
A Hybrid Learning System for Recognizing User Tasks
from Desktop Activities and Email Messages

Jianqiang Shen, Lida Li, Thomas G. Dietterich, Jonathan L. Herlocker
1148 Kelley Engineering Center

School of EECS, Oregon State University
Corvallis, OR 97331, U.S.A.

{shenj, lili, tgd, herlock}@eecs.oregonstate.edu

ABSTRACT
The TaskTracer system seeks to help multi-tasking users
manage the resources that they create and access while car-
rying out their work activities. It does this by associating
with each user-defined activity the set of files, folders, email
messages, contacts, and web pages that the user accesses
when performing that activity. The initial TaskTracer sys-
tem relies on the user to notify the system each time the user
changes activities. However, this is burdensome, and users
often forget to tell TaskTracer what activity they are work-
ing on. This paper introduces TaskPredictor, a machine
learning system that attempts to predict the user’s current
activity. TaskPredictor has two components: one for general
desktop activity and another specifically for email. TaskPre-
dictor achieves high prediction precision by combining three
techniques: (a) feature selection via mutual information, (b)
classification based on a confidence threshold, and (c) a hy-
brid design in which a Naive Bayes classifier estimates the
classification confidence but where the actual classification
decision is made by a support vector machine. This paper
provides experimental results on data collected from Task-
Tracer users.

Categories and Subject Descriptors: I.2.1 [Artificial
Intelligence]: Applications and Expert Systems – Office au-

tomation

General Terms: Design, Human Factors, Experimenta-
tion

Keywords: Intelligent interfaces, machine learning, naive
Bayes, support vector machines

1. INTRODUCTION
Knowledge workers, such as professors, managers, and en-

gineers, perform many different activities in their daily work
life. The goal of the TaskTracer system is to provide an intel-
ligent user interface that can help such multi-tasking knowl-
edge workers easily organize and access the resources (files,
folders, email messages, contacts, and web pages) that they

c©ACM (2006). This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in the Proceeding of IUI’06, January
26–February 1, 2006, Sydney, Australia.
IUI’06, January 26–February 1, 2006, Sydney, Australia.
Copyright 2006 ACM 1-59593-287-9/06/0001 .

need to support these activities. TaskTracer is based on two
main premises: (a) the behavior of the user at the desktop
is a mixture of different activities and (b) each activity is as-
sociated with a set of resources relevant to that activity. In
short, TaskTracer assumes that “activities” provide a useful
abstraction for organizing and accessing resources.

In the basic operation of TaskTracer, the user defines a
hierarchy of activities that, for historical reasons, we refer
to as “tasks.” These are typically on-going activities such
as “teach CS534,” “prepare NSF proposal B,” “make travel
arrangements for conference C”, and so on. Once the tasks
have been defined, the user can then easily indicate to Task-
Tracer the name of the current task (via a drop-down menu
that is attached to the currently-active window). Task-
Tracer records all folders, files, web pages, and email mes-
sages that are accessed and associates them with the current
declared task. Then various TaskTracer components provide
services to the user based on this information. For exam-
ple, the TaskExplorer provides an easy way to access all of
the items associated with a task. The FolderPredictor mod-
ifies the default File Open/Save dialogue box so that it is
opened in folders most strongly associated with the current
task. Users report that TaskExplorer and FolderPredictor
are extremely helpful.

A drawback of the current TaskTracer system is that the
user must remember to change the current declared task
each time the task changes. If the user forgets to do this,
then resources become associated with incorrect tasks, and
TaskTracer becomes less useful. For this reason, we would
like to supplement the user’s manual task declaration with
a TaskPredictor that attempts to predict the current task
of the user. If the TaskPredictor is sufficiently accurate,
its predictions could be applied to associate resources with
tasks, to propose correct folders for files and email, and to
remind the user to update the current declared task.

