 2 2 1 0 1 3 

2 1 1 0 1 0 2 

1 0 0 1 2 1 1 

1 0 0 1 2 1 1 

0 1 1 2 3 2 0 

  1 1 2 3 2 0  
  

 
 
 
 

 
yj 

 
Figure 3: DTW Distance Table 

 
   
For speech signals, following holds:   
 
1) The endpoints of the two signals correspond to one another. That is, the path always 
begins at (1,1) and ends at (6,7), or whatever the coordinate of the upper-right cell 
happens to be.  
 

2) Time moves forwards. This constraint can be satisfied by allowing just three kinds of 
move: up, right, or up-and-right. This means that there are only three ways of arriving at 
a particular cell: from below, from the left, or from below-left.  
 

3) The best path lies near to the diagonal. In other words, all other things being equal, a 
diagonal move going upwards and to the right should be favored over simple upward or 
rightward moves. This constraint can be satisfied if we penalize the cost of a non-
diagonal move, i.e. add extra cost for a pure upward or rightwards move. Alternatively, 
the cost of a diagonal move can be discounted, i.e. cost it at, say 50% of the cost of a 
move upwards or rightwards. 
 
The Dynamic programming approach can efficiently calculate the cost of minimum 
distance path in O(NM) where M and N are the lengths of the two sequences being 
compared. For each cell i,j in the distance table, calculate the cost of arriving from below, 
left, and below-left, by adding the cell value to the minimum distance path up to the cell 
below, left, or below-left, respectively and then appropriately adjust for penalty or 
discount. The minimum of these three terms gives the minimum distance path (Di,j) up to 



 

the cell i,j from the start. Figure 4 shows the relation. Penalties can be appropriately 
adjusted depending on the distance function. 
 
 

 

Di,j = Min [ Di-1,j-1 , Di-1,j + W1, Di,j-1 + W2 ] + di,j     i>1 and j>1 
D1,1 = d1,1  
Di,1 = Di-1,1 + W1 + di,1  i>1 
D1,j = D1,j-1 + W2 + d1,j  j>1 
where,  
W1 and W2 are constant penalties  
 

 
Figure 4: DTW Distance Table Construction 

 
 
2.2 Dynamic Programming for DNA Sequence Alignment  
 
Global alignment of two biological sequences can be calculated by Dynamic 
Programming. Algorithms have been designed to detect total correspondence, overlaps 
and containments amongst homologous sequences of DNA fragments, allowing for 
general substitution. Homologous sequences of similar lengths may reveal a total 
correspondence relationship if their protein molecules underwent only insignificant 
insertions and deletions. A containment relationship may exist between homologous 
sequences of significant different lengths if the molecule of the shorter sequence 
underwent major deletions or that of the longer sequence underwent major insertion. 
Homologous sequences may bear an overlapping relationship if significant insertions and 
deletions occurred at the termini of their molecules. Gotoh [GOT82] presented an 
algorithm to match two sequences that allows multiple-sized gaps (similar to Waterman 
et al.) and runs in MN steps where M and N are the lengths of the sequences being 
compared. Figure 5 shows the algorithm. 
  
Given two sequences A=a1a2…aM and B=b1b2…bN, the algorithm computes the smallest-
scoring alignment of A and B. This alignment is called the optimal alignment. The score 
of the optimal alignment of A and B is DM,N, which is referred to as the similarity score of 
A and B. This score can be computed in linear space. The algorithm penalizes each 
internal gap of length k by wk = uk + v (u≥0, v≥0). 
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Algorithm 
 
Let A=a1a2…aM and B=b1b2…bN be the two sequences to be compared, i.e. we want to 
find the best match score between the two sequences. A weight d(ai,bj) is given to an 
aligned pair of residues ai and bj. d(ai,bj) = 0 if ai=bj, and d(ai,bj)>0. Waterman et al. 
generates a distance matrix Di,j by induction as follows: 
  
Di,j = Min [ Di-1,j-1 + d(ai,bj) , Pi,j , Qi,j ], 
 
Where, 
 Pi,j =  Min [ Di-k,j + wk] 
          1≤k≤i 

 Qi,j = Min [ Di,j-k + wk] 
           1≤k≤j 

wk = uk + v  is the linear gap penalty for a gap of length k 
u (≥0) and v (≥0) are constants 
 
