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Abstract 

We demonstrate the transfer of learning from an ensemble of 
background tasks, which becomes helpful in cases where a single 
background task does not transfer well.  This approach is 
accomplished through a simple maximum a posteriori  elaboration 
on the logistic regression approach and tested on real world data. 

1 Transfer Learning Via Learned Prior Distributions 

Transferring knowledge from a famil iar domain or task (call it task A) to an 
unfamiliar or newly-encountered one (task B) is a fundamental and fascinating 
aspect of human learning.  Although the motivating notion is intuitive, the simple 
approach of treating the two tasks as identical and pooling their training data does 
not usually work well.  This is presumably because the decision boundaries for A 
and B are not in exactly the same places in the feature space, even when the feature 
spaces and input distributions are themselves identical.  Hence, more sophisticated 
methods are required. 

One interesting approach is to treat task A as defining a form of Bayesian prior 
distribution for task B.  In this paper, we study this approach in a setting where we 
have many task As and only one task B, and we study whether we can learn a useful 
prior from those multiple task As that gives effective guidance when learning task B. 

Consider the well-known logistic regression model, 



 

]exp[1

1
)|1(

1
0 �

�

��
��

n

j
jj xww

yP x   

where y is the class label, x is a vector of n features, the wj are real-valued weights,  
and P(y=0|x) = 1 – P(y=1|x).  A standard way of fi tting this model is to assume an 
independent Gaussian prior on the weight values.  That is, each weight is drawn 
from a Gaussian distribution: wj ~ N(�

j, � j).  The standard way of f itting this 
model is to maximize the penalized log l ikel ihood 
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Typically, the values �
j = 0 and � j = �  are employed, with �  (a constant value > 0) 

set by holdout or cross-validation methods [3].  � 0 is typically set to be relatively 
large to avoid penalizing the intercept weight w0.  The model can be fi t via 
improved iterative scaling [1]. 

In the application described in this paper, we have avai lable data from K di fferent 
“ tasks” .  We propose to select one of these to be task B and use the remaining K – 1 
tasks to learn the values of �

j and � j.  Using these learned values, we then fit a 
logistic regression model to task B via penalized maximum l ikelihood.  Specifically, 
we fit K
� independent logistic regressions (with prior mean 0 and � ��) and 

obtain fitted weights n
j

k
jw 0}{ � , k = 1, …, K – 1  (the superscript k indicates the 

training task k).  From these, we then estimate as follows: 
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This strategy is similar to previous work by Chelba and Acero [2].  However, they 
fit the �

j to auxil iary data based on a single A task and set the � j to a constant �  
tuned with holdout data.  In our application (and in many transfer learning settings), 
there is not enough task B data to employ holdout methods. 

2 Experimental Test 

We tested this algorithm on a meeting invitation task that we call the “Busy People”  
task.  Data were col lected from 21 individuals for the task of deciding whether or 
not to accept an email invitation to a meeting.  The data were generated by first 
collecting two months of calendar data and associated background knowledge from 
each individual.  The background knowledge included definitions of the various 
projects that the person was working on, the other people working on those projects, 
and the relationships between the individual and these other people.  Synthetic email  
invitations addressed to each individual were then generated for a two-week period 
(overlapping the two-month calendar), and the individual then classif ied each 
invitation as to whether he or she would accept or reject that invitation 
(independently of the other invitations but based on the actual state of the calendar).  



 

Eight of the participants generated their data as part of a military simulation in 
which they were involved.  For these people, the background knowledge was 
defined as part of the simulation, and the calendar information was collected during 
the simulation.  The remaining 13 participants were al l researchers in university or 
private research labs, and they provided the background knowledge and calendar 
information as described above. 

We performed the fol lowing experiment 21 times and averaged the results:  One 
individual was chosen to be Task B, and the remaining individuals constituted 20 
Task As.  20 logistic regression classifiers were fit to these domain As.  From the 
fitted weight values, the �

j and � j values were estimated as described above.  For 
Task B, data from 32 examples were chosen (randomly) for training and the rest 
were set aside as the test set.  For training sets of size m= 2, 4, 8, 16, and 32,  the 
Task B classifier was fi t by penalized maximum l ikelihood and then the resulting 
model was evaluated on the holdout test data.  The results are plotted in Figure 1. 
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(1A)  Transfer to all individual B-s from the ensemble of all other A-s 
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(1C)  Transfer from the research to the military domain

Figure 1: Our method improves on average over a transfer-unaware baseline.  The numbers 
shown refer to averages over individual B tasks. The ensemble of A tasks consists of the 
remaining 20 individuals (1A), the eight mil i tary domain (1B), and the 13 research domain 
individuals (1C).  In 1A, differences relative to the baseline are mostly statistically 
significant (one tai led paired t test, p�.05). In the cross-domain transfer cases (1B, 1C), 
most of these differences are not statistically signi ficant. 

Figure 1A shows the overal l results compared to training only on the Task B data.  
The transfer algorithm shows improvement that is statistically significant compared 
to the basel ine.  Figure 1B shows the results if we transfer from the 8 military 
participants to the 13 research participants.  We sti l l  observe a positive transfer 
effect, although a paired differences t test does not report statistical significance, 
perhaps because of the small  number of replications.  Figure 1C shows the results of 
transferring from the 13 researchers to the 8 military participants.  There is a 



 

positive effect (not statistically significant) only at very small sample sizes.  Results 
from the within-domain transfer, to each participant from the rest of participants of 
the same type, were very close to the results of transfer from all participants, that is 
the improvement was mostly statistically significant (not shown in Figure 1). 

3 Discussion 

This work demonstrates that when multiple A tasks are avai lable, we can obtain 
positive transfer learning by first f itting models to the individual A tasks, and then 
using those fi tted models to estimate the parameters of an informative prior 
distribution for task B.  This strategy can be viewed as a rough approximation of a 
full hierarchical Bayesian approach in which we adopt a hyperprior over the weights 
and assume that prior for each task A or B is drawn from this shared hyperprior.  
Such an approach can be expected to give better results than the simple strategy 
employed here. 

In a related paper [4], we define a hierarchical naïve Bayes classifier and apply it to 
this same problem.  However, in those experiments, we only studied transfer 
between pairs of study participants, rather than between the whole set of As and a 
single B.  Those results (as well as applying the strategy described in [2] to transfer 
between two individuals), while positive, were not as strong as the results reported 
here for logistic regression.  This suggests that transferring logistic regression 
weight values may be better suited to this meeting invitation task than transferring 
the naïve Bayes parameter values. 

It is important to be aware of the assumptions necessary for any transfer method to 
work and to examine the degree to which they match reality.  Our assumption here 
was that the tasks we dealt with are of the same kind or, in other words, that they 
were generated from a common source or taken from a common pool.  Thus, 
although prominent differences prevented individual transfer, valuable transferable 
information could be extracted from the ensemble.  This should not be expected to 
work under all  circumstances, e.g. i f  there are two or more domains that are 
fundamental ly different.  With this observation in hand, an important further 
research direction seems to be to detect cross-task and cross-domain similarities and 
relevances (e.g. through unsupervised mechanisms such as data clustering). 
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