A variety of recent work has demonstrated the success of
machine learning approaches for recognizing human activi-
ties [7, 8]. Some commercial applications have been devel-
oped [9]. The primary challenge of activity recognition is
that the data are quite noisy. There may be irrelevant ac-
tions intermixed with relevant ones, the user may do the
same task in many different ways, and different activities
may involve the same set of objects. For all of these reasons,
it is useful to view activity recognition as a probabilistic pre-
diction problem.

In this paper, we describe two machine learning systems
for predicting the current task of the user. The first sys-
tem is TaskPredictor.WDS, and it predicts the current task

Figure 1: The screenshot of TitleBar, an application
that is attached to the window in focus and indicates
the current task.

based on properties of the window currently in focus. The
second system is TaskPredictor.email, and it predicts the
current task based on properties of incoming email mes-
sages (sender, recipients, subject, etc.). TaskPredictor.email
is particularly important, because each new incoming email
message typically results in a task switch, and it is absurd
to expect the user to tell TaskTracer the current task for
each new email.

The two learning systems are evaluated using data col-
lected from daily use of TaskTracer by 9 users over sev-
eral months. The results show that TaskPredictor.WDS can
achieve more than 80% precision with 10–20% coverage (i.e.,
proportion of the time that a prediction is made). TaskPre-
dictor.email can achieve more than 90% precision with 65%
coverage. These performance levels are quite good, partic-
ularly considering the amount of noise in the data resulting
from the failure of the user to always remember to update
the current declared task.

The remainder of this paper is structured as follows. First,
we describe the TaskTracer data collection architectures.
Then we describe the machine learning methods that we
have applied to the activity prediction problem. Third, we
give experimental results from a deployment of TaskTracer
within our research group. We conclude the paper with a
review of related work and a discussion of the results.

2. ONLINE DATA COLLECTION
TaskTracer operates in the Microsoft Windows environ-

ment and collects a wide range of events describing the user’s
computer-visible behavior. The TaskTracer system is de-
scribed in detail in Dragnov et al. [6]. In order to collect
events with labeled tasks, we devised a special drop-down
box in the title bar. A screenshot of this titlebar is shown in
Figure 1. This drop-down box shows which task the user is
performing and it is attached to the title bar of the window
in focus. The user can switch between tasks by selecting a
task name from the drop-down box.

TaskTracer collects events from MS Office 2003, MS Vi-
sual .NET, Internet Explorer and the Windows XP operat-
ing system. An event message contains the following infor-
mation: 1)Event type — such as window focus, file open, file
save, web page navigation, and so on; 2)Listener ID — the
source of the EventMessage (MS Office, file system hook,
Internet Explorer, Windows explorer, etc.); 3)Body — the
detailed information about the event e.g., pathname, win-
dow title, email address, Uniform Resource Locator (URL);
4)Time — time the event occurred.

From the raw event stream, the main TaskPredictor ex-
tracts a sequence of Window-Document Segments (WDSs).
A WDS consists of a maximal contiguous segment of time
in which a particular window has focus and the name of the
document in that window does not change.

In our approach, a new WDS is defined to begin when one
of the following events happens:

• Navigate (Internet Explorer): the browser displays a
new webpage;

• OsWindowFocus (all applications): a different window
gains the focus;

• Open (MS Office): the user opens a new file

• SaveAs (MS Office): the user saves a file under a new
name;

• New (MS Office): the user creates a new blank docu-
ment.

TaskPredictor.WDS attempts to make a prediction for
each WDS. To do this, it extracts the following informa-
tion from each WDS: the window title, the file pathname,
and (for web pages) the website URL. It heuristically seg-
ments these into a set of “words” and then creates a binary
variable xj in the feature set for each unique word. If this
word appears in the event, xj is 1, otherwise xj is 0.

TaskPredictor.email does not use the WDS event stream.
Instead, it attempts to make a prediction for each incom-
ing email message. It creates a boolean feature for each ob-
served email sender (the “FROM” field), one boolean feature
for each observed set of email recipients (the union of the
“FROM”, “TO”, “CC”, and “BCC” fields), and one boolean
feature for each distinct word observed in the “SUBJECT”
field. Note that each set of recipients is treated as a separate
feature, so an email message sent to {A, B} might have no
(true) features in common with an email message sent to
{A, B, C} unless they were from the same person or had the
same words in the subject. We did not find that the words
in the email body had any additional predictive value.