Pi,j and Qi,j can be obtained in a single step according to the following recursion 
relations: 
 
 Pi,j = Min [ Di-1,j + w1 ,  Min ( Di-k,j + wk ) ] 
               2≤k≤i 

         = Min [ Di-1,j + w1 , Min ( Di-1-k,j + wk+1 ) ] 
              1≤k≤i-1 

         = Min [ Di-1,j + w1 , Min ( Di-1-k,j + wk ) + u ] 
              1≤k≤m-1 

         = Min [ Di-1,j + w1 , Pi-1,j  +  u ] 
and  
 Qi,j = min [ Di,j-1 + w1 , Qi,j-1 + u ] 
 
Here, w1 = u + v 
 

 
Figure 5: Algorithm for matching biological sequences 

 
 
The algorithm iterates MN times, where each iteration consists of choosing the smallest 
of three terms for Di,j and the smaller of two terms for each of Pi,j and Qi,j. Calculation of 
Pi,j and Qi,j is reduced to constant time by recursion as shown in the algorithm above. 
Thus, the algorithm essentially runs in O(MN). At the beginning of the iterations, one 
may set Di,0 = Pi,0 = wi (1≤i≤M), and D0,j = Q0,j = wj (1≤j≤N). 
 
This algorithm differs from the DTW algorithm in one aspect. This algorithm allows an 
arbitrary number of gaps in the minimum distance path, with a penalty linearly 
proportional to the length of the gap. The Pi,j term in the calculation Di,j determines best 
gaps in sequence along the horizontal axis and the term Qi,j determines gaps in the other 
sequence. In addition, the first element of one sequence need not match the first element 
of the other. 
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In a computer program, not all the elements of Di,j, Pi,j and Qi,j need be memorized; two 
one-dimensional arrays and one variable are sufficient to store temporary values of these 
quantities.  
 
2.3 Dynamic Programming for Shape Recognition 
 
Pattern matching for leaf-shape recognition should obey following two rules: 

1) It should be invariant to translation, rotation and scaling of the shapes. 
2) It should be able to handle deformities, occlusions and overlaps. 

 
The first rule is required of any shape matching technique. The second condition is a 
special rule necessary for the digital images obtained from the herbarium. No two leaves 
of same species have exactly the same shape. Some leaves might be deformed, folded or 
even overlapping. These distortions have to be handled. 
 
The Dynamic Time Warping (DTW) algorithm is a good general approach for matching 
similar signals. It can be used to compare objects with stored templates. However, a good 
one-dimensional representation for two-dimensional shapes is required. Scalar 
transformation of Cartesian representation of the boundary into a one-dimensional signal 
generally filters out the location information. Rotation of the original shape results in a 
cyclic shift in the one-dimensional representation.  
 
Minor modifications, as shown in figure 6, to DTW algorithm gives a dynamic program 
that obeys the first rule. This change allows the minimum distance path to wrap-around 
one side of the distance table to the other, thus accommodating for any cyclic shifts in the 
signals being matched. For calculation of the D1,j term, DM,j is ignored for efficient 
implementation. Omission of this term does not reduce the effectiveness of the algorithm, 
as wrap-around in the final path will not occur more than once for each leaf. 
 
 

 

Di,j = Min [ Di-1,j-1 , Di-1,j + Penalty, Di,j-1 + Penalty ] + di,j 
D1,1 = d1,1  
Di,1 = Di-1,1 + Penalty + di,1   i>1 
D1,j = Min [ DM,j-1 , D1,j-1 + Penalty ] + d1,j j>1 
 

 
Figure 6: Modification to DTW 

 
 
If the two shapes are of different scale, the terms Di-1,j and Di,j-1 in calculation of Di,j will 
allow a single point of one stream to match with multiple points on the other. This 
strategy also works on local dissimilarities. 
 
Ideas from DNA sequence matching algorithm, which was described earlier, can be 
borrowed to allow multiple gaps and occlusions. A dynamic programming algorithm for 
matching whole, partial and overlapped shapes is shown in figure 7. The term Qi,k 
determines gaps in one of the sequences. For each gap, a penalty wk proportional to the 
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length of the gap is added to the minimum distance path. The term Si,j, which is split into 
terms Pi,j and Ri,j, allows overlaps, i.e. allows the same part of the second pattern to match 
multiple parts of the first pattern. 
 