3. MACHINE LEARNING METHODS
This section describes the three machine learning meth-

ods that we have employed to build our two task predictors:
(a) classification thresholds, (b) mutual information feature
selection, and (c) a hybrid Naive Bayes/Support Vector Ma-
chine classifier.

3.1 Classification Thresholds
In user interface applications, it is essential to avoid an-

noying the user by making incorrect predictions. Indeed,
it is better to make no prediction at all than to make an
incorrect prediction. Therefore, we make predictions based
on a probabilistic prediction threshold θ. Let x be the vec-
tor of features extracted from the WDS or from the email
message, and let y be the task to be predicted. We em-
ploy probabilistic learning algorithms that predict P (y|x)
and P (y) for each possible task y.

TaskPredictor.WDS uses this information to compute P (x)
according to the formula

P (x) =
X

y

P (x|y)P (y).

It then compares P (x) to a threshold θ, and if P (x) > θ, it
makes a prediction. Otherwise, it does nothing. In effect,
TaskPredictor.WDS is estimating the probability density of
data points in the neighborhood of x. If it has previously
observed many data points near x, then it is reasonable
to make a prediction, because the prediction is based on
sufficient data. If not, it is better to make no prediction.

TaskPredictor.email employs a slightly different method.
Let ŷ = argmaxy P (y|x) be the class with the highest pre-
dicted probability, and let p̂ = P (ŷ|x) be its predicted prob-
ability. If p̂ > θ, then TaskPredictor.email makes a pre-
diction; otherwise, it does nothing. This approach has a
different theoretical foundation based on the expected cost
of an error. If the cost of a prediction error is α, the cost of
a correct prediction is zero, and the cost of making no pre-
diction at all is β, then the prediction rule that minimizes
the expected cost is

predict ŷ if p̂ > 1 − β

α

make no prediction otherwise

Hence, θ = 1 − β

α
.

We will employ two measures of prediction performance:
coverage and precision. Coverage is the fraction of cases
in which a prediction was made (i.e., p̂ > θ). Precision
is the fraction of those predictions that were correct (i.e.,
ŷ = y, the correct task). For TaskPredictor.WDS, we need
high precision but we do not need high coverage. This is
because each episode (i.e., each period of time during which
the user is working on a single task) is composed of very
many WDSs. There is no need to make a prediction for every
single WDS. The important thing is that if the user has
forgotten to update the task, TaskPredictor.WDS should
catch this promptly and make a correct prediction for at
least one WDS in the episode.

Similarly, we envision applying TaskPredictor.email to pre-
dict the email folder into which the user will want to save
the email message. If we make no prediction at all, the user
will just experience the standard email foldering dialogue.
If we make an accurate prediction, then we can make the
email foldering dialogue more efficient. So again, the goal is
high precision even at the cost of low coverage.

3.2 Feature Selection via Mutual Information
It is well known that feature selection can improve the

accuracy of classifiers by reducing the complexity of the
learned hypothesis (and thereby reducing the variance of
the learning algorithm). We applied three feature selection
methods.

First, we employed a stopword list to eliminate words that
are very common, such as “to”, “open”, “Microsoft” (which
appears in the titles of IE and MS Office applications), ”RE”
and ”FWD” (which appear in the subjects of email mes-
sages).

Second, we applied a simple rule-based algorithm for stem-

ming English words to their roots [15]. For example, this
converts “tracing”, “traced”, and “tracer” to the root word
“trace” [15].

Third, we employed mutual information to select the K =
200 features with highest (individual) predictive power. Mu-
tual information (or information gain) is one of the most
common measures of relevance in machine learning [19]. It
measures the reduction of entropy in the predicted class
distribution P (y|xj) provided by knowing the value (i.e.,

present or absent) of feature xj . Entropy is a measure of
the uncertainty of a random variable. Let {yi}

m
i=1 denote

the set of task categories, then the mutual information of a
word feature xj is computed as

G(xj) = −
mX

i=1

P (yi) log P (yi)

+ P (xj = 1)

mX
i=1

P (yi|xj = 1) log P (yi|xj = 1)

+ P (xj = 0)
mX

i=1

P (yi|xj = 0) log P (yi|xj = 0),

where the probabilities are estimated from the training sam-
ple using maximum likelihood estimates (i.e., simply com-
puting the fraction of cases). The K = 200 features with
the highest information gain are selected for inclusion in the
training set.

An additional advantage of feature selection is that it
speeds up the learning algorithms. For example, the TaskPre-
dictor extracts on the order of 1000 words from the WDSs
collected over a 3-month period. Our experiments show that
predictive performance is maximized when the number of se-
lected features K is in the range 100–300. This speeds up
the learning algorithm and the prediction process by a fac-
tor of 3–10. As a result, our hybrid Naive Bayes + SVM
classifier can make a prediction in less than 0.01 seconds,
with an ordinary PC computer (Pentium4 CPU, 512MB).

3.3 A Hybrid Naive Bayes + SVM Classifier
The TaskPredictor applies a combination of two well-known

algorithms to make its predictions.
The first algorithm is the Naive Bayes algorithm. It learns

a model of the joint probability, P (x, y), of the input x and
the label y, and makes its predictions by applying Bayes’

rule to calculate P (y|x). Given a test instance x = {wi}
|F |
i=1

,
where |F | is the total number of features, we make the pre-
diction according to the following rule:

argmaxyP (y|x) = argmaxy

P (y)
Q|F |

i=1
P (wi|y)P

y′ P (y′)
Q|F |

i=1
P (wi|y′)

Our Naive Bayes model employs an indicator (0/1) vari-
able for each feature. We apply standard Laplace smoothing
when computing the probability estimates.

The second algorithm is the linear support vector machine
that has been shown to be both very fast and effective for
text classification problems [12]. To apply them in our multi-
class situation, we employ the one-against-one approach in
which an SVM classifier is learned for each pair of classes. If
there are k classes (i.e., user tasks), then k(k−1)/2 classifiers
must be trained. To predict the class of a new case, each of
these classifiers makes a prediction, and the predictions are
then combined by the method of Wu et al. [18] to produce
estimated probabilities P (y|x).

Many studies in machine learning have shown that dis-
criminative classifiers (such as SVMs) generally give higher
predictive accuracy than generative classifiers (such as Naive
Bayes) except at very small sample sizes. However, an ad-
vantage of generative classifiers is that they can very cheaply
provide an estimate of P (y|x) and P (x) as we have seen
above. This permits them to “know what they know” —
that is, to produce a measure of the probability that they

Table 1: Datasets for Evaluating TaskPredic-
tor.WDS (number of words is computed after sto-
plist and stemming)

Subject FA FB
of tasks 96 81
of WDSs 5894 4151
of words 1202 983

Table 2: Email Datasets for Evaluation

Subjects FA RA RB SA SB SC SD SE
of messages 459 416 244 289 869 243 458 305

of tasks 21 23 12 9 8 14 5 15
of features 934 721 379 613 1158 598 448 349

have seen similar data points before.
Hence, in our hybrid method, we first apply the Naive

Bayes classifier to estimate PNB(y|x) and PNB(x). For
TaskPredictor.WDS, we compare PNB(x) to θ and make
a prediction using the learned SVM if PNB(x) > θ. For
TaskPredictor.email, we compute p̂ = maxy PNB(y|x) and
make a prediction using the learned SVM if p̂ > θ. In this
way, we obtain the advantages of both generative methods
(that they can produce a density estimate over the input
space) and discriminative methods (that they generally pro-
duce more accurate decisions).