 

Algorithm 
 
Let A=a1a2…aM and B=b1b2…bN be the two sequences to be compared 
 
Di, j = Min [ Di-1,j-1 , Di-1,j + W1 , Di,j-1 + W2 , Si,j , Qi,j ] + d(ai,bj) 
 
Where, 
W1 and W2 are constant penalties, 
 
Qi, j = Min [ Di,k + wk ]       and 
         1≤k≤j 

Si, j = Min [ Dk, j-1 ]  + W3 
         1≤k≤M 

 
wk = W4k  (u≥0, v≥0) is the linear gap penalty for a gap of length k 
 
W3 and W4 are a constants 
 
Si,j can be split into two terms Pi,j and Ri,j 
 
Where, 
   Pi, j = Min [ Dk, j-1 ]  + W3 
            1≤k≤i 
   Ri, j = Min [ Dk, j-1 ]  + W3     and 
           i+1≤k≤M 

 
Si, j = Min [ Pi, j , Ri,j ] 
 
Thus, 
Di, j = Min [ Di-1,j-1 , Di-1,j + Penalty1 , Di,j-1 + Penalty1 , Pi,j , Qi,j , Ri,j] + d(ai,bj) 
 
The cost of the minimum distance path is the minimum of all Di,N 
 

 
Figure 7: Dynamic Program for shape recognition 

 
 
This algorithm just like the earlier algorithms iterates MN times. In each iteration, a 
minimum of five terms, viz. Di-1, j-1 , Di-1,j + W1 , Di,j-1 + W2 , Si,j and Qi,j , must be 
calculated. By an inductive process, Si, j (i.e. Pi, j and Ri, j) and Qi,j can be calculated in 
single step as shown in figure 8. Thus, each iteration executes in constant time, and the 
algorithm runs in O(MN). 
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Qi,j = Min [ Di-1,j + w1 ,  Min ( Di-k,j + wk ) ] 
            2≤k≤i 

     = Min [ Di-1,j + w1 , Min ( Di-1-k,j + wk+1 ) ] 
                       1≤k≤i-1 

     = Min [ Di-1,j + w1 , Min ( Di-1-k,j + wk ) + W4 ] 
                      1≤k≤m-1 

     = Min [ Di-1,j + w1 , Qi-1,j  +  W4 ] 
 
 
Si,j = Min [ Pi, j , Ri,j ] 
 
Pi, j = Min [ Dk,j-1 ]  + W3 
         1≤k≤i 
      = Min [ Di,j-1 , Min ( Dk,j-1) ] 
   1≤k≤i-1 

      = Min [ Di,j-1 , Pi-1,j ] 
                          
Similarly, 
Ri,j = Min [ Di,j-1 , Ri-1,j ] 
 

 
Figure 8: Inductive calculation of Si,j and Qi,j 

 
 
Figure 9 illustrates the significance of such an algorithm. It shows matching of an 
isolated whole leaf template with two unknown overlapping leaves. Note the unknown 
pattern is along the horizontal and the known pattern is along the vertical. Initially, the 
minimum distance path consists of cells corresponding to matching elements of the 
isolated leaf pattern with the left side leaf of the two overlapped leaves. The first three 
terms in calculation of Di,j determine this path. Then there is a jump (made possible by 
terms Pi,j and Ri,j) in the path, and the isolated leaf pattern starts matching the boundary of 
right side leaf. The figure also illustrates the wrap around. Finally, the overlapped area of 
the two leaves does not match anything on the isolated leaf and hence results in a gap. 
The gaps can be attributed to term Qi,j in calculation of Di,j. The minimum distance path 
starts from the first column and terminates at the last column. The cost of the minimum 
distance path is the minimum of all Di,N values in the last column. 
 
W1 and W2 should be set to small values. A small value larger than zero makes diagonal 
moves preferable. Constant W3 determines the threshold for gap inclusion. W4 assures 
that there are no arbitrary jumps in an attempt to match the same part of known sequence 
with different parts of the unknown sequence.     
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Figure 9: Minimum distance path for matching overlapped leaves to an isolated leaf 

Wrap around 

Unknown Pattern 

Known Pattern 
(Template) 

Gap

Multiple matches (overlaps)
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3 Plant Species Identification  
 
The last section described the dynamic programming algorithms for pattern matching. 
This section describes an implementation for plant species identification. 
 