4. EXPERIMENTAL RESULTS
We deployed TaskTracer on Windows machines in our re-

search group and on the machines of a few willing graduate
students. The users include 2 professors, 2 research staff,
and 5 graduate students. We refer to them as FA and FB
(the faculty members), RA and RB (the research staff), and
SA, SB, SC, SD and SE (the students). All of them work
in the School of EECS for the TaskTracer group except for
student SC. To evaluate TaskPredictor.WDS, we required a
dump of the TaskTracer database, which raises many pri-
vacy concerns. As a result, we only obtained data from FA
and FB. Subject FB manually reviewed his data and cleaned
it so that it contained more accurate task labels. The col-
lected data is summarized in Table 1.

To evaluate TaskPredictor.email, we asked the partici-
pants to take a sample of their email and sort it into a
new set of email folders according to their TaskTracer tasks
(with a folder named “Other” for email that did not re-
late to any TaskTracer task). We then wrote a program
that each user could run over these email folders to apply
the learning algorithms and compute the performance sta-
tistics. This enabled the users to keep their email private.
We obtained email data from all of the participants except
FB. Table 2 summarizes the data collected for evaluating
TaskPredictor.email.

4.1 Evaluation Methodology
For TaskPredictor.WDS, we adopted an on-line prediction

methodology as follows. The data is sorted according to
whole days. To make predictions for the WDSs in day t, we
train the hybrid classifier on the data from days 0 through
t−1. This process is started on day 1 and repeated until all
data have been processed. We analyze the results based on

01002003004005006007008009001000
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

The number of features K

P
re

ci
si

on

SVM

Naive Bayes

Figure 2: Precision of TaskPredictor.WDS for FA
as a function of the number of selected features K.
Error bars denote 95% confidence intervals.

01002003004005006007008009001000
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

The number of features K

P
re

ci
si

on

SVM

Naive Bayes

Figure 3: Precision of TaskPredictor.WDS for FB
as a function of the number of selected features K.
Error bars denote 95% confidence intervals.

the total number of predictions and the percentage of those
that are correct.

For TaskPredictor.email, we adopted the standard train-
ing set/test set methodology, since the data was much sparser.
We sorted the messages by date received and employed the
first 80% for training and the remaining 20% for testing.
Again, we analyze the results based on the total number of
predictions and the percentage of those that are correct.

4.2 Effect of Feature Selection
We first assess the value of performing feature selection.

Figures 2 and 3 show the results of feature selection for FA
and FB on TaskPredictor.WDS. The horizontal axis shows
the value of K, the number of features chosen by the mutual
information method. The vertical axis shows the precision of
the predictions. In each case, we have varied the value of the
classification threshold θ to maximize the precision, subject
to the constraint that θ should be large enough that the
learning algorithm makes at least 100 correct predictions.

0 100 200 300 400 500 All
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

The number of features K

P
re

ci
si

on
Naive Bayes
SVM

Figure 4: Precision of TaskPredictor.email as a func-
tion of the number of features K (θ = 0). Error bars
denote 95% confidence intervals.

For both FA and FB, we can see that reducing the num-
ber of features generally improves the performance of both
Naive Bayes and the SVM. For FA, SVM gives higher preci-
sion than Naive Bayes when the number of features is very
large, whereas Naive Bayes does better when the number of
features is less than 400 (although the differences are not
statistically significant). For FB, the SVM always outper-
forms Naive Bayes, and most of the differences are signifi-
cant. Note that for FA, the best precision attained is around
93%, while for FB, the SVM does better than 95%. We set
the number of features K to be 200 for both FA and FB.

Figure 4 plots the precision as a function of the number
of features for TaskPredictor.email. Here, the results are
quite different, perhaps because the classification threshold
was set to zero, so that TaskPredictor.email was forced to
make a prediction for each email message. We see that best
performance is achieved when a large number of features are
available. Indeed, the SVM achieved maximum performance
when all features are included, while Naive Bayes attains
the maximum when 500 features are available. However,
none of these differences is statistically significant, so we
set K = 200, because it makes the learning and prediction
algorithms much more efficient.