3.1 The Whole Process 
 
There are two modules in the implementation. These modules run in batch mode. The 
first one performs basal image processing. It extracts features that describe the shape of 
the leaves. The second module embeds the dynamic program and performs the stint of 
template matching and species prediction. The image processing module and the pattern-
matching algorithm were implemented to work on digitized image samples as shown in 
figures 10 and 11. Figure 10 shows complete and isolated leaves. Figure 11 shows 
digitized plant samples from an herbarium.  
 
The following configurations have been considered: 
  

1) Training and testing the system with only isolated leaves 
2) Training with isolated leaves and predicting species of herbarium samples 
3) Training with herbarium samples and predicting species of isolated leaves 

 
 

   
 

Figure 10: Digitized isolated leaf pictures 
 
 

   
 

Figure 11: Digitized herbarium images 
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The features extracted by the first module are the angles measured at each pixel point 
along the boundary of the leaves. The actual procedure for extracting these angles is 
described later. The angles recorded along a boundary form a sequence, which is input to 
the dynamic program. The output of the dynamic program is the cost of the best path 
match between two streams corresponding to the two leaf-shapes being compared. To 
predict the species of an unknown leaf, the leaf shape is compared to all template leaves 
using the dynamic programming algorithm. The K best matches are selected. Each of the 
K nearest neighbors votes in favor of its (annotated) species, and the species that gets the 
most votes is predicted to be the species of the input (unknown) leaf shape. 
 
3.2 Image Processing 
 
Color segmentation is performed to separate out the leaf pixels from the background 
pixels. The scanned pictures of the leaves are not void of dust, seeds, and other particles. 
Filtering is required to remove this unwanted noise. A morphological operator called 
erosion [BAR95] was applied to remove pixels corresponding to such noise. The images 
are converted to a matrix of binary values 0 and 1 or ON and OFF. ON corresponds to 
pixels belonging to the leaf area, and the rest of the cells in the matrix are OFF (see 
figure 12). For each island of ON pixels, its boundary is extracted. 
 
 

 
Figure 12: Image processing for isolated leaf 

 
 
 

 

 

 
 

Figure 13: Image processing for Herbarium sample image 
 
 
The procedure for navigating the boundary starts by scanning from pixel (0,0) – left to 
right, bottom to top – until it finds the first leaf-pixel, i.e. a pixel that is ON. It extracts all 
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boundaries in the anti-clockwise direction. To do this, at each pixel it keeps track of the 
direction followed to reach that pixel. The direction at the start pixel is RIGHT (At each 
pixel, one of four directions is possible – RIGHT, LEFT, UP and DOWN). Depending on 
the current direction, a search is done for the next boundary pixel in the counter-
clockwise direction. The trace ends when we return to the start pixel. Each closed 
boundary that is extracted from the image is called an island. 
 
The island boundaries that are significantly smaller compared to the size of the whole 
image are rejected. Specifically, a boundary of size less than one-tenth the height of the 
entire images may be considered insignificant.  
 
 

Search in raster order for first pixel that is ON 
Let it be P[i][j] 
 
Direction=RIGHT 
 
Switch (direction) 
 
Case RIGHT: if (P[i+1][j-1]=ON) {direction=DOWN; P[i+1][j-1] is the next pixel} 
           else if (P[i+1][j]=OFF) {direction=UP; still at the same pixel} 
  else P[i+1][j] is the next pixel 
    
Case LEFT:    if (P[i-1][j+1]=ON) {direction=UP; P[i-1][j+1] is the next pixel } 
          else if (P[I-1][j]=OFF) {direction=DOWN; still at the same pixel } 
  else P[i-1][j] is the next pixel 
 
Case UP:         if (P[i+1][j+1]=ON) {direction=RIGHT; P[i+1][j+1] is the next pixel } 

         else if (P[i][j+1]=OFF) {direction=LEFT; still at the same pixel } 
  else P[i][j+1] is the next pixel 
 
Case DOWN:  if (P[i-1][j-1]=ON) {direction=LEFT; P[i-1][j-1] is the next pixel } 
          else if (P[i][j-1]=OFF) {direction=RIGHT; still at the same pixel } 
  else P[i][j-1] is the next pixel 
 
Record the next pixel coordinates 
 
Repeat the above case until back to the start pixel 
 

 
Figure 14: Boundary extraction algorithm 

 
 
The pseudo code of figure 14 outputs the coordinates of the pixels along the boundary of 
the leaves. The coordinates are converted into a stream of angles before applying the 
dynamic programming algorithm. Figure 15 shows how this conversion is done. At each 
pixel, we construct a polygon approximation of the local curvature and measure the 
exterior angle A as shown in figure 15. To obtain the exterior angle at pixel i along the 
boundary, we compute the angle between the line segment joining pixel i to pixel i-10 
and the line segment joining pixel i to pixel i+10. The sequence of angles measured along 
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the boundary in counter clockwise direction gives a one-dimensional stream 
representation of the boundary. 
 
 

 
Figure 15: Angle measurements along the boundary 

 

A 

 
 
3.3 Image Retrieval 
 
The dynamic program discussed in section 2.3 compares the stream of angles obtained 
for given input leaf against all of the templates in the library i.e. the training set. The cost 
of the minimum distance path for each match is calculated. Finally, the K best matches, 
i.e. the templates that give minimum cost are picked out. A majority of the retrieved 
images is expected to belong to the same species as the unknown leaf. The retrieved 
images vote in favor of their (annotated) species, and the species that gets the most votes 
is predicted to be the species of the unknown leaf shape. 
 
For an input image of an isolated leaf, predicting its class is easy. After retrieving the K 
best matches, the species with the largest number of images retrieved from database is 
predicted as the species of the unknown leaf. An herbarium sample image after image 
processing may produce more than one island. In this case, each boundary is used to 
retrieve K matches, and the species whose highest number of images is retrieved from the 
database is predicted as the class of the given input image.  
 
If the only requirement is to predict the species of an unknown leaf image, then the 
template images need not be stored in the database. Only the boundary description and 
the annotations are required to be stored in the database. If the aim is to build a content-
based image retrieval system, then the images can be preprocessed and the shape 
description can be stored along with the images for faster matching and retrieval. 
 
The next section summarizes the performance of the implementation. The percentage 
accuracy in predicting the species of the unknown leaves is one way to evaluate 
performance. The precision-recall curves (section 4.2) show how relevant the retrieved 
images are to the querying image. The performance has been evaluated using six different 
species of leaves belonging to two genera, Acer (Maples) and Quercus (Oaks).  
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4 Results 
 
Figure 16 shows the genus Acer (maples). The botanical names and the common names 
are shown in the figure. Figure 17 shows two leaves belonging to genus Quercus (oaks).  
 
The performance of the algorithms has been evaluated for following cases: 
 

1. Training and testing the system with only isolated leaves 
2. Training with isolated leaves and predicting species of herbarium samples 
3. Training with herbarium sample and predicting species of isolated leaves 

 
The performance can be evaluated in terms of percentage accuracy in predicting the 
species of the unknown leaf shapes. The percentage of input images correctly labeled 
gives a good estimate of how well the algorithms perform. Precision-recall curves show 
how relevant the retrieved images are to the querying image.  
 
 

  
Acer Circinatum 

(Vine Maple) 
Acer Glabrum 

(Douglas Maple)
Acer Macrophyllum

(Big-leaf Maple) 
Acer Negundo 

(Boxelder) 
 

Figure 16: Genus Acer (maple) 
 

   

 
Quercus Kelloggii 

(California Black Oak)
Quercu Garryan 

(Oregon White Oak)
 

Figure 17: Genus Quercus (oak) 
 

 

17  
 



 

4.1 Species Prediction Accuracy 
 
Table 1 shows the percentage accuracy obtained in predicting the species of isolated 
leaves. The template database for this result consisted only of isolated leaves of the six 
species mentioned before. The training set (i.e. the template database) was constructed 
with twenty isolated leaves of each species. The overall accuracy obtained for isolated 
leaves is 96.8%.  
 