4.3 Effect of the classification threshold
Now we analyze the effect of the classification threshold.

Figure 5 and 6 show the precision of TaskPredictor.WDS
as a function of the coverage of the algorithm. These val-
ues are averaged over all of the days of the test data. The
coverage is the percentage of WDSs for which a prediction
was made, and the precision is the probability that the pre-
dictions made were correct. The value of the classification
threshold θ is implicit in these plots. Low values of θ corre-
spond to high coverage, and high values of θ give low cov-
erage. We see that as we increase θ, the precision increases
very well. TaskPredictor.WDS is able to attain a precision
of 80% with coverage of 10% for FA and a precision of 80%
with coverage of 20% for FB.

Figure 7 plots the precision versus coverage for TaskPre-
dictor.email. Again we observe that larger values of θ (i.e.,
lower coverage) give higher precision. Naive Bayes is able

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Coverage

P
re

ci
si

on

Naive Bayes
SVM
Hybrid model

Figure 5: Precision of TaskPredictor.WDS as a func-
tion of the coverage for FA, created by varying θ.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Coverage

P
re

ci
si

on

Naive Bayes
SVM
Hybrid model

Figure 6: Precision of TaskPredictor.WDS as a func-
tion of the coverage for FB, created by varying θ.

to attain a precision of 91% with a coverage of 66%, and
the hybrid method is able to do slightly better, with a pre-
cision of 92% at a coverage of 66%. Note that the hybrid
method always gives better precision for the same coverage
than Naive Bayes.

4.4 Effect of the Hybrid Method
The preceding figures also show the effect of the Hybrid

method. For FA (Figure 5), the Hybrid method gives preci-
sion that is essentially the same as Naive Bayes when cov-
erage is small and the same as the SVM when coverage is
larger. For FB (Figure 6), the Hybrid method gives bet-
ter performance than either Naive Bayes or the SVM when
coverage is small and performance similar to the SVM with
coverage is larger. For TaskPredictor.email (Figure 7), we
see that the Hybrid method always outperforms the Naive
Bayes method at all coverage levels.

These results show that the hybrid method gives perfor-
mance equal to or better than the best single method (Naive

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

Coverage

P
re

ci
si

on

Naive Bayes
Hybrid Model

Figure 7: The precision curve of naive Bayes and the
hybrid method. We adjust the thresholds so that
they will make the same numbers of wrong predic-
tions, and compare the correct ratio.

Bayes or SVMs). This supports our hypothesis that using a
generative model to decide when to make predictions works
better than using a discriminative model. This result may
have significance beyond Task Prediction, and we plan to
test the hypothesis over a larger set of machine learning
problems to ascertain its generality.

4.5 Online Performance
It is interesting to plot the cumulative online performance

of the learning algorithms over the evaluation period. Fig-
ure 8 plots the total number of correct (and incorrect) pre-
dictions for FB as a function of the number of WDSs processed,
for two different settings of θ. That is, a point (x, y) is plot-
ted at the moment when the algorithm has observed and
trained on x WDSs, and it has made y correct (or incorrect)
predictions.

Note that there are several times in which the error curves
(the lower two curves) take sudden upward jumps. These
correspond to periods when the user starts a new task. The
new task may confuse TaskPredictor because 1) TaskPredic-
tor has seen very few training examples for the task and 2)
the user may access resources of other tasks in order to ini-
tialize the new task (e.g., by copy and edit). This suggests
that it may be appropriate to disable TaskPredictor.WDS
for some period of time after a new task is initialized. It also
shows that even the Hybrid method is not able to identify
all cases where it should not make a prediction.

5. RELATED WORK AND DISCUSSION
There have been many attempts in machine learning to

study the problem of task recognition and prediction. Re-
searchers usually convert this inherently sequential problem
into an ordinary supervised learning problem through the
design of appropriate features [2]. Many of the applications
are based on probabilistic models. The Lumière project
centers on harnessing probability and utility to provide as-
sistance to computer users [9]. Lumière applies Bayesian
network user models to infer a user’s needs by consider-
ing a user’s background, actions, and queries. Recently,

0 500 1000 1500 2000 2500 3000 3500 4000
0

500

1000

1500

The number of WDS

T
he

 c
um

ul
at

iv
e

nu
m

be
r

of
 c

or
re

ct
/w

ro
ng

 p
re

di
ct

io
ns

of correct predictions when threshold=0.95
of wrong predictions when threshold=0.95
of correct predictions when threshold=0.6
of wrong predictions when threshold=0.6

Figure 8: Cumulative correct and incorrect predic-
tions for FB as a function of the number of WDSs
processed (the hybrid model)

Horvitz et al.[11, 10] have been studying the problem of
interruption. They learned a dynamic Bayesian network to
model the user’s attentional focus and predicted the cost
of interrupting the user. Intel Research has developed a
toolkit called the Probabilistic Activity Toolkit (PROACT)
[14]. They tried to infer the user’s activity from the objects
involved in the activity. PROACT’s activity model is re-
stricted to linear sequences of sub-activities which provide
annotated object information. The model is very similar to
a hidden Markov model.

Many researchers have previously studied the problem of
email foldering, which is defined as predicting into which
of the user’s email folders an email message will be filed.
In 1996, William Cohen proposed RIPPER, a rule based
learning algorithm, and applied it to email classification [5].
RIPPER employs information-gain feature selection during
rule construction. For email classification, it uses features
based on the recipients, subject line, and email body. IBM
developed MailCat, which later became the SwiftFile com-
ponent of Lotus Notes. It helps the user to select folders for
incoming emails [16]. The MailCat team adopted AIM, a
TF-IDF like algorithm, to do the classification job. Brutlag
and Meek [4] compared three different text classification al-
gorithms in the email domain (SVM, TF-IDF, naive Bayes),
and they reported that TF-IDF performed better than the
other two algorithms for sparse folders. Some recent re-
search has been done on the Enron email dataset, which is
a large email collection containing 0.5M messages and 150+
users, who are mostly senior managers of Enron [3, 13].

Most previous research shows 50%-80% accuracy if the
classifier makes a prediction for all the email messages. The
accuracy can vary a lot from one user to another, even within
the same experimental study. This is probably because some
users create email folders for different purposes. Our email
prediction problem is not quite the same as the email folder-
ing problem. Our goal is to predict which on-going activity
should be associated with the email message. By encourag-
ing users to think in terms of activities, we may be leading
them to define better email groupings than the traditional

folder hierarchies that most users construct. Indeed, a frus-
trating aspect of email foldering research has been that the
folders may be highly inconsistent and have very different
scopes.

Like other groups, we treated the task prediction prob-
lem as a traditional supervised learning problem, and we
ignored the sequential aspect of the problem. There may be
an opportunity to improve the results reported in this paper
by extending our methods to handle the sequential correla-
tions in the data. Specifically, if the user begins a task, he
or she is likely to continue working on that task for many
minutes and even hours. The user is likely to come back
to the task over the following days and weeks. We may be
able to incorporate this either within a Markov framework
(e.g., using hidden Markov models, dynamic Bayesian net-
works [17], or hidden Markov support vector machines [1]).
However, initial experiments showed that while these models
give marginally better performance, the computational cost
of learning them is prohibitive. An attractive alternative is
to incorporate these sequential relationships into standard
supervised learning methods through the addition of other
features that capture the amount of time that has elapsed
since the user last worked on each task.

Similarly, we may want to incorporate some form of re-
cency weighting into the algorithms to put more weight on
recent WDSs and email messages either globally or within
each task. This has given improved accuracy and robustness
in some of our other work.

This paper has presented two learning systems for predict-
ing the current activity of the user. The TaskPredictor.WDS
system predicts the user’s current TaskTracer task based on
the title and document pathname (or URL) of the window
currently in focus. The TaskPredictor.email system predicts
the current task based on the sender, recipients, and subject
of an email message.

We demonstrated that three machine learning techniques
gave improved performance with these systems: 1) feature
selection via mutual information, 2) a threshold for making
classification decisions, and 3) a hybrid approach in which a
generative model (Naive Bayes) is first applied to decide
whether to make a prediction and then a discriminative
model (linear support vector machines) is applied to make
the prediction itself. The experiments show that the hybrid
method gives slightly better performance than either Naive
Bayes or SVMs alone. These three techniques give us task
predictors that are sufficiently accurate to be useful. Our
next challenge is to incorporate them into the TaskTracer
system in a way that improves the usability and benefits of
the TaskTracer system.