Species Classified as 
 

Total 
leaves AC AG AM AN QG QK

Correctly 
classified Accuracy

Acer Circinatum (AC) 40 40  0  0  0  0  0 40 100% 
Acer Glabrum (AG) 40  0 38  2  0  0  0 38  95% 
Acer Macrophyllum (AM) 40  2  0 35  0  3  0 35  88% 
Acer Negundo (AN) 18  1  0  0 17  0  0 17  94% 
Quercus Garryana (QG) 40  1  0  0  0 39  0 39  98% 
Quercus Kelloggii (QK) 40  0  0  0  0  0 40 40 100% 

 
Table 1: Predicting species of isolated leaves 

 
Table 2 shows the percentage accuracy for predicting plant species of samples from the 
herbarium. The training set for this case is same as the one used above. The test set or the 
unknown image set was constructed with processed digitized samples from the 
herbarium. The over all accuracy in this case is 59%. 
 
Species Classified as 
 

Total 
leaves AC AG AM AN QG QK

Correctly 
classified Accuracy

Acer Circinatum (AC) 30 25  3  2  0  0  0 25  83% 
Acer Glabrum (AG) 30  1 20  4  1  4  0 20  67% 
Acer Macrophyllum (AM) 30  0 16 14  0  0  0 14  47% 
Acer Negundo (AN)  8  1  4  1  2  0  0  2  25% 
Quercus Garryana (QG) 30  4  2  4  0 19  1 19  63% 
Quercus Kelloggii (QK) 20  2  3  4  0  3  8  8  40% 

 
Table 2: Predicting species of digitized herbarium sample images 

 
Table 3 shows the performance accuracy for predicting plant species of isolated leaves. 
However, in this case, the training set consists of leaf shapes extracted from the digitized 
herbarium samples. The overall accuracy in this case is 61%. 
 
Species Classified as 
 

Total 
leaves AC AG AM AN QG QK

Correctly 
classified Accuracy

Acer Circinatum (AC) 40 34  1  1  0  4  0 34  85% 
Acer Glabrum (AG) 40  7 33  0  0  0  0 33  83% 
Acer Macrophyllum (AM) 40  18  7  9  0  5  1  9  23% 
Acer Negundo (AN) 18  15  1  2  0  0  0  0   0% 
Quercus Garryana (QG) 40  3  2  0  0 32  3 32  80% 
Quercus Kelloggii (QK) 40  3  0 11  0  0 26 26  65% 

 
Table 3: Predicting species of isolated leaves with training templates consisting of 

only herbarium sample images 
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(a) 

 
(b) 

 
(c) 

 
Figure 18: (a) Isolated leaf, (b) Incorrectly classified sample,  

(c) Correctly classified sample 
 

 
The predictions made in tables 1 and 2 are results of retrieving the nine best matches and 
then having these nine isolated leaves to vote for the species. The results in table 3 are 
obtained by retrieving 20 best matches. In this case, a larger number (20) was used 
because the training set consists of many more boundaries (as compared to 120 isolated 
leaves in case of tables 1 and 2) and includes non-leaf shaped boundaries. Therefore, it is 
preferable to retrieve more matching shapes and then having them to vote. The accuracy 
in predicting species Acer Negundo is low because of lack of good quality herbarium 
samples for this species. Figure 18 shows examples of correct and incorrect classification 
decisions made by the method. It also gives a sense of how difficult the classification task 
is. 
 
4.2 Precision-Recall Plots 
 
The standard measure of performance for information retrieval systems is the precision-
recall plot. Consider a query to an information retrieval system (in this case, an image of 
an isolated leaf). We can view the information retrieval system as computing a ranking of 
all the documents (i.e. herbarium samples) in the database and returning the top K most 
relevant documents. In our application, the user wants the most relevant documents to be 
the ones from the same species as the query. The “precision” of the retrieval is the 
percentage of the K documents that belong to the correct species. The “recall” of the 
retrieval is the percentage of all documents for the correct species that are included in the 
top K retrieved documents. There is always a precision-recall tradeoff: If the information 
retrieval system returns the entire set of documents, then recall will be 100%, but 
precision will be very low. If the system returns just one document from the correct class, 
then precision will be 100%, but recall will be very low. The tradeoff can be visualized 
by plotting precision and recall as K is increased from one to some maximum value. 
 
Figure 18 shows the precision-recall plot for the isolated leaf classification of the six 
plant species individually. Figure 19 shows the curves for all species combined and the 
curves for all species belonging to genus Acer and Quercus. The template database 
consists of 20 isolated leaves of each species. For small values of recalls (i.e. small 
setting of K), precision is over 90%. Precision gradually decreases as K is increased. 
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Figure 18: Precision-recall curves for isolated leaves 
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Figure 19: Precision-recall plot for the two genera and the overall performance 
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Figure 20: Precision-recall for retrieval of isolated leaves 

with herbarium samples as query 
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Figure 21: Precision-recall for retrieval of herbarium samples 

with isolated leaves as queries 
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Figure 20 shows precision in retrieving isolated leaves when herbarium samples are used 
for querying. Acer Negundo has been skipped in the plots because of inadequate good 
quality herbarium samples. Figure 21 shows the precision in retrieving herbarium 
samples from the database with isolated leaves used as query images. Note that the 
precision has been calculated only for small values of recall since the database consists of 
a huge collection of unfiltered boundaries from the herbarium samples. That is, the 
boundaries also include stems, flowers and other unwanted boundaries. 
 
4.3 Performance and Penalties 
  
Four penalties or parameters need to be set in the dynamic programming algorithm given 
in figure 7 of section 2.3. These penalties are W1, W2, W3 and W4. W1 and W2 are the 
penalties for non-diagonal moves in the minimum distance path. These penalties should 
be small and yet exist just to control non-diagonal moves. Generally, these penalties 
should be set to less than 1/10th the maximum of the distances (i.e. maximum of di,j) in 
the distance table. In the experiments presented in this section max(di,j) is 360 (the 
difference between maximum angle value that can be measured along the boundary; 
which is 180 and –180 degrees), and W1 and W2 are set to 10. 
 
The penalty W4 determines how easily a gap can be inserted in the boundary being 
matched. A part of the boundary can be skipped instead of being matched to an arbitrary 
part of the other leaf. For example, some of the leaf boundaries might include a stalk 
while the others could be missing it. In this case, instead of matching the stalk to an 
arbitrary part of the other leaf, a gap can be inserted with a total penalty proportional to 
the length of the gap inserted. In the algorithm of figure 4, the gap penalty is W4 times the 
gap length. This penalty should be larger than the maximum value of the distance that is 
considered a match between two feature vectors. Again, for feature vectors that consist of 
angles, a value of about 90 is suitable. The penalty W3 allows multiple sections of one 
shape to match same part of the other shape. A sufficiently large value for this penalty is 
required to avoid situations where three lobes of Acer Glabrum are matched twice with 
six lobes of Acer Circinatum. On the other hand it should not be too large as to prohibit 
any reasonable attempts to match a single leaf to multiple overlapped leaves. For the 
implementation shown here, a value in the range of 250 to 500 performs well. 
 
The dynamic program used in the implementation is robust to small changes in the values 
of the penalties. However, prohibiting gaps and multiple sections matching by setting W3 
and W4 to very high values degrades the performance on the herbarium samples. With the 
penalties set to the values given above, the accuracy in predicting the species of 
herbarium sample is 59%. Setting W3 and W4 to very high values reduces this accuracy to 
55%. 
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5 Conclusion and Future Work 
 
The algorithms perform well on the isolated leaves as shown in the result section. 
Precision in retrieving isolated leaves from a library of isolated leaves is over 90%. 
Working with the digitized herbarium is a little tricky. On an average, the best overall 
accuracy obtained in predicting species of leaves on herbarium samples is 59%. In the 
current implementation, stems, flowers, seeds, etc. are not filtered out. These objects are 
assumed to be leaf shapes and often vote against the correct prediction. Predicting species 
of isolated leaves with a training set constructed from herbarium samples yields 61% 
accuracy.  
 
The accuracy when working with herbarium samples can be improved if we can separate 
the boundaries corresponding to non-leaf (stem, flowers, seeds, etc.) shapes and the 
boundaries that are indistinct due to heavy mutation or excessive snarling of leaves. One 
way to perform such filtering is to hand label all or some non-leaf objects. If only some 
stems and flowers are hand labeled, then these hand labeled data can be used to identify 
stems, flowers, etc. in the remaining samples, and they can be removed from the training 
set or excluded from the test set. 
 
There is no concrete evidence to show that there is a definite advantage of using penalties 
W3 and W4. However, some experiments do suggest that there is a performance 
improvement on using these. A controlled experiment is required to tune these 
parameters and find out how much benefit is obtained by using these penalties. Of course, 
using these does not increase run time of the algorithm beyond a constant fraction. 
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