Acknowledgments
This project was supported in part by the National Science
Foundation under grant IIS-0133994 and by the Defense Ad-
vance Research Projects Agency under grant no. HR0011-
04-1-0005 and contract no. NBCHD030010. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not neces-
sarily reflect the views of the National Science Foundation,
the Defense Advanced Research Projects Agency, or the De-
partment of Interior-National Business Center. The authors
thank the members of the TaskTracer team for all of their
work designing, implementing, and testing the system and
for contributing their TaskTracer data to this study.

6. REFERENCES
[1] Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden

Markov support vector machines. In Proc. of

ICML-03.

[2] S. Andrews, L. Cai, D. Gondek, A. Greenwald,
D. Grollman, A. M. Jonsson, K. Hall, M. Lease,
B. Ng, J. Raiti, V. Sweetser, and J. Turner. Astrology:
the study of astro teller. In ICML04 Workshop

Physiological Data Modeling - A Competition, 2004.

[3] R. Bekkerman, A. McCallum, and G. Huang.
Automatic categorization of email into folders:
Benchmark experiments on enron and sri corpora.
Technical Report IR-418, CIIR, 2004.

[4] J. D. Brutlag and C. Meek. Challenges of the email
domain for text classification. In Proc.of ICML-00.

[5] W. W. Cohen. Learning rules that classify e-mail. In
Proc. Of the 1996 AAAI Spring Symposium in

Information Access, 1996.

[6] A. N. Dragunov, T. G. Dietterich, K. Johnsrude,
M. McLaughlin, L. Li, and J. L. Herlocker.
Tasktracer: A desktop environment to support
multi-tasking knowledge workers. In Proc. of IUI-05.

[7] T. Fawcett and F. Provost. Activity monitoring:
notice interesting changes in behavior. In Proc. of

KDD-99, 1999.

[8] K. Haigh and H. A. Yanco. Automation as caregiver:
a survey of issues and technologies. In AAAI workshop

on Automation as Caregiver, 2002.

[9] E. Horvitz, J. Breese, D. Heckerman, D. Hovel, and
K. Rommelse. The lumiere project: Bayesian user
modeling for inferring the goals and needs of software
users. In Proc. of UAI-98, 1998.

[10] E. Horvitz, A. Jacobs, and D. Hovel. Learning and
reasoning about interruption. In Proc. of ICMI-03.

[11] E. Horvitz, A. Jacobs, and D. Hovel.
Attention-sensitive alerting. In Proc. of UAI-99, 1999.

[12] T. Joachims. Learning to Classify Text Using Support

Vector Machines. Kluwer Academic Publishers, 2001.

[13] B. Klimt and Y. Yang. The enron corpus: A new
dataset for email classification research. In Proc. of

ECML2004, 2004.

[14] M. Philipose, K. Fishkin, M. Perkowitz, D. Patterson,
and D. Hahnel. The probabilistic activity toolkit:
Towards enabling activity-aware computer interfaces.
Technical Report IRS-TR-03-013, Intel Research Lab,
Seattle, WA, 2003.

[15] M. Porter. An algorithm for suffix stripping. Program,
14(3):130–137, 1980.

[16] R. Segal and J. Kephart. Mailcat: an intelligent
assistant for organizing e-mail. In Proc. of the Third

ICAA, 1999.

[17] P. Smyth, D. Heckerman, and M. I. Jordan.
Probabilistic independence networks for hidden
markov probability models. Neural Computation,
9(2):227–269, 1997.

[18] T.-F. Wu, C.-J. Lin, and R. C. Weng. Probability
estimates for multi-class classification by pairwise
coupling. In Advances in NIPS 16.

[19] Y. Yang and J. O. Pedersen. A comparative study on
feature selection in text categorization. In Proc. of

ICML-97.

